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SUMMARY

Several clinical studies have shown that insulin resis-
tance is prevalent among patients with heart failure,
but the underlying mechanisms have not been fully
elucidated. Here, we report a mechanism of insulin
resistance associated with heart failure that involves
upregulation of p53 in adipose tissue. We found
that pressure overload markedly upregulated p53
expression in adipose tissue along with an increase
of adipose tissue inflammation. Chronic pressure
overload accelerated lipolysis in adipose tissue. In
the presence of pressure overload, inhibition of lipol-
ysis by sympathetic denervation significantly down-
regulated adipose p53 expression and inflammation,
thereby improving insulin resistance. Likewise, dis-
ruption of p53 activation in adipose tissue attenuated
inflammation and improved insulin resistance but
also ameliorated cardiac dysfunction induced by
chronic pressure overload. These results indicate
that chronic pressure overload upregulates adipose
tissue p53 by promoting lipolysis via the sympathetic
nervous system, leading to an inflammatory re-
sponse of adipose tissue and insulin resistance.

INTRODUCTION

The p53 tumor suppressor pathway coordinates DNA repair,
cell-cycle arrest, apoptosis, and senescence to preserve
genomic stability and prevent oncogenesis. Activation of p53 is
driven by a wide variety of stress signals that have the potential
to promote tumor formation, such as DNA damage, telomere
shortening, oxidative stress, and oncogene activation (Harris
and Levine, 2005; Meek, 2009; Vousden and Prives, 2009).
Recently, the contribution of p53 to many undesirable aspects
of aging and age-associated diseases, such as cardiovascular
and metabolic disorders, has been recognized (Royds and laco-
petta, 2006; Vousden and Lane, 2007). It has been reported that

aging is associated with an increase of the p53-mediated tran-
scriptional activity (Edwards et al., 2007) and that slight constitu-
tive overactivation of p53 is associated with premature aging in
mice (Maier et al., 2004; Tyner et al., 2002). Activation of p53
has also been observed in aged vessels and failing hearts and
has been implicated in atherosclerosis and heart failure (Mina-
mino and Komuro, 2007, 2008; Sano et al., 2007). Recent find-
ings have indicated a role of p53 in determining the response
of cells to nutrient stress and in regulating metabolism (Vousden
and Ryan, 2009). It has also been demonstrated that excessive
calorie intake induces p53-induced inflammation in adipose
tissue, leading to insulin resistance and diabetes in mice (Mina-
mino et al., 2009).

A close link between heart failure and diabetes has long been
recognized in the clinical setting (Ashrafian et al., 2007; Lopa-
schuk et al., 2007; Witteles and Fowler, 2008). Many mecha-
nisms have been suggested to explain the increased incidence
of heart failure in diabetic patients, including the hypertrophic
influence of insulin, the adverse effects of hyperglycemia,
increased oxidative stress, and hyperactivity of neurohumoral
systems, such as the renin-angiotensin-aldosterone system
and the adrenergic system. Recently, increasing attention has
been paid to insulin resistance as a distinct cause of cardiac
dysfunction and heart failure in diabetic patients. A study of
Swedish patients without prior cardiac dysfunction found that
insulin resistance predicted the subsequent onset of heart failure
independently of established risk factors (Ingelsson et al., 2005).
In another clinical study, the plasma level of proinsulin (a marker
of insulin resistance) was found to be higher in patients who
subsequently developed heart failure than in control patients
20 years before the actual diagnosis of heart failure (Arnlov
et al., 2001). These findings indicate that insulin resistance
precedes heart failure rather than being a consequence of it.
Evidence has emerged that myocardial insulin resistance is
central to altered metabolism in the failing heart and may play
a crucial role in the development of heart failure (Ashrafian
et al, 2007; Lopaschuk et al., 2007; Witteles and Fowler,
2008). The adaptive response of the failing heart involves
a complex series of enzymatic shifts and changes in the regula-
tion of transcriptional factors, which result in an increase of
glucose metabolism and a decrease of fatty acid metabolism
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to maximize the efficacy of energy production (Neubauer, 2007).
Insulin resistance of the myocardium inhibits these adaptive
responses, leading to increased reliance on fatty acid metabo-
lism. This increases oxygen consumption and decreases cardiac
function, raising the potential for lipotoxicity in the heart (Sharma
et al., 2007; Young et al., 2002). Another line of evidence indi-
cates that insulin signaling is upregulated in the failing heart
and that excessive cardiac insulin signaling exacerbates systolic
dysfunction (Shimizu et al., 2010).

Moreover, there is increasing evidence that heart failure recip-
rocally augments the risk of insulin resistance and clinical dia-
betes (Ashrafian et al., 2007). Insulin resistance and abnormal
glucose metabolism are very common in heart failure patients,
being identified in 43% of these patients, and such abnormalities
are associated with decreased cardiac function (Suskin et al.,
2000). Surprisingly, the link between heart failure and insulin
resistance grows stronger when patients with ischemic heart
disease are excluded (Witteles and Fowler, 2008). Heart failure
also predicts the development of type 2 diabetes in a graded
way (Tenenbaum et al., 2003). Although the above mentioned
clinical evidence supports a role of insulin resistance in the
occurrence of heart failure, evidence for the reciprocal statement
that heart failure promotes insulin resistance is largely associa-
tive. Moreover, the role of heart failure in the promotion of insulin
resistance has been demonstrated by only a few animal studies
(Nikolaidis et al., 2004; Shimizu et al., 2010) and the underlying
mechanisms are largely speculative.

Here, we studied the role of heart failure in the development of
insulin resistance and sought to elucidate the molecular mecha-
nisms involved. We found that insulin resistance developed in
two murine models of heart failure, a chronic pressure overload
model and a myocardial infarction model. Heart failure markedly
upregulated p53 expression in adipose tissue in association with
increased inflammation of adipose tissue. Heart failure acceler-
ated lipolysis in adipose tissue, whereas inhibition of lipolysis
by sympathetic denervation or treatment with a lipase inhibitor
significantly downregulated adipose tissue p53 expression and
inflammation, thereby improving insulin resistance. Likewise,
disruption of p53 activation in adipose tissue not only amelio-
rated inflammation in this tissue and improved insulin resistance
but also improved cardiac dysfunction associated with heart
failure. We conclude that heart failure upregulates p53 in adipose
tissue by promoting lipolysis via activation of the sympathetic
nervous system, leading to an inflammatory response of adipose
tissue and insulin resistance. Our results indicate that inhibition
of p53-induced adipose inflammation is a potential target for
treating metabolic abnormalities and systolic dysfunction in
patients with heart failure.

RESULTS

Pressure Overload Induces Adipose Tissue

Inflammation and Insulin Resistance

To examine the effect of cardiac pressure overload on glucose
homeostasis, we produced transverse aortic constriction (TAC)
in 11-week-old mice. In this mouse model, systolic cardiac
function deteriorated significantly along with left ventricular
(LV) dilatation 2-6 weeks after surgery (Figure S1A available on-
line). The insulin tolerance test (ITT) and the glucose tolerance
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test (GTT) showed that insulin sensitivity and glucose tolerance
were impaired at 4-6 weeks after TAC (Figure 1A) without any
change of food intake (Figure S1B). In patients with metabolic
disorders, the recruitment of inflammatory macrophages to
adipose tissue has been shown to increase the production of
proinflammatory cytokines, such as tumor necrosis factor
(TNF)-o. and chemokine (C-C motif) ligand 2 (CCL2), also known
as monocyte chemoattractant protein-1 (MCP-1), leading to the
development of systemic insulin resistance (Hotamisligil et al.,
1993; Kamei et al., 2006; Weisberg et al., 2003). Therefore, we
investigated whether pressure overload provokes adipose tissue
inflammation. Examination of hematoxylin- and eosin-stained
sections demonstrated the infiltration of mononuclear cells
into visceral fat, with most of these cells being identified as
macrophages by immunofluorescent staining for Mac3 (Fig-
ure 1B). Consistent with these results, expression of a marker
for macrophages (Egf-like module containing, mucin-like, hor-
mone receptor-like 1; EMR1) and production of proinflammatory
cytokines were significantly upregulated in the adipose tissue of
TAC mice along with a decrease of adiponectin (Figure 1C)
compared with sham-operated mice. Treatment of TAC mice
with a neutralizing antibody for Tnf-a significantly improved
insulin resistance and glucose intolerance, suggesting a crucial
role in the upregulation of proinflammatory cytokines in the
development of metabolic abnormalities during heart failure
(Figure S1C).

Pressure Overload Increases Lipolysis and Induces
p53-Dependent Inflammation in Adipose Tissue

during Heart Failure

Computed tomography (CT) showed a significant decrease of
visceral fat after the creation of pressure overload (Figure 1D).
It is well accepted that sympathetic activity increases with heart
failure (Floras, 2009), and norepinephrine regulates lipolysis in
adipose tissue. We found that the norepinephrine levels of
plasma and adipose tissue increased significantly and plasma
fatty acid levels were markedly elevated in TAC mice compared
with sham-operated mice, suggesting acceleration of lipolysis
via the sympathetic nervous system in response to pressure
overload (Figure 1E). It has been reported that exposure to an
excess of fatty acids leads to p53 activation in various cells
(Zeng et al., 2008) and that p53 is crucially involved in the
regulation of adipose tissue inflammation in obese animals
(Minamino et al., 2009). Therefore, we hypothesized that chronic
pressure overload promotes lipolysis and the resultant increase
of fatty acids leads to p53-induced inflammation in adipose
tissue.

Consistent with this concept, we found that p53 expression
was upregulated in the adipose tissue of TAC mice at 2-4 weeks
after surgery and the change was sustained until 6 weeks
(Figures 2A and S2A). To further investigate the role of adipose
tissue p53 in the response to pressure overload, we performed
TAC in adipocyte-specific p53 knockout (adipo-p53 KO) mice.
The pressure overload-induced increase of p53 expression
was attenuated in adipo-p53 KO mice compared with littermate
controls (Figure S2B). Production of proinflammatory cytokines
as well as cyclin-dependent kinase inhibitor 1A (Cdkn1a) expres-
sion was also decreased in adipo-p53 KO mice, along with
a decline in the infiltration of macrophages into visceral fat
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Figure 1. Pressure Overload Induces Systemic Insulin Resistance and Adipose Tissue Lipolysis and Inflammation

(A) Insulin tolerance test (ITT) and glucose tolerance test (GTT) in mice at 6 weeks after sham operation (Sham) or TAC (n = 30).

(B) Hematoxylin and eosin staining of adipose tissues of mice at 6 weeks after sham operation (Sham) or TAC (upper panel). In the lower panel, the infiltration of
macrophages was evaluated by immunofluorescent staining for Mac3 (green). Nuclei were stained with Hoechst dye (blue). Scale bar, 50 um. The right graph
indicates the quantitative data on the infiltration of macrophages (n = 5).

(C) Real-time PCR assessing the expression of Emr1, Tnf (Tnfa), Ccl2 (MCP1), and Adipog (Adiponectin) levels in adipose tissues of mice at 6 weeks after sham
operation (Sham) or TAC (n = 10).

(D) CT analysis of mice at 6 weeks after sham operation (Sham) or TAC. The graph shows the ratio of visceral fat tissue weight estimated by CT to whole body
weight (n = 7).

(E) Norepinephrine level in adipose tissue (left) and plasma (middle), and plasma free fatty acid (FFA) level (right) of mice at 6 weeks after sham operation (Sham) or
TAC (n = 10). Data are shown as the means + S.E.M. *p < 0.05, **p < 0.01.
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(Figures 2B and 2C). Consequently, adipo-p53 KO mice showed
improved insulin sensitivity and glucose tolerance after induction
of pressure overload compared with littermate controls (Fig-
ure 2D) without any change of food intake (Figure S2C). These
results suggest that p53 has a critical role in the regulation of
adipose tissue inflammation and insulin resistance during
pressure overload. In contrast, a decrease of fat mass and an
increase of plasma free fatty acids were observed to a similar
extent in both adipo-p53 KO and control mice after TAC (Figures
S2D-S2F), suggesting that pressure overload accelerates lipol-
ysis in a p53-independent manner.

Pressure Overload Promotes Lipolysis via the
Sympathetic Nervous System

We inhibited sympathetic activity in epididymal fat tissue by
surgical denervation and then performed TAC. As a result,
surgical denervation effectively inhibited an increase of the
norepinephrine level of adipose tissue and attenuated lipolysis
after the onset of pressure overload (Figures S3A and S3B and
data not shown). Histological examination of adipose tissue
showed that infiltration of inflammatory cells after TAC was
attenuated by denervation (Figures S3C and S3D). Likewise,
disruption of the sympathetic efferent nerves significantly
reduced pressure overload-induced upregulation of Emr1, a
proinflammatory cytokine expression in adipose tissue (Fig-
ure 3A), and this reduction was associated with significant
improvement of insulin resistance and glucose tolerance in
TAC mice (Figure 3B). Surgical denervation attenuated pressure
overload-induced upregulation of p53 and Cdkn7a expression
in adipose tissue (Figures 3A and 3C). We also pharmacologi-
cally inhibited the sympathetic activity in adipose tissue by
injecting guanethidine directly into epididymal fat and then
performed TAC. As a result, pharmacological denervation also
significantly inhibited lipolysis (Figures S3A and S3B) and atten-
uated upregulation of p53 and Cdkn7a expression and inflam-
mation in adipose tissues (Figures S3C, S3D, S4A and S4B).
Mice treated with guanethidine showed better insulin sensitivity
and glucose tolerance after creation of pressure overload (Fig-
ure S4C), indicating that pressure overload-induced activation
of the sympathetic nervous system accelerates lipolysis and,
thus, leads to adipose tissue inflammation and insulin resistance
in TAC mice.

Role of Lipolysis in the Regulation of Adipose p53
Expression and Inflammation

To examine the role of lipolysis in influencing adipose tissue
expression of p53 and inflammation after TAC, we inhibited lipol-
ysis by administering acipimox, a selective inhibitor of lipolysis,
to mice with TAC. Treatment with acipimox markedly inhibited

lipolysis and also reduced infiltration of inflammatory cells into
adipose tissue during pressure overload (Figures S3A-S3D). Inhi-
bition of lipolysis also significantly reduced pressure overload-
induced upregulation of Emr1 and proinflammatory cytokine
production in adipose tissue (Figure 4A), along with significant
improvement of insulin resistance and glucose intolerance in
TAC mice (Figure 4B). Furthermore, treatment with acipimox
attenuated pressure overload-induced upregulation of p53 and
Cdkn1a expression in adipose tissue (Figures 4A and 4C), con-
firming a close relationship between lipolysis and p53 expression.

Next, we promoted lipolysis by administering isoproterenol
to mice via an infusion pump. Treatment with isoproterenol
significantly decreased the visceral fat mass and increased
plasma fatty acid levels (Figures S5A-S5C) and increased p53
expression in adipose tissue (Figure 5A). Isoproterenol also
induced adipose tissue inflammation (Figures 5B and 5C). To
further investigate the role of lipolysis in the regulation of p53
expression and inflammation in adipose tissue, we tested the
influence of deleting adipose triglyceride lipase (patatin-like
phospholipase domain containing protein 2, encoded by Pnpla2;
hereafter referred to as Atgl) on adipose tissue expression of
p53. It has been reported that Atgl homozygous KO mice show
massive accumulation of lipids in the heart, causing cardiac
dysfunction and premature death (Haemmerle et al., 2006).
When we generated TAC mice, we also noted that cardiac func-
tion was worse and LV enlargement was more marked in Atgl
heterozygous KO mice compared with their littermates (Fig-
ure S5D). In fact, most of the KO mice died of heart failure within
4 weeks after TAC. Therefore, we utilized Atgl-deficient adipose
tissue for ex vivo experiments. We cultured epididymal fat pad
tissues from Atgl KO mice or wild-type littermates and examined
the effect of isoproterenol on p53 expression. Treatment of wild-
type fat pads with isoproterenol significantly induced lipolysis
(Figure 5D) and upregulated the expression of both p53 and
Cdkn1a expression (Figures 5E and 5F). Disruption of Atgl in-
hibited isoproterenol-induced lipolysis (Figure 5D) and pre-
vented the upregulation of adipose p53 and Cdkn1a expression
(Figures 5E and 5F), suggesting a crucial role of lipolysis in the
regulation of p53 expression and inflammation in adipose tissue.

Myocardial Infarction Induces Adipose Tissue
Inflammation and Insulin Resistance

To investigate whether myocardial infarction (Ml) induced insulin
resistance, we created Ml in 11-week-old mice and assessed
the animals 6 weeks after surgery. Insulin sensitivity and
glucose tolerance were significantly impaired in MI mice com-
pared with sham-operated mice (Figure S5E). Significant loss
of fat tissue was also observed in MI mice (Figures S5F and
S5@G) and this was associated with upregulation of adipose

Figure 2. p53-Dependent Adipose Tissue Inflammation Provokes Systemic Insulin Resistance during Heart Failure

(A) Expression of p53 was examined in adipose tissues of mice by western blot analysis at indicated time points after sham operation (Sham) or TAC. Actin was
used as an equal loading control. The graph indicates the quantitative data on p53 expression (n = 3).

(B) Real-time PCR assessing the expression of Emr1, Tnf (Tnfa), Ccl2 (MCP1), and Cdkn1a (p21) levels in adipose tissue of adipocyte-specific p53-deficient mice
(adipo-p53 KO) and littermate controls (Cont) at 6 weeks after sham operation or TAC procedure (n = 12).

(C) Hematoxylin and eosin staining of adipose tissues of adipocyte-specific p53-deficient mice (adipo-p53 KO) and littermate controls (Cont) at 6 weeks after
sham operation (Sham) or TAC procedure. Scale bar, 50 um. The right graph indicates the quantitative data on the infiltration of macrophages (n = 4).

(D) Insulin tolerance test (ITT) and glucose tolerance test (GTT) in adipocyte-specific p53-deficient mice (KO) and littermate controls (Cont) at 6 weeks after sham
operation (Sham) or TAC procedure (n = 16). Data are shown as the means + S.E.M. *p < 0.05, **p < 0.01.
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