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Figure 6 Memory impairment in tau Tg mice. The spatial reference
memory of Tg mice was assessed by the Morris water maze at 4 and
6 months of age. A: Mice were trained to swim to a hidden platform for 4
consecutive days (five trials per day) (n = 9 at 4 months and n = 10 at
6 months for non-Tg littermates; n = 6 at 4 months and n = 10 at
6 months for lines 264 and 609). No difference in memory among non-Tg
littermates, line 264, and line 609 was observed at 4 months of age. At
6 months of age, line 609 exhibited significantly longer latency than line
264 and non-Tg littermates. *P = 0.0011 versus 6-month-old non-Tg,
P = 0.0027 versus 6-month-old line 264 mice. B: Retention of memory
was assessed by a probe trial on day 5. Data are given as time occupancy in
the target quadrant. /P = 0.0098 versus non-Tg, P = 0.0352 versus line
264. Data are given as means = SEM.

mutant Tg mice were detected at 8 months of age (data not
shown). These results suggest that synapse loss began to
occur from areas closer to the pcl in mutant Tg mice.

Then we examined synaptic function in the hippocampal
CA3 region in 6-month-old mutant Tg mice (line 609) by
electrophysiologic testing compared with age-matched non-
Tg littermates. At first, basal synaptic transmission was
examined in four different areas (the pcl, sil, sI2, and sr),
the main projection sites of mossy fibers. As shown in
Figure 5, A and B, significant lowering of I/O performance
was observed in the pcl of mutant Tg mice. The same, but
not significant, tendency was also detected in the sli, and
a somewhat inverse tendency was recorded in the more
distal area of slI2, suggesting that basal synaptic transmission
in mutant Tg mice was impaired in a manner depending on
the distance from the pcl. This geometric feature of synaptic
dysfunction seems to reflect the reduced synaptic density in
this region (Figure 4). Next, long-term synaptic plasticity
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was examined by measuring L'TP. In this experiment, we
selected a recording point that showed good I/O perfor-
mance from the s11/2 area to minimize the influence of the
differences in basal synaptic transmission. Again, significant
impairment of LTP was observed in mutant Tg mice
(Figure 5C). Thus, synapse loss and dysfunction in the
hippocampus were shown to occur at the same time frame as
the appearance of abnormally phosphorylated tau (Figure 2)
in mutant Tg mice.

We also assessed the spatial reference memory of mice
using the Morris water maze at 4 and 6 months of age. Mice
were trained for 4 days to memorize the location of a hidden
platform in a swimming pool, and the time required to reach
the platform was measured as escape latency in each trial
(Figure 6A). At 4 months of age, there were no differences
in cognitive function among non-Tg littermates, line 264,
and line 609. However, at 6 months of age, memory
acquisition in line 609 got significantly worse, with longer
escape latencies than those in non-Tg littermates. Probe
trials with the platform removed at day 5 also revealed that
memory retention in line 609 was significantly lower than
that in non-Tg littermates at 6 months of age (Figure 6B). In
contrast, line 264 exhibited no defects in memory acquisi-
tion and retention even at 6 months of age. No differences in
locomotor activities were observed among the three groups.

Glial Activation in Intronic Mutant Mice

Because glial cell-mediated neuroinflammation is impli-
cated in the pathogenesis of neurodegenerative diseases, we
examined the occurrence of glial activation in Tg mice by
IHC analysis. Brain sections at various ages were stained
with antibodies to Iba-1 (Figure 7, A—H) and GFAP
(Figare 7, 1--P), which are markers for microglia and astro-
cytes, respectively. Non-Tg littermates exhibited no intense
staining with these antibodies under the staining conditions
even at 24 months (Figure 7, E and M). Line 264 possessed
almost no GFAP-positive cells (Figure 7N) and only a few
Iba-1—positive cells (Figure 7F) in the hippocampus at 24
months of age. In contrast, lines 609 and 784 began to display
Iba-1—positive cells at 12 months of age (Figure 7, C and D)
and GFAP-positive cells at 24 months of age (Figure 7, O and
P) in the cerebral cortex and hippocampus. The apparently
positive staining presumably reflects increased expression of
these marker proteins, implying activation of the glial cells.
Quantification of Iba-1—positive cells in the hippocampal
CA1 region (Figure 7Q) and of GFAP-positive cells in the
hippocampal CA2/3 region (Figure 7R) at 24 months of age
indicates significantly increased activation of microglia and
astrocytes in lines 609 and 784.

Neuronal Loss in Intronic Mutant Mice

Most tau Tg mice expressing missense mutations have been
shown to display age-dependent neuronal loss. We ques-
tioned whether neuronal loss also occurs in intronic mutant
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Figure 7  Glial activation in tau Tg mice. Brain sections from non-Tg littermates (A, E, I, and M), line 264 (B, F, 3, and N), line 609 (C, G, K, and 0), and line 784
(D, H, L, and P) at various ages were stained with antibodies to the microglia marker Iba-1 (A—H) and the astrocyte marker GFAP (I—P). Iba-1 images were taken
from the hippocampal CA1 region at 12 and 24 months of age, and GFAP images were from the hippocampal CA2/3 region at the same ages. Lines 609 and 784 began
to exhibit Iba-1—positive cells at 12 months of age (C and D), and GFAP-positive cells at 24 months of age (0 and P). Insets: Extended images of Iba-1— or GFAP-
positive cells indicated with arrowheads. Scale bar = 30 pm. Q: Iba-1—positive cells in the hippocampal CA1 region (220 x 160 um) at 24 months of age were
counted. *P = 0.0140 versus non-Tg, P = 0.0359 versus line 264; **P = 0.0433 versus non-Tg (n = 4). R: GFAP-positive cells in the hippocampal CA2/3 region
(220 x 160 um) at 24 months of age were counted. TP = 0.0249 versus non-Tg, P = 0.0310 versus line 264; 'P = 0.0477 versus non-Tg (n = 4). The dots represent
the measured values in each mouse and the horizontal lines show the mean values.

Tg mice. Brain sections at 18 and 24 months of age were cerebral cortex (Figure 8, I and J). In contrast, lines 609 and
stained with an antibody to NeuN, a marker of mature 784 exhibited a significant decrease in mature neurons in the
neurons (Figure 8A—H). Line 264 showed no significant hippocampal CA1 region compared with non-Tg littermates
difference from non-Tg littermates in the number of NeuN- at 24 months of age (Figure 8I). The same, but not signif-
positive cells at 24 months of age in the hippocampus and icant, tendency was also observed in the retrosplenial region
The American Journal of Pathology m ajp.amjpathol.org 221
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Neuronal loss in tau Tg mice. Brain sections from non-Tg littermates (A and E), line 264 (B and F), line 609 (C and G), and line 784 (D and H) at

18 and 24 months of age were stained with an antibody to the mature neuron marker NeuN. Images were taken from the CA1 region of the hippocampus (A—D)
and from the retrosplenial region of the cerebral cortex (E—H) at 24 months of age. Scale bar = 30 um. I and J: NeuN-positive cells in the hippocampal CA1
region (within 1000 pm along the pcl) (I) and the retrosplenial region of the cerebral cortex (1 x 1 mm) (J) at 24 months of age were counted. *P = 0.0464
versus non-Tg, P = 0.0264 versus line 264; **P = 0.0023 versus non-Tg, P = 0.0013 versus line 264 (n = 4). The dots represent the measured values in each

mouse and the horizontal lines show the mean values.

of the cerebral cortex at 24 months of age (Figure 8J).
Apparent neuronal loss, however, was not detected at 18
months of age. Taken together, these findings indicate that
just an alteration of tau exon 10 splicing is sufficient to
trigger the pathologic cascade to neuronal death even in the
absence of a tau missense mutation.

Discussion

In the present study, we generated a new mouse model to
understand FTDP-17. Mice were designed to mimic the
isoform expression of tau in human brains with and without
the intron 10 +16C — T mutation. The control and FTDP-17
model mice share the same tau minigene construct, including
the intron 9, exon 10, and intron 10 sequences required for
splicing machinery. As we intended, the introduced human
tau trangenes and the endogenous mouse tau gene changed
their isoform expression due to a development-dependent
regulation in vivo. In control Tg mice, 3R tau was expressed
at a juvenile age, whereas 3R and 4R human tau was
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expressed at an adult age, similar to in human brains." In
FTDP-17 Tg mice, which harbor the tau intron 10 +-16C—T
mutation, the expression pattern was similar except that 4R
tau levels were higher than the control at adult age (Figure 1).
The mutation examined herein has been shown to destabilize
the predicted stem-loop structure of the 5’ splice site of exon
10 (splice donor site of intron 10) and, thereby, promote the
binding of U1 small nuclear ribonucleic particles, a compo-
nent of the spliceosome, which increases tau exon 107
mRNA in vitro.”®*'® Herein, we found that this mutation,
indeed, affected exon 10 splicing to increase 4R tau expres-
sion in adult mice and subsequently caused abnormal tau
phosphorylation, synapse loss and dysfunction, memory
impairment, glial activation, tangle formation, and neuronal
loss in an age-dependent manner.

Synaptic and cognitive impairments in mutant Tg mice
were associated with abnormal phosphorylation of tau in
mossy fibers in the hippocampus at 6 months of age but not
with that in neuronal cell bodies at 18 months of age. In
contrast, neuronal loss occurred in the hippocampus at 24
month of age along with the appearance of tangles. These
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results suggest that abnormal phosphorylation of tau in
neurites contributes to synaptic and cognitive impairments,
whereas somatic accumulation of aggregated tau leads to
neurodegeneration. It is unclear, however, whether tangles
are a marker for premature death or whether cells can survive
the toxicity of tau aggregates by forming harmless tau
inclusions. This latter theory is consistent with intracellular
inclusions of insoluble tau aggregates not being toxic; rather,
soluble tau oligomers are the cause of synaptic and cognitive
dysfunction and neurodegeneration.” %’ Toxic tau species
in mutant Tg mice are to be the subject of future studies.

Note that the pathologic abnormalities we observed in
these mice were induced just by changing the 3R/4R tau
ratio, even in the absence of a missense mutation. Patients
with this mutation have been reported to present prominent
frontotemporal lobar atrophy with neuronal and glial tau
inclusions in the form of neurofibrillary tangles and pre-
tangles.15’16’28_30 Biochemical analyses have revealed that
sarkosyl-insoluble fractions from patient brains contain
predominantly 4R tau, which assembles into twisted,
ribbon-like filaments.">'® We show herein that mutant Tg
mice reproduced neuropathologic abnormalities typical in
patients: neuronal and glial tau inclusions, neuronal loss, 4R
tau dominancy in sarkosyl-insoluble fractions, and tau fila-
ment formation.

There are many reports on FTDP-17 using mouse
models,'*'? and all describe tau missense mutations, such as
G272v,” N279K,'** v337M, 7 P301L, > 301,40
R406W," ™™ the double mutations G272V/P301S* and
K257T/P301S,* and the triple mutation G272V/P301L/
R406W.*” Most of these mutations have been shown to
reduce the affinity of tau for microtubules®* or to enhance the
self-aggregation of tau.’ Among them, only the N279K
mutation, which is located in the 5’ region of exon 10, has
been shown to affect exon 10 splicing in a way that increases
4R tau expression.® Dawson et al*? generated Tg mice that
express a human tau minigene, including introns with or
without the N279K mutation and reported that this mutation
caused an altered 3R/4R tau ratio from 1:1 at fetal age to
almost 100% 4R tau at adult age. In addition, these mice
exhibited age-dependent tau pathologic abnormalities at 18
weeks of age and motor and cognitive deficits at 23 weeks of
age, suggesting that an imbalance of 3R and 4R tau expres-
sion could be a cause of tauopathy. However, it has remained
unclear whether the pathologic abnormalities observed in
those Tg mice were induced by the alteration in the tau iso-
form ratio or were the result of an aberrant property in the
N279K mutant tau, as it was demonstrated that the presence
of the N279K mutation exacerbates cognitive deficits in Tg
mice expressing a single isoform of human tau.'” The present
intronic mutant Tg mice provide less ambiguous evidence
that an imbalance of 3R and 4R tau expression leads to tau
abnormalities even in the absence of mutant tau.

The present control Tg mice, which have the same
regions of tau introns 9 and 10 as the present mutant Tg
mice, showed a developmental change in exon 10 splicing
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similar to that in human brain and did not display any tau
abnormalities. These findings seem to support our conclu-
sion that the pathologic abnormalities observed in mutant
Tg mice were due to the altered 3R/4R tau ratio. Never-
theless, we cannot exclude the possibility that the control Tg
mice did not develop tau abnormalities because the
expression levels of human tau in these mice were less than
one-sixth those seen in mutant Tg mice. It has been shown,
however, that an imbalance in 3R and 4R tau expression,
rather than tau expression levels themselves, is critical for
tau pathology in mice expressing wild-type human tau.
Dawson et al’? generated Tg mice that express 3R and 4R
human tau at a ratio of 1:1 in the absence of the N279K
mutation. The expression levels of human tau in these mice
were more than two times endogenous mouse tau, but
neither tau pathologic abnormalities nor motor and cognitive
deficits were observed even at 52 weeks of age. Duff et al*®
generated Tg mice expressing all six isoforms of human tau
by injecting human whole tau genes into mouse embryos.
These mice expressed human tau levels that were more than
three times endogenous mouse tau levels but did not exhibit
tau abnormalities or motor deficits up to 8 months of age. In
contrast, Tg mice expressing only 3R or 4R human tau did
show tau pathology even at low levels of expression and,
furthermore, motor deficits at high levels of e>(p1"ess‘.ion.49—54
For example, Gotz et al® reported that their Tg mice ALZ7,
which expressed the longest (4R) human tau isoform at levels
equivalent to only 10% of endogenous mouse tau, displayed
AT-8— and PHF-1—positive staining in neuronal cell bodies
and processes at 3 months of age. Brion et al*° generated Tg
mice expressing the shortest (3R) human tau isoform at levels
of approximately 20% endogenous mouse tau and observed
abnormal tau phosphorylation in neuronal cell bodies and
dendrites at 6 months of age. Although these mouse lines
failed to produce neurofibrillary tangles and lacked obvious
neurologic symptoms, they showed early tau pathologic
abnormalities despite low levels of tau expression. Thus,
unlike mouse tau, a balanced expression of 3R and 4R tau is
presumably important for human tau to keep its normal
condition at adult age.

In summary, we generated a new mouse model express-
ing wild-type human tau in the presence and absence of
a tau intronic mutation linked to FTDP-17. Control Tg mice
showed a normal developmental change of expression in tau
isoform similar to human brains, whereas intronic mutant
Tg mice selectively increased 4R-tau isoform and had
pathologic abnormalities similar to patients with this muta-
tion. The present Tg mice, therefore, could help elucidate
the pathologic mechanism associated with tau proteins.
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It has been shown that amyloid B (AB) secretion regulates
cholesterol efflux from cells and that the E693A (Osaka)
mutation in amyloid precursor protein (APP) promotes
intracellular accumulation of AB and thus reduces its
secretion. These findings led us to speculate that APP
with the Osaka mutation (APPosk) might have a defect in
cholesterol efflux and thus cause cellular malfunction. We
therefore examined the effects of this mutation on intra-
cellular cholesterol transport and efflux in cultured cells.
Upon cholesterol loading, APPosk-expressing cells exhib-
ited higher levels of cellular cholesterol than wild-type
APP-expressing cells, suggesting impaired cholesterol
efflux. It is known that, after its internalization, cholesterol
is transported from the endosomes to the endoplasmic
reticulum (ER) and Golgi apparatus and then to the
plasma membrane. In APPosk-expressing cells, choles-
terol accumulated with AR in the ER and Golgi apparatus
and alone in endosomes/lysosomes. These results imply
that the mutation-induced disturbance of AR trafficking
from the ER to the plasma membrane affects cholesterol
transport to cause cholesterol accumulation in the ER
and Golgi apparatus and, consequently, in endosomes.
Furthermore, we detected an enhanced mitochondrial
accumulation of AR and cholesterol in APPogk-express-
ing cells, and this was accompanied by an increase in the
generation of reactive oxygen species (ROS). The present
findings suggest that AB trafficking is important for intra-
cellular cholesterol transport and efflux and that the
Osaka mutation potentiates cholesterol-dependent exac-
erbation of intracellular A toxicity, i.e. AB-induced ROS
generation, by disturbing Ap-mediated cholesterol efflux
from the cell. © 2013 Wiley Periodicals, Inc.

Key words: Alzheimer’s disease; amyloid B (AB); choles-
terol; mitochondria; reactive oxygen species (ROS)

Cerebral accumulation of amyloid B (AB) is a hall-
mark of Alzheimer’s disease (AD). The E693A (Osaka)

© 2013 Wiley Periodicals, Inc.
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mutation in amyloid precursor protein (APP) has been
shown to cause AD by enhanced formation of synapto-
toxic AR oligomers (Tomiyama et al., 2008). This muta-
tion is also characterized by a marked decrease in Af
secretion (Tomiyama et al., 2008) and an increased A
accumulation within cells, probably resulting from disturbed
AB trafficking from the endoplasmic reticulum (ER) to the
plasma membrane (Nishitsuji et al., 2009). Transgenic (Tg)
mice expressing APP with the Osaka mutation (APPgy)
were found to display an intraneuronal accumulation of AB
oligomers and subsequent synapse loss and memory impair-
ment from 8 months and eventual neuronal loss at 24
months of age (Tomiyama et al., 2010). In cultured cells
transfected with APPosk and brains of APPogsk-Tg mice,
AR oligomers accumulated in the ER, Golgi apparatus,
ensosomes/lysosomes, autophagosomes, and mitochondria
and caused ER stress, endosomal/lysosomal leakage, and
mitochondrial dysfunction that led to apoptosis (Nishitsuji
et al., 2009; Umeda et al., 2011).

High levels of plasma cholesterol are known to be a
risk factor for AD (Solomon and Kivipelto, 2009; Stefani
and Liguri, 2009). This is presumably because cholesterol
affects APP processing to increase AP generation via
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activation of both B- and y-secretases (Frears et al., 1999;
Xiong et al., 2008) and inhibition of a-secretase (Bodo-
vitz and Klein, 1996). However, it remains unclear why
high levels of cholesterol increase AP generation. After its
internalization, cholesterol is transported from the endo-
somes to other compartments such as the ER and Golgi
apparatus via the endosomal cholesterol transporters
Niemann-Pick type C1 (NPC1) and NPC2 and cytosolic
cholesterol transporters such as oxysterol-binding protein-
related proteins (Chang et al., 2006; Prinz, 2007; Subra-
manian and Balch, 2008). Cholesterol is then transported
from the ER and Golgi apparatus to the plasma mem-
brane and excreted from the cell as a lipoprotein via
membrane cholesterol transporters such as ATP-binding
cassette transporter Al (ABCA1) and extracellular apoli-
poproteins such as apoA and apoE (Chang et al., 2006;
Yokoyama, 2006; Prinz, 2007). We have previously
shown that, during its secretion, AP forms high-density
lipoprotein (HDL)-like complexes with cellular choles-
terol via ABCA1, leading to cholesterol efflux from cells
(Umeda et al., 2010). Inhibition of AB production with
B- and vy-secretase inhibitors resulted in increased levels
of cellular cholesterol along with decreased secretion of
cholesterol particles, whereas enhancement of AP pro-
duction with an a-secretase inhibitor or by introducing
the Swedish-type mutation into APP caused a marked
reduction in cellular cholesterol levels (Umeda et al,
2010). These findings suggest a novel, apolipoprotein-like
function of AP and may account for the biological signifi-
cance of cholesterol-promoted AR generation.

This conclusion implies that certain APP mutations
that decrease A} secretion may also disturb AB-mediated
cholesterol efflux and induce cholesterol accumulation
within a cell. Thus, we speculate that APPogic might
have a defect in cholesterol efflux resulting from disturbed
AR secretion and that this may cause cellular malfunction.
For example, it has been shown that mitochondrial accu-
mulation of cholesterol increases the susceptibility of neu-~
rons to ABs-induced reactive oxygen species (ROS)
generation, probably by the cholesterol-mediated deple-
tion of mitochondrial glutathione, a critical antioxidant
defense (Fernandez et al., 2009). In the present study, we
therefore examined the etfects of the Osaka mutation on
intracellular cholesterol transport and efflux as well as
ROS generation in cultured cells. Our findings suggest
that AB trafficking is important for intracellular choles-
terol transport and efflux and that the Osaka mutation
potentiates cholesterol-mediated exacerbation of intracel-
lular AB toxicity via its impaired cholesterol efflux.

MATERIALS AND METHODS

Chemicals and Antibodies

The cholesterol/methyl-B~cyclodextrin (MBCD) com-
plex and the filipin complex were purchased from Sigma-
Aldrich (St. Louis, MO). A rabbit polyclonal antibody to the
C-terminal region of APP (C40) was prepared in our laborato-
ries (Suga et al., 2004). A mouse monoclonal antibody to the
N-terminus of AR (82E1; IBL, Takasaki, Japan) and rabbit
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polyclonal antibodies to actin (Sigma), the ER marker calnexin
(Stressgen Bioreagents Corp., Ann Arbor, Ml), and the Golgi
marker RCAS1 (Cell Signaling Technology, Danvers, MA)
were also purchased. LysoTracker Red (DND-99), Mito-
Tracker Red (CMXRos), the ROS indicator -6-carboxy-2/,7'-
dichlorodihydrofluorescein diacetate (carboxy HDCFDA), and
Hoechst33342  were purchased from Molecular Probes
(Eugene, OR). Alexa 488-conjugated anti-mouse IgG and
Alexa 594-conjugated anti-rabbit IgG antibodies were also
obtained from Molecular Probes, and cyanine 5 (Cy5)-conju-
gated rabbit IgG antibody was obtained from Jackson Immu-
norescarch (West Grove, PA).

APP Constructs

Wild-type and Osaka-mutant human APPgs cDNA
constructs were prepared with the pCl mammalian expression
vector (Promega, Madison, WI), as described previously (Nish-
itsuji et al., 2009).

Cellular Cholesterol

The human kidney line HEK293 cells were transfected
with the APP constructs or an empty vector using Lipofect-
amine 2000 reagent (Invitrogen, Carlsbad, CA), and mouse
neuroblastoma Neuro-2a cells and human astrocytoma U-251
MG (formerly known as U-373 MG) cells were transfected
using Lipofectamine LTX reagent (Invitrogen). Two days after
transfection, the cells were loaded with cholesterol by incuba-
tion at 4°C for 30 min with 1 mM cholesterol/MBCD com-
plex in serum-free DMEM. The cholesterol loading media
were replaced with fresh serum-free DMEM, and the cells
were further incubated at 37°C for 6 hr (HEK293 and U-251
MG) or 1 hr (Neuro-2a). After being washed with PBS, the
cells were harvested. Cellular cholesterol was extracted from
the cell pellets and subjected to cholesterol assay using a Cho-
lesterol/Cholesteryl Ester Quantitation Kit (BioVision, Moun-
tain View, CA), as described previously (Umeda et al., 2010).
The levels of APP expression were determined by Western blot
with C40 antibody, as described previously (Umeda et al.,
2010).

Ap ELISA

HEK?293, Neuro-2a, and U-251 MG cells were trans-
fected with the APP constructs, loaded with cholesterol, and
incubated for 6 hr or 1 hr after medium change, as described
above. The culture media and cells were harvested for AR mea-
surement. To extract intracellular A, the cells were sonicated
in 70% formic acid (FA) and centrifuged at 100,000¢ for 1 hr at
room temperature. The supernatants were diluted tenfold in
1 M Tris solution (pH 11). AP concentrations in the culture
media and neutralized FA extracts were determined using
human AB ELISA kits (Wako Chemicals, Osaka, Japan). For
the measurement of mutant AP, synthetic E22A-mutant ARy,
and ABy, peptides were used to make standard curves.

Immunocytochemistry

Monkey kidney line COS-7 cells grown on coverslips
coated with poly-L-lysine were transfected with the APP
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constructs, loaded with cholesterol, and incubated for 6 hr after
medium change, as described above. For imaging of the endo-
somes/lysosomes and mitochondria, cells were incubated with
75 oM LysoTracker Red or 200 nM MitoTracker Red in
serum-free DMEM at 37°C for the last 45 min of the 6-hr
incubation. The cells were fixed with 4% paraformaldehyde in
PBS at room temperature for 30 min and permeabilized by
immersion in PBS containing 0.2% Triton X-100 for 5 min.
After blocking with 10% goat serum in PBS at room tempera-
ture for 1 hr, the cells were double stained with primary anti-
bodies at room temperature for 1 hr, followed by Alexa 488-
conjugated anti-mouse IgG and Alexa 594~ or Cy5-conjugated
anti-rabbit IgG antibody at room temperature for 20 min. For
the imaging of cholesterol, the immunolabeled cells were stained
with 125 pg/ml filipin in PBS for 15 min at room temperature
before mounting. The stained specimens were mounted with
Vectashield mounting medium (Vector, Burlingame, CA) and
viewed under a Leica TCS SP5 confocal laser microscope
(Leica, Wetzar, Germany). Quantification of filipin and 82E1
(AB) intensity was performed in INIH Image] software.

ROS Generation

COS-7 cells were seeded into black 96-well microplates
at a density of 1.3 X 10 cells/100 pl/well. The cells were
transfected with APP constructs and loaded with cholesterol, as
described above. After 5 hr of cholesterol loading, the plates
were washed with Hanks’ balanced salt solution (HBSS), and
20 uM carboxy HoDCFDA in HBSS was added to each well.
The plates were incubated at 37°C for 1 hr and washed with
prewarmed HBSS. ROS-induced DCF fluorescence was meas-
ured using an excitation of 490 nm and emission of 535 nm in
a multiplate reader (Wallac ARVO SX; Perkin Elmer, Welles-
ley, MA).

For the visualization of intracellular ROS, COS-7 cells
were seeded onto glass coverslip-based dishes with grids (AGC
Techno Glass Corp., Tokyo, Japan). The cells were transfected
with APP constructs, loaded with cholesterol, and stained with
carboxy HoDCFDA, followed by counterstaining with Hoechst
33342. DCF fluorescence and phase-contrast images of cells
were taken using a fluorescence microscope (Biozero BZ-8000;
Keyence, Osaka, Japan) before cell fixation. The cells were
then fixed and stained with C40 antibody, and images of the
same fields on the coverslips were taken again with the same
microscope.

Statistical Analysis

All values are expressed as mean = SEM. Comparisons of
means between two groups were performed using the unpaired
Student’s ¢-test, whereas those among multiple groups were
performed using Tukey’s post hoc test following one-way fac-
torial ANOVA,

RESULTS

Af Secretion and Cellular Cholesterol Levels in
APPgi-Transfected Cells

‘We initially examined the effect of the Osaka muta-
tion on AP secretion and cellular cholesterol levels.
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Human kidney-derived HEK293 cells were transfected
with wild-type APP (APPywt), APPosk, and an empty
vector (mock). There was no significant difference in
APP expression levels between APPyw- and APPogk-
transfected cells (Fig. 1A). The cells were loaded with
cholesterol by incubation with the cholesterol/MBCD
complex for 30 min. This treatment increased cellular
cholesterol levels to twice those in nontreated cells (Fig.
1A). The cholesterol loading media were replaced with
fresh media lacking cholesterol, and the cells were further
incubated for 6 hr. Compared with mock-transfected
cells, APPy--transfected cells exhibited significantly
lower levels of cholesterol, whereas APPosk-transfected
cells showed similar levels (Fig. 1A). The AB concentra-
tions in culture media of APPngg-transfected cells were
significantly lower than those of APPy/p-transfected cells
(Fig. 1B). Conversely, the levels of intracellular AR
extracted from APPusk-transfected cells were signifi-
cantly higher than those from APPyyp-transfected cells
(Fig. 1C). Intracellular accumulation was more prominent
with AR, than AB4. These results indicate that cells
with the Osaka mutation have a defect in cholesterol
efflux because of disturbed A secretion, as expected.

Similar experiments were performed using mouse
neuroblastoma Neuro-2a cells. The cells transfected with
APPy 1, APPsk, and an empty vector were loaded with
cholesterol for 30 min and incubated for 1 hr after
medium replacement. Again, APPyp-transfected cells
exhibited significantly lower levels of cellular cholesterol
than mock-transfected cells, whereas APPogk-transfected
cells showed similar levels (Fig. 2A). Also, the AB con-
centrations in culture media of APPngx-transfected cells
were significantly lower than those of APPr-transfected
cells (Fig. 2B). Thus, the inverse effects of the Osaka
mutation on AP secretion and cellular cholesterol levels
were confirmed in neuronal cells.

Astrocytes are known to secrete lipoproteins consti-
tutively to deliver cholesterols to neurons. Thus we
examined AR secretion and cellular cholesterol levels
using human astrocytoma U-251 MG cells. We detected,
however, neither AP secretion from this cell line even
after APP transfection nor significant differences in cellu-
lar cholesterol levels among APPyr-, APPogk-, and
mock-transfected cells (data not shown). Astrocytes have
been shown to express very low levels of the B-secretase
enzyme BACEL! in their resting state (Zhao et al., 1996;
Rossner et al., 2001), so these results suggest that choles-
terol efflux from astrocytes occurs independently of AB
secretion at least under normal conditions.

Intracellular Accumulation of Af and Cholesterol
in APPosig~-Expressing Cells

To visualize the intracellular accumulation of cho-
lesterol and AP in APPosk-expressing cells, we stained
cells with filipin, a fluorescent dye capable of binding to
cholesterol, in combination with antibodies to APP (C40,
rabbit) and AR (82E1, mouse). We used monkey kidney-
derived COS-7 cells in this experiment, because their cell
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Fig. 1. Impaired AB secretion and sustained cellular cholesterol levels
in APPogy-transfected HEK293 cells. FIEK293 cells were transfected
with an APPyr or APPagg construct and loaded with cholesterol. A:
Cellular cholesterol levels increased significantly immediately after
cholesterol loading (solid columns) compared with unloaded cells
(open columns). After a 6-hr incubation for cholesterol efffux (shaded
columns), APPyp-transfected cells exhibited lower levels of cellular
cholesterol than mock-transfected cells, whereas APPgg-transfected
cells exhibited levels of cellular cholesterol that were similar to those

bodies are larger than those of HEK293 and Neuro-2a
cells, making this cell line more suitable for examining
the subcellular localization of cholesterol and AB. APP
expression (C40-positive) was confirmed in both APPyr-
and APPogi-transfected cells but apparent intracellular AR
accumulation (82El-positive) was observed only in
APPsi-expressing cells (Fig. 3A). The cells were loaded
with cholesterol for 30 min. All of the mock-, APPy-,
and APPogk-expressing cells exhibited increased filipin
staining in the plasma membrane immediately after choles-
terol loading (Fig. 3B). After a 6-hr incubation with
cholesterol-free medium, filipin-positive materials in these
cells were largely sequestered within intracellular compart-
ments, indicating that cholesterol was internalized into the
cells (Fig. 3C). Notably, APPy-expressing cells exhibited
only weak filipin staining after the 6-hr incubation, sug-
gesting that internalized cholesterol was efficiently excreted
from the cells during the incubation. Intracellular AR in
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of mock-transfected cells. Results are presented as mean * SEM
(n = 3-4). B: The concentrations of secreted AB were determined by
ELISA. Both ARy and ARy in cultured media were lower in
APPosk-transfected cells than in APPyyr-transfected cells. ND, not
detected. C: Intracellular AP was extracted, and its levels were meas-
ured. APPogk-transfected cells exhibited significantly higher levels of
intracellular AB4o and ARy, than APPyyq-transfected cells. Results are
presented as mean = SEM (n = 4).

APPogg-expressing cells remained to accumulate even
after a 6-hr incubation. These observations are consistent
with the biochemical results showing that the Osaka muta-
tion has a defect in cholesterol eflux and AR secretion
(Fig. 1). In APPogsk-expressing cells, 59.0% = 3.4% of cel-
lular cholesterol was found to colocalize with AR (n = 26).
Almost no change of APP localization was observed dur-
ing cholesterol loading and subsequent incubation in both
APPy - and APPogi-expressing cells, implying that APP
trafficking is not involved in intracellular cholesterol trans-
port and efflux.

Subcellular Localization of A and Cholesterol in
APPosg-Expressing Cells

It is known that, after internalization, cholesterol is
transported from the endosomes to the ER and Golgi
apparatus and then to the plasma membrane to be
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