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Coordinate
MNI space Cluster

Region X Y 7z Zscore  size

Left parahippocampal gyrus ~-26 —42 -9 493 239]1*

Left hippocampus ~28 15 ~14 422

*Uncorrected p<0,001,
cluster level p<0.03 {corrected for multiple comparisons).

Fig. 3. Result of VBM analysis: In the left hippocampus and parahippocampal gyrus, only a significant cluster of gray matter density reduction in subjects with amnestic
MCI who converted to AD within three years (MCI-C) compared to subjects who did not (MCI-NC) (p < 0.001, uncorrected for multiple comparisons and p < 0.05, cluster-level

corrected for multiple comparisons).

while the accuracies shown in Fig. 7 were calculated with the the fixed set based on the feature ranking. There were signifi-
80 LOOCV results of different classifiers that were trained with cant main effects and interactions of atlas and feature selection
different combinations of 37 features. These combinations of 37 (p<0.0001) except between AAL and BA without feature selection
features were similar but not identical to one another and to (p=0.16).

1 (Not eliminated) “ Frontal lobe (FL)
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- Cerebellum (CL)
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Fig. 4. RFE rank score matrices from three brain atlases. The vertical axis of the map represents the subject number, i.e., each step of the leave-one-out cross-validation
(LOOCV) procedure. The horizontal axis represents the number of features in each atlas. The top-ranked features having a score of 1, i.e., the feature last selected during the
SVM-RFE procedure, are colored in white, while the features that were not selected (score 0) are colored in black. AAL, Automated Anatomical Labeling; BA, Brodmann's

areas; LPBA40, LONI Probabilistic Brain Atlas.
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Fig. 5. Final rankings of features of three brain atlases and bar plots of feature rank score as a result of the SVM-RFE procedure. Each bar plot for each region is colored
differently according to its anatomical location. AAL, Automated Anatomical Labeling; BA, Brodmann'’s areas; LPBA40, LONI Probabilistic Brain Atlas.

Fig. 9 shows ROC curves with AUC and 95% CI obtained with dif-
ferent atlases using the original features and the features further
selected through the SVM-RFE procedure. All p-values for feature
selection differences were smaller than 0.0001 in all the atlases.
Without feature selection, p-values for atlas differences were 0.84
for AAL vs. BA, 0.0055 for AAL vs. LPBA40, and 0.014 for BA vs.
LPBA40. In contrast, using feature selection, there were no signifi-
cant differences (p > 0.05) between the pairs of atlases.

Feature
rank

4. Discussion

This study focused on feature extraction using atlas-based par-
cellation and feature selection based on the SVM-RFE algorithm in
SVM-based classification using GM volumes from baseline struc-
tural MRI of subjects with amnestic MCI. To date, we are not aware
of any study that has demonstrated a comparison of brain atlases
for feature extraction.

Fig. 6. Selected region maps from the SVM-RFE procedure, which revealed the highest performance, overlaid to representative structural MR images. The regions with the
highest rank are colored in white and those with the lowest rank are colored in black. AAL, Automated Anatomical Labeling; BA, Brodmann’s areas; LPBA40, LONI Probabilistic

Brain Atlas.
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Table 2

Results of SVM classification using the feature sets extracted with three brain atlases without feature selection and those with a feature selection method based on SVM-RFE.
The feature selection technique enhanced the performance of the classification for all of the atlases.

Without feature selection With SVM-RFE
Atlas Number of features ACC SEN Number of features ACC SEN SPC
AAL 116 55.8% 56.4% 55.3% 20 71.4% 69.2% 73.7%
BA 82 54.5% 53.8% 55.3% 20 67.5% 64.1% 71.1%
LPBA40 56 67.5% 71.8% 63.2% 37 77.9% 76.9% 78.9%

SVM-RFE, support vector machine-based recursive feature elimination; ACC, accuracy; SEN, sensitivity; SPC, specificity; AAL, Automated Anatomical Labeling; BA, Brodmann's

Areas; LPBA40, LONI Probabilistic Brain Atlas.

80%

Ctassification accuracy

80 80 100 110 116

30 40 50 80 w0
Number of features

Fig. 7. Plots of the classification accuracy versus the number of features in the
dataset extracted with each brain atlas. AAL, Automated Anatomical Labeling; BA,
Brodmann's areas; LPBA40, LONI Probabilistic Brain Atlas.

The SEAD-] study showed a higher conversion rate for year
1 compared with the ADNI study (Kawashima et al, 2012). The
inclusion criteria of SEAD-] were different from that of ADNI, for
example, in WMS-R LM II score. The cohort of SEAD-] included
amnestic MCI patients with severer verbal memory deficits com-
pared with ADNL Tabert et al. (2006) reported that deficits in verbal
memory strongly predicted conversion to AD. Thus, this higher
conversion rate might be due to the severity of memory deficit of
the SEAD-] cohort, which is likely to be attributed to the inclusion
criteria of SEAD-].

We classified 77 subjects in this study into late MCI (LMCI)
and early MCI (EMCI) on the basis of their objective memory loss
measured by education-adjusted scores on WMS-R LM II accord-
ing to the definition of LMCI and EMCI in the inclusion criteria
of the ADNI 2 study (page 27 of the ADNI 2 Procedures Man-
ual, http://adniloniuda.edufwp-content/uploads/2008/07 /adniz-
procedures-manual.pdf). As a result, 60 subjects (77.9% of total)

90%

#AAL BBA HLPBA4O

80%

70%

80% -

Classification accuracy

50% - VAR .. .
No feature selection SVM-RFE

Fig. 8. Classification accuracies obtained with features extracted using different
atlases (left) and features further selected through the SVM-RFE procedure (right).
Values are mean and error bars represent standard errors. *p<0.0001, two-way

ANOVA followed by Tukey’s multiple comparison test. AAL, Automated Anatomical’

Labeling; BA, Brodmann's areas; LPBA40, LONI Probabilistic Brain Atlas; SVM-RFE,
Support vector machine-recursive feature elimination.

were classified into LMCl and 17 subjects (22.1%) EMCI. More specif-
ically, 39 converters (MCI-C) in our study consisted of 37 LMCI
(94.9%) and 2 EMCI (5.1%), whereas 38 non-converters (MCI-NC)
included 23 LMCI (60.5%) and 15 EMCI (39.5%). The proportions
of LMCI and EMCI between the MCI-C and MCI-NC groups were
significantly different (Fisher’s exact test, p-value =0.00028).

The result of the VBM analysis was consistent with that of a
previous meta-analysis of VBM studies (Ferreira et al, 2011). The
correspondence could demonstrate the validity of the MRI data and
the methodology of VBM that we used in this study. The results have
their own limitations, which are derived from the MRI data being
acquired on multiple scanners at different research institutions.
After adjusting for interscanner variability in the quality of the MRI
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Fig. 9. Receiver operating characteristics (ROC) curves with the areas under the
curve (AUC) and 95% confidence intervals (CI) obtained with different atlases using
the original features and the features further selected through the SVM-RFE proce-
dure. CIs for AUCs were computed with DeLong’s method. SVM-RFE, Support vector
machine-recursive feature elimination; AAL, Automated Anatomical Labeling; BA,
Brodmann’s areas; LPBA40, LONI Probabilistic Brain Atlas.
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acquisitions in both VBM and SVM analyses, we obtained classifi-
cation accuracies in the range of 55-78% (mean 4+ SD =65.8 £ 9.1%)
that were comparable with those of previous studies (56-82%,
mean + SD =66.8 & 7.0%) (Eskildsen et al, 2013). These results indi-
cate that the effect of scanner differences on the results of this study
might not be significant, as shown in a previous VBM study using
MRI data from different scanners (Stonnington et al,, 2008). In addi-
tion, because the goal of this study was to evaluate the relative
differences in the classification performances of the different brain
atlases, the MRI data from multiple scanners probably made no
remarkable difference in the results of the comparison among the
atlases.

We applied an LOOCV technique where a test set and a train-
ing set were initially separated before the SVM-RFE procedure. The
training set at each step of the SVM-RFE did not include the test set.
The cross-validation procedure may prevent the overfitting prob-
lem (Hsu et al,, 2003). Thus, it may be unlikely that the classification
accuracies we obtained are inflated accuracies due to overfitting.

Different atlases for parcellation may cause differences in fea-
ture vectors constructed from the original whole-brain volumetric
image on the basis of the following major factors: (1) a method
to parcel the whole brain and (2) number or size of regions. Dif-
ferent atlases having different number of ROIs provide different
feature vectors having different inter-regional correlations (Wang
et al, 2009; Faria et al, 2012). Multivariate analysis utilizes the
spatial covariance structure in the data (Habeck et al., 2008). Dif-
ferences in topological patterns of feature vectors in feature space
thus may affect the decision boundary of a multivariate classifier.
Accordingly, different inter-regional correlations due to different
parcellation atlases can influence the classification accuracy in the
multivariate pattern analysis.

The overall classification performance in this study was bet-
ter than or comparable with the results of previous studies on the
early prediction of AD using MRI-based biomarkers (Cuingnet et al,
2011; Davatzikos et al,, 2011; Wolz et al,, 2011; Cho et al,, 2012;
Eskildsen et al,, 2013). The study demonstrated the classification
performance differed across atlases when no feature selection was
applied, using the same dataset and the same methods except for
different atlases to define ROIs in voxel-based analysis. Although
there were no significant differences in AUC, classification accura-
cies revealed significant differences across atlases when SVM-RFE
was applied. To find the “optimal” atlas for AD prediction, however,
replication in another cohort would be required to demonstrate
that the found prediction accuracy was not merely by chance on
the particular cohort studied.

Then, what are the reasons for providing such a considerable
disparity in the performance across the three atlases? Although
underlying causality remains unknown, clues for solving this ques-
tion, if any, could be found in the differences between the atlases.
The AAL and BA atlases with the “ch2” image gave similar classifi-
cation accuracies, whereas LPBA40 with the ICBM452WS5 template
differed in their classification performance from the other two.
Therefore, we mainly contrast AAL with LPBA40 for simplicity.

Brain atlases are classified into two categories: single-subject
topological atlases and population-based probabilistic atlases
(Cabezas et al,, 2011). AAL is a single-subject atlas that is based
on the brain of a young male (Tzourio-Mazoyer et al, 2002),
whereas LPBA40 is a probabilistic atlas created from 40 MRI vol-
umes (Shatiuck et al, 2008). We speculate that this difference
might be a major important difference between AAL and LPBA40.
No single brain is representative of a population because of the neu-
roanatomical variability across individuals (Devlin and Poldrack,
2007). There is, therefore, no “correct” single-subject atlas. For
example, the MNI single-subject brain has some problems because
of anatomical variation and methodological limitations in spatial
normalization.

Regarding anatomical variation, Tzourio-Mazoyer et al. (2002)
mentioned that the MNI single-subject brain of AAL showed an
atypical rightward asymmetry of the planum temporale (PT). The
PT is a triangular structure that is located on the superior tempo-
ral gyrus (STG) and that has extensive connections to (and from)
other regions of the brain. The PT could be engaged in mediating
sensorimotor control processing such as speech motor processing
(Zheng, 2009). PT asymmetry might be influenced by gender, and
this rightward anatomical variation in the MNI brain of a young
man was found in only approximately 10% of the subjects in a pre-
vious study (Shapleske et al,, 1999). Chance et al. {(2011) reported
that microanatomical changes in cortical minicolumn organization
of the association cortex in the PT (BA22) were detected in the
early stages of MCI as well as AD. Such minicolumn measures in
the temporal lobe reportedly reflect selective regional vulnerability
to AD tangle pathology and differential involvement in the cogni-
tive deficit of AD (Chance et al,, 2006). Involvement of the superior
temporal cortex in early atrophic changes in AD was also found in
a VBM study on patterns of GM loss in MCI and AD (Karas et al,,
2004). Furthermore, the SVM analyses in this study demonstrated
that BA22 and STG in the right hemisphere were selected via the
SVM-RFE procedure in BA and LPBA40, respectively, whereas in
AAL, the STG in each hemisphere was eliminated. STG was also
chosen by a feature selection method that was different from the
SVM-RFE procedure for the classification of MCI using a linear dis-
criminant analysis (Eskildsen et al, 2013). These findings suggest
that the atypical PT asymmetry in the MNI single-subject brain
might pertain to the relatively poor performance of a whole-GM
SVM classification of MCI using AAL-based parcellation.

Tzourio-Mazoyer et al, (2002) also reported that several sulcal
patterns in the MNI single-subject brain, such as the Rolandic sulcus
and the precentral sulcus in the left hemisphere, had a low prob-
ability with reference to Ono’s atlas of sulci (Ono et al., 1990). In
AAL, the ROIs in each hemisphere were defined using sulcal land-
marks as the limits of the ROIs on the outer surface of the brain.
The internal limit of the regions was extended beyond the gray
matter layer, because AAL was originally intended to provide a
standard reference frame of anatomical localization for functional
neuroimaging studies with generally lower spatial resolution com-
pared to anatomical MRI (Tzourio-Mazoyer et al,, 2002). However,
sulcal and gyral patterns are extremely variable, and macroanatom-
ical landmarks do not match cytoarchitectonic borders in almost
all of the cases (Amunts et al, 2007). In fact, AAL provides peak
labeling, not precise anatomical localization, for structural imaging
studies (Tzourio-Mazoyer et al, 2007). Thus, a single-subject atlas
such as AAL does not represent the individual diversity of human
anatomy (Toga and Thompson, 2007; Cabezas et al,, 2011).

These issues in AAL suggest that care must be taken to apply AAL
to structural MRI analyses of subjects with MCI, as many experts
suggested (Devlin and Poldrack, 2007; Toga et al., 2006; Toga and
Thompson, 2007; Tzourio-Mazoyer et al,, 2002, 2007; Evans et al,,
2012).

Although LPBA40 better represents the MCI cohort in this
study compared with AAL, LPBA40 might not be the best choice.
Population-based templates also lack inter-subject correspondence
in cortical folding (Mangin ef al., 2010). Furthermore, LPBA40 also
differed from the MCI cohort in this study in terms of age, race,
and disease, which is similar to in AAL. Cortical thickness analysis
with the surface-based atlases in FreeSurfer (Desikan et al., 2006;
Destrieux et al, 2010; htip://surfer.nmr.mgh.harvard.edu/) using
the same dataset as in this study might provide improved clas-
sification performance. Future studies that use a disease-specific
population-based atlas for MCI would also better serve the early
detection of AD (Toga et al,, 2006; Toga and Thompson, 2007).

Another difference between the atlases is the number of ROIs
in each atlas. Although a left hippocampal region was detected
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Fig.10. Left parahippocampal regions and left hippocampal regions in three brain atlases corresponding to the regions detected by the VBM analysis. The left parahippocampal
and the hippocampal regions are colored in white and red, respectively. AAL, Automated Anatomical Labeling; BA, Brodmann’s areas; LPBA40, LONI Probabilistic Brain Atlas;

L PHG, Left parahippocampal gyrus; L HC, Left hippocampus.

as a robust discriminating region by a univariate analysis (Fig. 3),
our multivariate analysis demonstrated that classification using
multiple features rather than a sole well-discriminating predic-
tor could lead to better performance. When using the AAL atlas,
the left hippocampus (Region 37) was most often selected as the
last remaining feature after SVM-RFE. Using only this feature can
provide a relatively good accuracy around 70% for the dataset we
used in this study. In some circumstances, when adding more fea-
tures, the resulting set of features may be more discriminating as
a whole than the only feature in multivariate analysis. In other
cases, the resulting set of features may be less discriminating than
the original set and the resulting accuracy may be worse than
when not adding the features. A set of features generated from
116 regions of the AAL atlas may generally contain a lot of less
discriminating features. Therefore feature selection can be crucial
when using atlases. A previous multivariate analysis of MR images
of subjects with MCI also achieved improved accuracy in classifica-
tion using linear discriminant analysis (LDA) with multiple features
(Wolz et al,, 2071). Our study suggests that an optimal number of
regions could result in good performance in multivariate analysis
and that too many regions also could lead to poor performance
due to overfitting. However, it is difficult to determine the opti-
mal number of regions in advance of feature extraction. During
the SVM-RFE procedure, regions that do not contribute well to the
separation are removed from the original feature set according to
a feature-ranking algorithm. Whether an individual region sepa-
rates the classes well or not is determined by how to parcellate a
brain template. Multimodal probabilistic atlases generated by inte-
grating the cytoarchitectonic, receptor architectonic and functional
imaging data (Toga et al,, 2006) will play an important role in MRI
data analyses.

BA and AAL gave similar results in both the classification perfor-
mance and the regions selected through the SVM-RFE procedure.
A parcellation that is too coarse would not reflect the underly-
ing cytoarchitecture in each coarse region, as Amunts et al. {2007}
concluded from their classification results using unsupervised clus-
ter analysis on seven occipital areas of ten human brains. One
of the possible explanations for why BA has poorer performance
compared with AAL was the coarse parcellation in BA, although

the ROI generation of BA by subdivision at the mid-sagittal plane
might be imprecise. However, the poor classification performance
in BA could primarily be attributed to the same problems in the
MNI single-subject brain as in AAL, because LPBA40, which has the
smallest number of regions, provided the best performance.

As seen from Figs. 5 and 6, the left hippocampal region was
not consistently selected among the atlases. Fig. 10 shows the
left parahippocampal region and left hippocampal region in each
atlas corresponding to the regions detected by the VBM analy-
sis shown in Fig. 3. The left hippocampal region differed across
the atlases as shown in Fig. 10. Moreover, because the number of
ROIs was also different among the atlases, correlations between
the left hippocampal region and the other regions, i.e., correlation
or covariance patterns also differed across the atlases. Multivariate
analysis utilizes the spatial covariance structure in the data (Habheck
et al, 2008). Different covariance patterns due to different atlas-
based parcellations might cause the inconsistency in the selection
of the left hippocampal region among the atlases as well as the
differences in the performance of multivariate classifiers.

Similarly to this study, Chu et al. {2012) also employed similar
methods for MCI prediction. Namely, they also used the LPBA40
atlas for atlas-based parcellation, the SVM-RFE method for feature
selection, and SVMs for classification among AD, MCI, and nor-
mal controls. However, differently from our study, they basically
adopted a voxel-wise data-driven feature selection approach using
high-dimensional whole brain voxel data (299,477 voxels) as the
original input features. Moreover, they used seven atlas-based ROIs
and two combinations thereof as prior knowledge for feature selec-
tion. The regions were chosen arbitrarily based on findings from
previous mass-univariate VBM analyses. The classification accura-
cies using different ROIs for classifying MCI-C and MCI-NC were up
to 65%, and the region combining hippocampus and parahippocam-
pal gyrus (11,031 voxels) were superior to other regions. From the
results, they also suggested that covariance between information
encoded in the ROIs may help classification. The regions selected
using SVM-RFE were widely distributed across the brain, which is
similar to our results on the LPBA40 atlas. This also suggests that
inter-regional covariance or correlation may play an important role
as a biomarker for early detection of AD.
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As Faria et al. (2012) noted, a typical whole brain MR image
has approximately more than hundreds of thousands of voxels, and
correlations between these enormous number of voxels exceed 5
billion. Moreover, the signal from each voxel is so noisy that it is
practically challenging for us to produce a good feature represen-
tation for a classification task from the high-dimensional original
data. Thus, future work toward challenges of learning automati-
cally hidden topological structures or deep architectures from the
original data such as unsupervised feature learning (Coates et al,
2011) and deep learning (Bengio, 2009) could allow us to iden-
tify a good representation of features for classification in various
neuroimaging data.

5. Conclusions

In conclusion, this study showed that the performance of SVM-
based classification of MCl using GM volumes from structural MRI at
the baseline differs depending on the choice of atlases that defines
ROIs. LPBA40, a population-based probabilistic atlas, was superior
to AAL, a single-subject atlas, in classification performance using
the SVM-RFE procedure. The result suggests that feature selec-
tion is crucial to improve classification performance and that the
feature selection method based on the SVM-RFE algorithm effec-
tively enhanced the classification accuracy regardless of the choice
of atlas. The choice of atlases for feature extraction is also impor-
tant when using no feature selection. The appropriate selection of
ROIs combined with a feature selection technique in a voxel-based
approach has the potential of further improving the classification
performance. Moreover, atlas-based parcellation methods can be
applied to analyses using other modalities such as resting state
functional connectivity MRI studies (Wang et al., 2009; Faria et al.,
2012) and multi-modal studies combining structural MRI with
other modalities. This study will provide implications for future
atlas-based analyses using multivariate pattern analysis methods
on a wide range of issues and modalities.
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Abstract
Impact of cerebrovascular disease in dementia

Masafumi Ihara

Department of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center,
Osaka, Japan

With the demographic shift in age in advanced countries inexorably set to progress in the 21st
century, dementia will become one of the most important health problems worldwide. The discouraging
results of the immunotherapy clinical trials for Alzheimer’s disease have shifted scientific attention
from the mechanism underlying B amyloid (AB) synthesis toward clearance, including a perivascular
drainage pathway for Af. Theoretical models indicate that arterial pulsations may be the motive force
for the drainage of interstitial fluid and solutes. As arteries stiffen with age or with other co-morbid
factors, the amplitude of pulsations is reduced, perivascular drainage of AB becomes less efficient, and
insoluble AP is deposited in the drainage pathways as cerebral amyloid angiopathy. This notion is
supported by the finding that the distribution of AP deposits in the basement membranes of cerebral
capillaries and arteries corresponds very closely with the perivascular drainage route. Therefore,
therapeutic strategies that enhance the patency of this perivascular drainage pathway with vasoactive
drugs may facilitate AP removal and help prevent cognitive decline in the elderly. Clinical trials based
on this emerging paradigm are warranted to determine whether such a hemodynamic strategy is
effective to halt cognitive decline as a preemptive medicine.

Key words: $-amyloid, cerebral amyloid angiopathy, perivascular drainage pathway, dementia,
preemptive medicine






