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ARTICLE INFO ABSTRACT

Chronic low-grade inflammation is a key contributor to high-fat diet (HFD)-related diseases, such as type
2 diabetes, non-alcoholic steatohepatitis, and atherosclerosis. The inflammation is characterized by infil-
tration of inflammatory cells, particularly macrophages, into obese adipose tissue. However, the molec-
ular mechanisms by which a HFD induces low-grade inflammation are poorly understood. Here, we show
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gz)lgn et macrophage cell line, RAW 264.7, palmitate activated reactive oxygen species (ROS) production and
INK JNK signaling. Inhibitors of these pathways dampened palmitate-induced histone H3 release, suggesting
Histone H3 that the extracellular release of histone H3 was mediated, in part, through ROS and JNK signaling. Extra-

cellular histone activated endothelial cells toexpress the adhesion molecules ICAM-1 and VCAM-1 and
the procoagulant molecule tissue factor, which are known to contribute to inflammatory cell recruitment
and thrombosis. These results suggest the possible contribution of extracellular histone to the pathogen-
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esis of HFD-induced inflammation and thrombosis.
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1. Introduction

Overweight status and obesity are risk factors for the develop-
ment of insulin resistance, type 2 diabetes mellitus, atherosclero-
sis, and fatty liver diseases [1], which are generally caused by
increased consumption of high-fat foods with reduced physical
activity [2]. Beside these metabolic disorders, obesity is also asso-
ciated with prothrombotic complication with excess production of
tissue factor and plasminogen activator inhibitor-1 [3,4]. Chronic
low-grade inflammation is a key contributor to the initiation and
development of obesity-related diseases [5], and is characterized
by increased secretion of proinflammatory cytokines (TNF-o, IL-
6) and decreased secretion of anti-inflammatory cytokines (adipo-
nectin, IL-10) [6,7]. Macrophages are one of the major sources of
the inflammatory responses [8], which are associated with high
cell infiltration of expanding adipose tissue in obese individuals
[7]. In addition to increased macrophage recruitment to adipose
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tissue, obesity polarizes anti-inflammatory macrophages (M2;
alternatively activated macrophages) to proinflammatory macro-
phages (M1; classically activated macrophages) [9].

Free fatty acid (FFA) levels are elevated in obese subjects
through release from enlarged adipose tissue or reduced clearance
[10]. FFA promotes inflammatory response signaling through Toll-
like receptor (TLR) 4 and activates NF-xB and/or JNK signaling
pathways that lead to insulin resistance, hepatic steatosis, and
atherosclerosis [6,11-13]. Attenuation of these inflammatory re-
sponses, by targeting NF-xB or JNK or neutralizing TNF-o and IL-
1B, improves insulin resistance and fatty liver diseases [14-16].
In addition to activation of TLR4, it has been reported that FFA acti-
vates NLRP3 inflammasomes, leading to activation of caspase 1 and
secretion of IL-1B and 1L-18 [16].

Although chronic low-grade inflammation plays a role in obes-
ity-related complications [1,5], little is known about the molecular
mechanism underlying its occurrence during HFD intake. A recent
study showed that histones, which are nuclear proteins, function
as endogenous danger signals or alarmins when they are released
into the extracellular space during ischemia-reperfusion injury
[17]. Extraceliular histones can bind to different immune receptors,
TLR2, TLR4, and TLRY, and contribute to leukocytosis, endothelial
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dysfunctions, organ failure, and even death [17-20]. In the present
study, we show that HFD feeding or FFA treatment induces an
active secretion of histone H3 into the extracellular space. This
secretion is mediated, in part, through reactive oxygen species
(ROS) production and the JNK signaling pathway. The extracellular
histone then activates endothelial cells to express adhesion mole-
cules, intracellular adhesion molecule-1 (ICAM-1) and vascular cell
adhesion molecule-1 (VCAM-1), and a procoagulant molecule, tis-
sue factor. These findings suggest the possible contribution of
extracellular histone to the pathogenesis of HFD-induced inflam-
mation and thrombosis.

2. Materials and methods
2.1. Reagents

Sodium palmitate (P9767), FFA-free BSA (A6003), N-acetyl
cysteine (NAC) (A9165), Bay-11 7082 and oleate (07501G) were
obtained from Sigma-Aldrich (St Louis, MO, USA). SP600125
(FA-005) was purchased from SABioscience (Valencia, CA, Spain).
SB203580 (559389) and U0126 (662005) were obtained from
Calbiochem (Billerica, MA, USA). Anti-histone H3 antibodies, sc-
8654 and ab1791, were purchased from Santa Cruz Biotechnology
(Dallas, TX, USA) and Abcam (Cambridge, MA, UK), respectively.
Antibodies against p-SAPK/JNK, p-p42/44, p-p38, and p-p65 were
purchased from Cell Signaling Technology (Beverly, MA, Canada).

2.2. Palmitate/BSA complex solution preparation

The palmitate/BSA solution was prepared as described previ-
ously [21] with slight modifications. Briefly, 100 mM palmitate
solution was solubilized in 50% ethanol and then conjugated with
5% FFA-free BSA to achieve a final palmitate concentration of
5 mM. The conjugation was performed to increase the solubility
of palmitate. The corresponding BSA solution with ethano!l was
used as a control. The solutions were prepared on the same day
- of the experiments.

2.3. Cell culture and treatment

A murine macrophage cell line, RAW 264.7, was obtained from
the American Type Culture Collection (Manassas, VA, USA). The
cells were cultured in RPMI-1640 medium (Sigma Chemical Co.,
St. Louis, MO, USA) supplemented with 10% FBS (Hyclone, Logan,
UT, USA), 100 U/mlI penicillin-streptomycin, and 5 mg/L amphoter-
icin. The cells were maintained at 37 °C under 5% CO,. The cells
were starved for 2 h in serum-free medium and then stimulated
with palmitate/BSA (Pa-BSA) or BSA solution as indicated. Pre-
treatments with different inhibitors were carried out 1h before
cell stimulation.

2.4. Sample preparation for histone H3

The histone H3 levels in culture supernatants were analyzed by
Western blotting as described previously {22]. Briefly, 1.6 ml of
supernatant was incubated with heparin-Sepharose 6B beads (GE
Healthcare Bio-Science, Piscataway, NJ) at 4 °C overnight, washed
with PBS, and mixed with sample buffer for SDS-PAGE.

2.5. Western blotting

Cell lysates or prepared samples were separated by 10-15%
SDS-PAGE, transferred to nitrocellulose membranes, blocked with
5% nonfat dry milk, and incubated with specific primary antibodies
against histone H3 (1:500; Santa Cruz Biotechnology), p-SAPI(/JNK

(1:1000), p-p42/p44 (1:1000), p-p38 (1:1000), p-p65 (1:1000) and
B-actin (1:1000; Santa Cruz Biotechnology) at 4 °C overnight. The
membranes were then incubated with horseradish peroxidase-
conjugated secondary antibodies (1:3000; MP Biomedicals, L.L.C,
Irvine, CA, USA) followed by detection with an ECL detection sys-
tem (Thermo Scientific, Waltham, MA, USA). The band intensities
were measured using Image] 1.46 software (National Institutes of
Health, Bethesda, MD, USA).

2.6. Immunocytochemistry

RAW 264.7 cells plated on four-chamber culture slides for 16 h
were fixed with 2% paraformaldehyde, permeabilized with a mix-
ture of ethanol and acetone (2:1) at —20 °C for 5 min, and blocked
with 1% BSA in PBS containing 0.1% Triton X-100. The cells were
then sequentially incubated with an anti-histone H3 antibody
(1:250; Abcam) for 24 h at 4°C, and an Alexa Fluor 488-labeled
goat anti-rabbit secondary antibody (A11070; Life Technologies,
Carisbad, CA, USA) for 1h. The nuclei were stained with DAPL
The stained cells were visualized and photographed under a confo-
cal microscope (LSM700; Carl Zeiss, Oberkochen, Germany).

2.7. Immunohistochemical staining

Immunohistochemical staining of histone H3 was performed as
described previously [23] with slight modifications. Briefly, epidid-
ymal adipose tissue samples from male C57BL/6] mice fed a normal
chow diet (crude fat: 4.6%, CLEA Japan Inc., Tokyo, Japan) or HFD-
60 (crude fat: 35%, Oriental Yeast Co., Tokyo, Japan) for 12 weeks,
were fixed in 10% formaldehyde neutral buffer, paraffin-embed-
ded, and sectioned. The tissue sections were deparaffinized and
rehydrated. Endogenous peroxidase activity was blocked in the
presence of 0.3% hydrogen peroxide in methanol for 15 min. After
antigen retrieval using an antigen-unmasking solution (Vector Lab-
oratories Inc., Burlingame, CA, USA), the sections were blocked
with 1% BSA in PBS containing 0.01% Tween 20 for 1 h. Subse-
quently, the sections were incubated with a rabbit anti-histone
H3 antibody (1:800; Abcam) for 30 min at room temperature, fol-
lowed by incubation with a secondary antibody for 30 min using a
Histofine Simple Stain Mouse MAX-PO Kit (Nichirei Co., Tokyo,
Japan). Finally, the sections were stained with DAB and counter-
stained with hematoxylin. Photographs were taken using a Zeiss
Axiophot microscope (Carl Zeiss, Oberkochen, Germany).

2.8. ROS measurement

Intracellular ROS production was detected using the fluorescent
probe H,DCFDA (C400; Life Technologies) as described previously
[24]. Briefly, RAW 264.7 cells treated with palmitate for 8 h were
washed and incubated with 10 pM H,DCFDA for 45 min at 37 °C.
The fluorescence signals were analyzed using an Epics XL flow
cytometer (Beckman Coulter, Miami, FL, USA).

2.9. Total RNA isolation and quantitative real-time RT-PCR

Human umbilical vein endothelial cells (HUVECs) were treated
with purified unfractionated calf thymus histone (Sigma-Aldrich,
St. Louis, MO, USA) at concentrations of 0, 10 and 20 ug/ml for
4 h. Total RNA was extracted from HUVECs using an RNAqueous
Total RNA Isolation Kit (Ambion, Austin, TX, USA) according to
the manufacturer’'s protocol, and reverse-transcribed to cDNA.
The mRNA expression levels of inflammatory genes were assessed
with specific primers (Assay IDs: tissue factor, Hs01076029_m1;
ICAM-1, Hs00164932_m1; VCAM-1, Hs003655486_m1; TLR 2,
Hs00610101_m1 and TLR 4, Hs00370853_m1) as described previ-
ously [23]. Expression levels were calculated as the ratio of mRNA
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level for a given gene relative to the mRNA level for glyceralde-
hyde-3-phosphate dehydrogenase (GAPDH) in the same cDNA
sample.

2.10. Flow cytometric assay of tissue factor, ICAM-1 and VCAM-1

The cell surface expressions of tissue factor protein, ICAM-1 and
VCAM-1 protein were assessed by flow cytometry as described
previously [25] using fluorescein isothiocyanate (FITC)-conjugated
monoclonal antibodies against human tissue factor (Sekisui Diag-
nostics), ICAM-1 (Beckman Coulter, Marseille, France) and VCAM-
1 (BD Pharmingen).

2.11. Cell viability assay

Cell viability was assessed by MTT assays as described previ-
ously [22]. Briefly, 5 x 10° cells in 24-well plates were treated with
different concentrations of palmitate (0-200 uM) for 16 h. The
cells were then incubated with MTT solution for 3 h. The formazan
product was solubilized in dimethyl sulfoxide, and the absorbances
were measured at a wavelength of 570 nm with a reference wave-
length of 630 nm.

2.12. Statistical analysis
All results are expressed as means + SEM, and were statistically

analyzed by one-way ANOVA or a t-test using Prism software. Val-
ues of P<0.05 were considered statistically significant.

3. Results
3.1. Extranuclear release of histone H3 in HFD-fed mice
Histones are found in the nucleus of resting cells where they

regulate transcription and are involved in chromatin remodeling
[18,19]. Consistent with this, histone H3 was mainly localized in

the cell nuclei in mice fed the normal chow (Fig. 1A, left panel).
However, extranuclear histone H3 was increased in mice fed the
HFD (Fig. 1A, right panel). An increase in extranuclear histone H3
was also observed in murine macrophage cell line RAW 264.7 cells
treated with the saturated fatty acid palmitate (Fig. 1B). These re-
sults indicate that HFD feeding or saturated fatty acid treatment
can induce translocation of histone H3 from the nucleus to the
cytoplasm.

3.2. Saturated fatty acid palmitate induces extracellular release of
histone H3 from RAW 264.7 cells

We treated RAW 264.7 cells with palmitate for time periods of
8-16 h and at increasing concentrations (0-200 pM) for 16 h. Pal-
mitate induced extracellular release of histone H3 in 16h
(Fig. 2A) and in a dose-dependent manner (Fig. 2B). In contrast,
the carrier protein BSA or unsaturated fatty acid oleate did not in-
duce histone H3 release (Fig. 2C). The palmitate-induced histone
H3 release was not caused by cell death (Fig. 2D), suggesting that
active secretion, rather than passive leakage, may be involved in
this process.

3.3. ROS and JNK signaling mediate palmitate-induced histone H3
release

Next, we examined the mechanism by which palmitate induces
release of histone H3. In line with previous reports [16,26], palmi-
tate induced ROS generation in RAW 264.7 cells (Fig. 3A). Treat-
ment with NAC, a ROS inhibitor, attenuated ROS production
(Fig. 3A) and inhibited palmitate-induced histone H3 release
(Fig. 3B). These results indicate that palmitate-induced histone
H3 release is mediated, in part, through ROS production. We fur-
ther examined the signaling pathways for histone H3 release. As
shown in Fig. 3C, palmitate increased the phosphorylation of p38,
JNK, ERK1/2, and NF-xB p65. A selective inhibitor of JNK
(SP600125) attenuated palmitate-induced histone H3 release,

Fig. 1. Nuclear translocation of histone H3 in vitro and in vivo. (A) Representative photographs of immunostaining for histone H3 in adipose tissue from mice fed with a
normal diet or HFD for 12 weeks. Original magnification: 40x; scale bar: 20 pm. (B) RAW 264.7 cells were plated on four-chamber culture slides and treated with 200 1M of
BSA or palmitate/BSA (Pa-BSA) for 16 h. The cells were then immunostained for histone H3 and the nuclei were counterstained with DAPIL. Original magnification: 20x; scale

bar: 20 pm,
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Fig. 3. Palmitate induces histone H3 through ROS and JNK signaling. (A) RAW 264.7 cells were treated with 200 uM of BSA or palmitate/BSA (Pa-BSA) for 8 h. Intracellular ROS

production was measured using a fluorescent probe, H,DCFDA. (B) RAW 264.7 cells were

pretreated with NAC (5 mM) 1 h before palmitate stimulation. The histone H3 levels

in the supernatants after 16 h were analyzed by Western blotting. (C) Immunoblotting for phospho-MAPKs and phospho-p65 in lysates of cells treated with palmitate
(200 pM) for 0-90 min. (D) RAW 264.7 cells were pretreated with MAPK inhibitors (SB203580, SP600125, or U0126; 10 uM) and NF-xB inhibitors {10 uM) 1 h before cell
stimulation. The histone H3 levels in the supernatants after 16 h were analyzed by Western blotting.

whereas a p38 inhibitor (SB203580), ERK1/2 inhibitor (U0126), and
NF-xB inhibitor (Bay-11 7082) had no effects (Fig. 3B). These re-
sults indicate that palmitate-induced histone H3 release is medi-
ated, in part, through the JNK signaling pathway.

3.4. Extracellular histone activates endothelial cells to express the
adhesion molecules VCAM-1 and ICAM-1 and the procoagulant
molecule tissue factor

Finally, we examined the effects of extracellular histone on the
surrounding cells, including endothelial cells. Extracellular histone

—33

significantly increased the mRNA expressions of the adhesion mol-
ecules ICAM-1 and VCAM-1 and the procoagulant molecule tissue
factor in endothelial cells in dose-dependent manners (Fig. 4A).
Extracellular histone also increased the mRNA expression of
TLR2, but not that of TLR4 (Fig. 4A), which were both reported to
act as receptors for extracellular histones [18-20]. Furthermore,
extracellularhistone induced the expression of ICAM-1, VCAM-1,
and tissue factor proteins on the surface of endothelial cells
(Fig. 4B). These results suggest a possible contribution of extracel-
lular histones to the pathogenesis of HFD-induced inflammation
and thrombosis.
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4. Discussion

The present study has demonstrated that histone H3 is released
into the extracellular space from macrophages treated with palmi-
tate in vitro and adipose tissue in mice fed a HFD in vivo. The re-
lease of histone H3 is an active process in living cells, rather than
passive leakage from dying cells. The extracellular histone then
activates the endothelium to express cell adhesion molecules and
procoagulant protein, tissue factor. These results suggest the possi-
ble contribution of extracellular histone to the pathogenesis of
HFD-induced inflammation and thrombosis,

Histones are nuclear proteins that form hetero-octamers to
wind up the double strands of DNA in nucleosomes and are in-
volved in chromatin remodeling and gene transcription regulation
[18,19]. Histones can be released into the extracellular space dur-
ing sepsis, and the plasma concentration of histones can reach
70 ug/ml in the acute inflammatory condition [27]. In this study,
we showed that histone H3 was also released into the extracellular
space during chronic low-grade inflammation induced by HFD
feeding or FFA treatment. Palmitate (C16:0) and oleate (C18:1)
are most abundant saturated and unsaturated fatty acid, respec-
tively, in HFD used in this study. Consistent with previous studies
showing that palmitate induces expression of proinflammatory
molecules [6,28,29], palmitate, but not oleate, induced histone
H3 release in our in vitro study.

ROS are linked to multiple pathologies, such as cardiovascular
diseases, diabetes, neurological disease, and cancer. The increased
ROS levels during obesity deregulate the production of adipokines
[30]. Consistent with previous data, we found that palmitate in-
duced ROS generation from RAW 264.7 cells, and that treatment
with NAC, a ROS inhibitor, inhibited the histone release. In addition
to ROS, NF-xB and JNK, which are regulators of inflammation, have
been reported to link obesity and metabolic diseases [12]. FFA acti-
vates both NF-xB and JNK signaling following activation of TLR4,
leading to increased expressions of proinflammatory cytokines such
as TNF-o and IL-6 [6]. Our results also demonstrated activation of
NF-xB and MAPKs in time-dependent manners. Although palmitate
activated these various pathways, incubation of the cells with ERK,

p-38, and NF-kB inhibitors in presence of palmitate had no effects
on the histone release. However, a JNK inhibitor inhibited the his-
tone release. These results suggest that the JNK signaling pathway
is involved in the histone release induced by palmitate.

A previous study showed that the JNK signaling pathway is acti-
vated by palmitate, and that inhibition of ROS reduces the activa-
tion of this signaling pathway and enhances insulin sensitivity in
hepatocytes [26]. We treated cells with palmitate in the presence
of NAC or a JNK inhibitor and measured the activation of JNK by
Western blotting. The cells treated with the ]NK inhibitor showed
attenuated JNK activation, while NAC did not inhibit the JNK acti-
vation (data not shown). Our results show that the activation of
JNK is not dependent on ROS and that both ROS and JNK activation
partly contribute to the histone release induced by palmitate.

Finally, we performed in vitro experiments examining the ef-
fects of the extracellular histone. It has been reported that histones,
which are released from dying cells during sepsis or inflammation,
can activate TLR2/TLR4 and contribute to endothelial dysfunction
[19]. ICAM-1 and VCAM-1 are upregulated during endothelial acti-
vation and involved in the interactions of inflammatory cells with
the endothelium and the transmigration of these cells into adipose
tissue [31]. We showed that the released histone induced the
expressions of adhesion molecules ICAM-1 and VCAM-1 in endo-
thelial cells and enhanced the expression of TLR2, but not TLR4. Be-
sides these effects, the histone induced the expression of a
procoagulant protein, tissue factor, from endothelial cells, which
plays a crucial role in coagulation and thrombosis. A recent study
showed that tissue factor promotes inflammation and diet-induced
obesity through protease-activated receptor 2 (PAR2) [32].

In summary, our study has demonstrated that palmitate in-
duces the release of histone H3 from activated macrophages, in
part, through ROS generation and the JNK signaling pathway. The
extracellular histone activates the endothelium and enhances
proinflammatory and prothrombotic responses. Overall, we sug-
gest that histones provide the cross-talk between obesity and
inflammation. However, further studies are required to investigate
the associations of histones with diet-induced obesity and
inflammation.
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