expression of Hes1 dramatically reduced SCO2 and TIGAR expression (Figure 6E}), which suggests that
Notch-Hes1 signaling modulates the metabolic pathway. Intriguingly, our results also indicate that Hes1 could
suppress the expression of TIGAR and SCO2, a p53 target gene. It has been reported that Notch signaling
suppresses p53 in lymphomagenesis [47]. Moreover, Kim et al. reported that NICD1 inhibits p53 phosphorylation
and represses p53 transactivation by interacting with p53 [48]. In addition, DAPT treatment resulted in the
enhancement of p53 activity in the hypoxic conditions (Figure 4H and 1). Therefore, it is possible that p53
activation was regulated by Notch signaling in hADMPCs, although we did not observe a decrease in p53 activity
in hypoxic conditions in this study (Figure 4). Further analysis will be required to determine whether p53 activity is

suppressed in hypoxic conditions over a longer period of culture.

Cells undergoing active proliferation utilize large amounts of glucose through glycolysis, producing
pyruvate for use in substrates (amino acids and lipids) and the pentose shunt for use in nucleic acid substrates,
and also producing NADPH as a reducing agent to counter oxidative stress [18,56]. In the current study, 5% O,
actually increased proliferation and decreased the accumulation of ROS, which may be involved in the reduction
of senescence (Figure 1). Because accumulation of endogenous ROS might be a major reason for replicative
senescence [20], enhancing glycolysis in cultured cells may improve the quality of the cells by suppressing
premature senescence. Kondoh et al. demonstrated that enhanced glycolysis is involved in cellular
immortalization through reduction of intrinsic ROS production {14,18,19]. Therefore, it is possible that the

extension of lifespan observed in our experimental conditions was caused by the reduction of intracellular ROS
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levels through enhanced glycolysis by Notch signaling. Our data indicate that aerobic glycolysis is utilized for

proliferation of hRADMPCs because the glycolytic inhibitor 2-DG attenuates the proliferation rate of RADMPCs

(Figure 7A). Intriguingly, the aerobic respiration block by NaN; did not decrease the proliferation; rather, it

increased proliferation at a low concentration (Figure 7B), which may support our data indicating that the

metabolic switch from mitochondrial respiration to glycolysis provides a growth advantage to hADMPCs. However,

the question of whether the enhanced glycolysis really contributes to the prolonged lifespan in hRADMPCs remains

to be determined in this study.

In the current study, the molecular mechanism for how Notch signaling is activated in 5% O,

conditions was explored. It has been reported that Notch1 activity is influenced by oxygen concentration

[41,42,57]. In melanoma cells, hypoxia (2% O,) resulted in increased expression of Notch1 by HIF-1a and also by

Akt through NF-kB activity [42]. Similarly, in hypoxic breast cancer cells, Notch ligand JAG2 was shown to be

transcriptionally activated by hypoxia (1% O) in a HIF-1a dependent manner, resulting an elevation of Notch

signaling [41]. In contrast, in hESCs continuously cultured in 5% O,, alteration of the Notch pathway seems to be

independent of HIF-1a [57]. In our system, Notch1 activation was not likely dependent on HIF-1a and HIF-2a

because these proteins did not accumulate in the Hx condition. In contrast, cur results indicate that the 5% O,

condition activated Akt and NF-kB signaling (Figure 4), which suggests that these molecules may activate Notch

signaling in hADMPCs. NF-kB was previously shown to increase Notch1 activity indirectly by increasing the

expression of Notch ligand Jagged1 in Hel.a, lymphoma, and myeloma cells [58]. In addition, Akt regulated
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Notch1 by increasing Notch1 transcription through the activity of NF-«B in melanoma cells [42]. Further analysis is

required to clarify the mechanism underlying this phenomenon.

In conclusion, the 5% oxygen condition conferred a growth advantage through a metabolic shift to
glycolysis, improved the proliferation efficiency, prevented the cellular senescence, and maintained the
undifferentiated status of hRADMPCs. These observations thus provide new regulatory mechanisms for the
maintenance of stemness observed in 5% oxygen conditions. In addition, our study sheds new light on the
regulation of replicative senescence, which might have impact for quality control of hRADMPC preparations used

for therapeutic applications.
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Figure legends

Figure 1. Hypoxia increases proliferation capacity and decreases senescence in hADMPCs. (A) Growth
profiles of hADMPCs under normoxic (red square) and hypoxic (blue square) conditions. The population doubling
level (PDL) was determined to be 0 when cells were isolated from human adipose tissue. Cells were maintained
until they reached PDL13-15 (passage 3) and then spilit into four aliquots of equal cell densities. PDL was
calculated based on the total cell number at each passage. (B) Detection of normoxic (Nx) and hypoxic (Hx) cells
by flow cytometry following incorporation of EAU. (C) Percentages of apoptotic cells with sub-G1 DNA under Nx
and Hx conditions. The results are presented as the mean of 3 independent experiments. (D) hADMPCs cultured
under Nx and Hx conditions were harvested by trypsin-EDTA and then imaged using a phase-contrast
microscope. Arrowheads indicate cells with a largér and more irregular shape. (E) Cells expanded under Nx and
Hx conditions were stained with SA-B-gal. (F) Cellular ROS detection by the oxidative stress indicator
CM-H2DCFDA in hADMPCs under Nx or Hx. Data are presented as the mean fluorescence intensity of 3
independent experiments. Error bars indicate SD. *P < 0.05 and **P < 0.01 indicate significant difference

(independent t-test) between Nx and Hx. Scale bars; 100 ym.

Figure 2. Hypoxic culture maintains mesenchymal stem cell properties. hRADMPCs cultured under normoxia
(20% Oo) or hypoxia (5% O,) were labeled with antibodies against the indicated antigens and analyzed by flow

cytometry. Representative histograms are shown. The respective isotype controlis shown as a gray line.
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Figure 3. Hypoxic culture enhances stem cell properties. hADMPCs were expanded under normoxic and
hypoxic conditions. (A) Normoxic (20% O,) and hypoxic (5% O,) cells at passage 8 were induced for 3 weeks to
differentiate into osteoblasts and adipocytes and stained with alizarin red and Oil-red O, respectively. The stained
dye was extracted and OD values were measured and plotted as the means of 3 independent experiments + SD.
*P < 0.05. Scale bars, 200 um. (B) Normoxic (20% O,) and hypoxic (5% O) cells at passage 8 were induced for 3
weeks to differentiate to chondrocytes, and immunofluorescent analysis of collagen |l (red) and Alucian blue
staining were performed. The blue signals indicate nuclear staining. Scale bars, 100 um. Non-induced control
cultures in growth medium without adipogenic, osteogeriic or chondrogenic differentiation stimuli are shown

(Undifferentiated).

Figure 4. Hypoxic culture condition activates Notch signaling but not HIF proteins. hADMPCs were
expanded under normoxic (20% O,) and hypoxic (5% O,) conditions. DAPT (1 pM) was added to inhibit Notch
signaling. (A) Western blot analysis of intracellular domain of Notch1 (Notch1 ICD) expression. Actin served as
the loading control. Numbers below blots indicate relative band intensities as determined by ImageJ software. (B)
Q-PCR analysis of HES1. Each expression value was calculated with the AACt method using UBE2D2 as an
internal control. (C) Western blot analysis of HES1 in nuclear fractions of hRADMPCs. Lamin A/C served as the
loading control. (D, E) Western blot analysis of HIF-1a (D) and HIF-2a (E). Cobalt chioride (CoCl,) was added at a

concentration of 100 uM to stabilize HIF proteins (positive control). (F) Western blot analysis of phosphorylated

32



Akt (p-Akt) and Akt. Actin served as the loading control. Numbers below blots indicate relative band intensities as

determined by ImageJ software. (G) Western blot analysis of nuclear localization of p65. Lamin A/C served as the

loading control. Numbers below blots indicate relative band intensities as determined by ImageJ software. (H)

Western blot analysis of phosphorylated p53 (p-p53) and p53. Actin served as the loading control. (I) Activity of

p53 was measured by the p53-luciferase reporter assay. Relative luciferase activity was determined from 3

independent experiments and normalized to pGL4.74 activity.

Figure 5. Notch signaling is indispensable for acquisition of the advantageous properties of hRADMPCs.

hADMPCs were expanded under normoxic (20% O; Nx) and hypoxic (5% Os; Hx) conditions. DAPT (1 uM) was

added to inhibit Notch signaling. (A} Growth profiles of hADMPCs under Nx (red) and Hx (blue) conditions. Solid

lines represent control cells and dotted lines represent DAPT-treated celis. The number of population doublings

was calculated based on the total cell number at each passage. (B) Percentages of apoptotic cells with sub-G1

DNA. Results are presented as the mean of 3 independent experiments + SD. (C-D) hADMPCs at passage 8

were induced for 3 weeks to differentiate into adipocytes (C) and osteoblasts (D) and stained with Oil Red O and

Alizarin Red, respectively. The stained dye was extracted, and OD values were measured and plotted as the

means of 3 independent experiments + SD. (E) hADMPCs at passage 8 were induced for 3 weeks to differentiate

into chondrocytes, and an immunofluorescent analysis of collagen Il (red) was performed. The blue signals

indicate nuclear staining. (F) hADMPCs were stained with SA--gal. *P < 0.05 and **P < 0.01 indicate significant

difference (independent t-test) between Nx and Hx. Scale bars; 100 ym.
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Figure 6. Glycolysis is enhanced under 5% oxygen through Notch signaling. (A-D) hADMPCs were

expanded under normoxic (20% O,) and hypoxic (5% O.) conditions. DAPT (1 uM) was added in to inhibit Notch

signaling. (A) Glucose consumption and lactate production of hADMPCs were measured and plotted as the

means of 3 independent experiments + SD. (B) Relative mRNA expression of SLC2A3, TPI, PGK1, TIGAR, and

SCO2 in hADMPCs. Each expression value was calculated with the AACt method using UBE2D2 as an internal

control. (C, D) Hexokinase (HK), phosphofructokinase (PFK), lactate dehydrogenase (LDH) (C), pyruvate

dehydrogenase (PDH), and Complex IV (Cox IV) (D) activities were measured and the value of relative activity

was plotted as the means of 3 independent experiments + SD. (E, F) hADMPCs were transduced with either

mock (Cont) or HES1 and then cultured for 3 days. (E) Relative mRNA expression of SLC2A3, TPI, PGK1,

TIGAR, and SCO2 in hADMPCs. Each expression value was calculated with the AACt method using UBE2D2 as

an internal control. (F) Glucose consumption and lactate production of hADMPCs were measured and plotted as

the means of 3 independent experiments + SD. (G) hADMPCs were transduced with either scrambled control

RNAI (Cont) or RNAI against HES1 (HES1-KD), and then cultured for 3 days. Glucose consumption and lactate

production of hRADMPCs were measured and plotted as the means of 3 independent experiments + SD. **P <

0.01.#0.01 <P <0.05.

Figure 7. Glycolysis supports proliferation of hADMPCs. hADMPCs were treated with 0, 0.2, 0.4 and 1 mM

2-deoxy-D-glucose (2-DG) (A) or 0, 1 and 5 mM sodium azide (NaNs;) (B) for 24 h. Cells were then allowed to
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incorporate EdU for 2 h, and the EdU-positive cells were analyzed by flow cytometry. The percentages for the 0

mM control were plotted as the means of 3 independent experiments £ SD. ** P < 0.01. *0.01 <P < 0.05.
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