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2. b b iPS MRTHSEREMIORE - R
RO TOREE

WAE, b N iPSHIfEdkEMaD L 574 Tl
B - Ak rBd i) (R A Els) &%
W) DENEREIZIE, FIZ2D20)00— b0d 5.
1243, BEir-o 7z L TREZHEOEEIRTK
REZ T THRBEEHEREL THEATHIL—-, &
WA USSR FELOTE ) E L TORBIETH S,
B9 1D, T M E AW B ERTFFE BT
Biaet) (VR 22 FEEHEEE /RS 380 =) TH]
S RN (b M AITEREETTZY) oRkRIcE D
S SEMEEEHE - i EIEERIE IC LB ERE, B LL
VHRIGE A S E L TOEMETHY, Zh ol
PEREE - TEMIED K Tirbns [ERT%) LT
KNS, b NBAIEERRE, FREER
BREOMTHEBELD &RENLLEHIRE THEHHD
D, BEBROEBST A FS1 > (ICH-GCP) iZi-
7=1EIN good clinical practice (GCP) 71 K51 >
DIEPAFHH TR, BoNzF—F 2 EERR
HAFEEE U TEFOEEMPTERWEEMNEZ N,
EBRUIZE & B MERICB W TEAD I &T
HDHN, EEAEAIC/D R TN SITMA T,
EM740-7 v INHEETH D, GO RT 7
1T F—F SRS NN H D & D R AL
MHO, =tk - AUERSERE I W D &R
XN Tn5,
WIFNDI— b EEDHICE L, & NIPS HIHH
SRR OGO, KEMND, BEMR &7
DKM R, RN O B, IPS HIlERR o &t
. BN ET RN OREE, A LEWDS I
FiZlaB, I3LAEMETEREORTORHE - 2ol
LOFELBEEE L TEAZE, TEIRESZ0OMm
DIFEMBIO Y A I A% L DGR O DAL
MRAHIE 2 DM O IFEAEL O B FFTERRM L, T
L 7= iPS i o S B BV 0 Gh i - 458y, To{Lis
O AR O M E SO M - EH, THI/H
T 5B OMEIRE MR S mb0n¥Fon
58, BTEH, b b iPS file i R R RS
ANTVLDHBIL, THILO KGRI O « 5B
ThHb.

3. b b ES/iPS BAFEBEMIOSERED
S g

Mgty (tumorigenicity) &i3, BT

Vol. 133 (2013)

TN ARET B 2 ST R D EE T RS
DB EETHENEED. b b ESHilakeE
NIPSHIBERE AR LRI, E0< 5 Wil
RN D L eI DM & F > TW DM 2R
DUENH DM, O, MO LR OIHIE®
W, REASEYIC L ERE L TEEANTO T
2 h—7< (teratoma, #FHIHE) OEKEHERL, ¥
FEL 7= HIHEASN - - SRICSER O bk 4 7o fliafEic 4
b2 EBRTIEEH>TRENTVWD, DF
D, b b ES/iPS Hliid i gt 2 sk o E & L
THREFBFLTHO, Zoih e M - (RMEEinaE
FWIRELSHERD. LM->7T, kb ES/IPS #lfy
EMTU TR I N D EEY - EREHEES OFRR 25
1E 5 ARG OB ERYUL L TIE THAERS
R O—fEa3) icBnTiE, RoEMIaOR
A - BRI LD BT RBE e IR I i &
NBVATBHY, BB 0 EREE O & &
MMWEELQMMEERD, O &, EEREYE
REFTHOSN S HMEME L, BET 5%
s3r{b72 BS/IPS fll & fRET A T RMBHETH D 2
ErEL, HERE FOWMDMAIET A2HEEITD
NETITELHETT D, 9

B LT sz &id, b BS/IPS #
IHE B ARE ORI - SEFHDICB LTI, =
S LY A & BRI, RIr{ED ES/IPS filam
BA - B ERRE THERT D0, Sfetld
IR A - BB U7z R0 @ BS/iPS #IIR%% 05 iE
YRR R T B 4 M |- O IR O FEA 75 i A5 35
FEWDZETHD, LinLianis, b b BS/PS
AL R B9 5 S RS AR A R D B
EFDERA - FEHELIL, ES/iPS il SHE®
B A ORI BLE L ORISR, HfF ES/
IPSHIFBOBRE HFEORBER EICHRTELNLS
ENTHY, b - ES/IPS #1E B 3 F A e 2 J1
JoTEAE SRR - MUA A DB BT % Bk DR &

BV - AR Y R T R - PR |
M AE4E - IR, B (HEgE) . 1995
AT R RS RGP RN R 1
BEME TR, REL ST KR
FE - R Z R . P98 AT [E T E B A
fe b AR ET A AL F T - R R
ELTHTOB%, HEFMREER -
PACWEZETY, | - |SEE/RT, 12 &
& 0 k.
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LTHRESN-EEZOREBICH D, I ORBEDMHR
Lizid, B&AEDEE, b~ ES/IPS il
D ERE - R OERIFEATETH D,

4. WHO OEEEMHRTA FT4

DS BEG TEREAN T R DB 7 & = DR Rk - BEE{L
AN BIENTWS] & ETlR~EA, BIE, Mo
HEEEERBRICE T AEENRT A R0 851
DEGHEET D, T, ERGFEERE (World
Health Organization; WHO) O/} )3 b Al 2
PHZ: B 47 k4 (1998) (Technical Report S-
eries No. 878, TRS 878) {Td® Annex I [:W3R 5,
BUEM O in vitro Jakf & U T OO 6 R 0 %
HIENWDIEHEOTHS. WHO TRS 878 128 518
TR B O NEE, Ml TREEINIC EAE, TR —
R 2% @B 10 T2 107 [Hoflazks LT
16 EMIEIE L, BitExi i & U Tlid Hela /e &
ERAWD] EnHBDTHDA, EELATNT
S5RNDITFDOHEHMREEINTH S,

WHO TRS 878 D@k 0@ Mt gid, &
SETIIF 08 N EBEEE, b hExs
7 in vivo X% ex vivo TG XN 5 L3RG, » 1
ET BRI invitro B E L TIHW SN D E F I
Btk ORI TH B, TBREICHHET 2 M
Bk EEE % BT BEICBALT DTk o R &
AN 1, WHO TRS 878 O HN & ENTH
0, F ORISR W TIEEY B & DiEHs
WMBEEXNTWDS,

WHO TRS 878 (B 5 &g st o Bl gk,
He Wy S PRI B & A B R D8 TN
Celb - N2 D) OuEMEEO R IE XA & EiE
BT 5 2 &Ech D, MBI DR DO KIERE
L3I OFMICEB/E UG, Mt
INEMOREMNKLI o/ EVWIIRE LS. DF
0, BEHSBWEAREOY AL AR, REEY
HPA b L AL DHEE FAR - BPNABKRFIEME
fb7s &, FRIZWITCEE, BV - N0 ORE
P ORI L EEMmINTHE0OTHE &
LT, b - N7 Ol & s R o 1
DELUTHML, MEEMITHT S Z &awbd s
INTVLBDHITHD, WEOBRMNIEEIZRE S
NizbDTHDH I EIEE LTI S IR,

5. k& b ES/iPS #fRR KRB AEMAROEES R
5

b b ES/iPS fifa sk a0 G I B 1) 58
B PERUBR O BRI, 0S5 2 &eDNT, &
DTEATHZ, L, b - BS/IPS filly ki
FEARE O 835 1 B B E BRI, BN
PFO3BENH RS, OB OREERDD
DOEEEE R, QLS LRSI O =D s
ikbe, QRN OR VLD 72 0 O & M5k
B, THDH. DTIns 3fFodigtRnok
e HEITDNTHRNS,

5-1. [E# (MHREHM) OREETBOLOHDEE
R ER bt b ES flfatke b b iPS fE sk,
SCFEM Y, b b ES/IPS fillid sk iR o B R T
H5. stk N ES/IPS #Hl SR ARG & W
SEYEA O -FMEEGET D0 0MBEM TS
B, LIEMN-T, s s gt &3,
TRROB AR OEME IR OLEEE
DI DERLADIEMTES,

k& b BS/iPS fifl il o ik & L Tok
N ES/iPS g/ > 7 O st ic BV 2 B HE
1, WHO TRS 878 IZBIT DL « N2 7 DENE
Bo#E A S RS, TeIL - N> OEEEE
BEEDIEIRIICH D02 EWDH T &IZRb. kb
ES/iPS fil Lt e fE i In o Rl & LT & - BS/
iPS #Ifa/N > 7 D& RS Ok DV i WHO TRS
878 1 BT B IR HM OB IEEEDOE R DT & idE
RICTHBZENS, FOMIHERIZIDODNTS,
WHO TRS 878 D HIEZ MR T LI EMAEETH D
EEIEND.

5-2. SLETRE (PRRNG) EEBOLODEEE
TR ER bt~ ES/iPS #IE H e AT o b i 8
S & HRIMERICE, BAUEITE W L F O Rl
TN 0 Z 5% 47 2 B B AT R TN 04t 0 T 1T
MEFENTWDUREMEH 5, IS O EE
Rl BIT s LEEGTE &3, EETEFHOL
HOFEELTOERGWNH D, BHE T REHIC
B HEEEEMEORBEEHIZIZ, TEo<sn
B ES/IPS i@z L Thadmn EhvH I & &
FERS G & U s v g E g inia s & 0
TWBN] WD 2 580D 5.

PRI F O TEDL S5k M ES/IPS filfiuns
WAL TWBEh EnSH I &L T, ES/IPS
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MO — I —@E FlanlLY—h—% N0 E%
FIM U RIS K OFHMT D 2 EWTEETH S, T
FELTEBRT 2ERE RT-PCR 27 0—4HA1 h
ARY =R EMBET5ND. TH5HDHEOENIC
DNTIIE TR 5.

BT oz THOS S U CGEBBITERE
BRI EENTWEN) EWH LRSS
DI E LTI, B AT A 5E A O T
(AL O RMEX IO = — KRR
(BB MIBmEMa OB L, #ik) 2% sn
5, EEEETEE RGN ORI in vivo {EEE
MR EIEMTAIEOEZISNDD, BREST
(WU hEEGE) oficE ENDHT hinEEE
PEMIL &= T 48 D 7=, WHO TRS 878
DAHEED & THIERNRIIR A 2 A T B0 E
MH5, BHREAOMWEER S LT, T Mk,
B #lE K O NK #ilflg & & 8= L 7= NOD/SCID/yCnull
(NOG) 72¥, X—RIUZALDBHEHDENL
FEERERET I ARBEMWN TSI ENEASL
ND 0 R UHEBYE T L E R W REFER Y
20 RO DI, M - FHERID R O E
PEDE WAL TEDRE &, O AR ETH 5.

5-3. EREFZOREUFMOI-HOEESHR
B¢ & I ES/iPS Hlia i S fE AN O Bk B i
OIAEN, Tabb SR 2, BRI
WA, BAT D ATERHI - S REE R K O
Z OO BTN E TN TV D ATHEMENH S,
S, B OSBRI B B TS IERE
Wi, b D TOEE TOERREEERT S
MEITH B ENEREND. Thabt, BREYL
BT S EMEEEEOMEFE I, TE0<<s
Wk ES/iPS filan & F L Tham) E0wH &
& THAGSHINE & U CERES M B iR il 28 & &
NTWBhy EWH o Ema, ES5Mlas, &
ETHM/NEBETHEESEMRT SN nwd s
HEFon s, GO TEo< 50k MES/
IPS HIMESRE L T a0y, TEINAMINE & LTk
st ERRENE TN TWAEDN EnH T &
WWRIL TiE, ES/IPS My~ — 1 —3f s 7 XiZ
Y= T4 X EDM, MR O TR
BOER OO0 Z— i 5a & T T E 5 nl G
H5.

—77, [ 5HIEA, £5 T DM NEE THIEZ

Vol. 133 (2013)

BT B EWDSEERIZDWTIR, in vivo EhE
BURBRSNREERD, FOHEAICEETAEHAE
LT, ORBROBHIER, OHRGMinE O
o EmET onsd. HESAIID W TIIAfE
RS E b TORSERAITHIY T 5 S0 2 EB R T~
ETHD. blb, YEPNEEZETLHIREDH
HHT &L O M5 AT 2 1 SRR EUT IR AN S 5
BEWE, PEETHIUIRGIMIELT T 5D TIE
<, B &t b & OO Y 5 ERA DAY
TR U TS MK EHE T 5. 74D
B, EHFTBHMNRE SRS S OMBEERICE
HEBEHEOTHENAERT DI EETSD. &
B, RIE, BRI E, BERRSREEICBITS
WA ORI EYEFIVICBIT S in vivo TO R
ThRTHE, BETHIENWEENSTH S,

6. EREBERIE in vitro HEBE— b b OKRET
@ﬁg%_m

AR OGS, 62 WITHIREM S o EE
B ZRLT 2R EL TV DD in vitro i
BBEMB DN, FNTNCEHREEHNH D, 0
Bz DoWThhbno e Ui R % in vivo 35
REPFET Table LIZE &7, 7o, BN
EOROEFREEZBNTS 2B ET2BRIC
DT, FEMICHYINTVREHO0, 5
= fd B & MR O B B & OB AME W &A%
<, mEEBOEEBELITITSENDL0 D,
R BB U BLE B RR 1T BV B S R s R %
ENEHMTDENIHWTERBINDINEDHD &
FA5D.

WK I 0 = —FRGAERIE, BAMEDOZ < NE
BIEMAMITIEAET 2 DI U T8 e w3
REBTFELRBWET R (T /AFR) %
T ENIM-EEEN LEGERR T, Mz o
UTIHERICE AL, BBIFERER MR ETE 2 M
HE 2B Thsd ZORBRARATIE, Moy
TIIFRORK WP T OREIC & 5 B ISH MM
ERi<TOIEE—HIIENO N EETH D, -
F, b N ESHifgekE MPS I N L AL
BEEDAHCE > TP RN—2 AR THR
BHEEREFEODIESHMENTHWS, FIT, £k
iPS HIHE A ERIE R E M TG B E S MIzD 0
TN LizEl A, B -yl -
B iPS Hi i s RS T L D &
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Table 1. Comparlson of thc Tumorlgemclty associated Assays
Soft agar colony
Assay formation assay Flow cytometry gRT-PCR

Measurement Colony formation Expression of marker pro- Expression of marker gene

standard tein for pluripotency for pluripotency

Purpose Detection of anchorage Detection of undifferentiat- Detection of undifferentiat-

independent growth ed pluripotent cells ed pluripotent cells

Time 30d 1d 6h

Advantage Inexpensive Rapid Rapid and simple
Analyzing individual cells  Quantitative

Highly sensitive
Disadvantage Indirect Indirect Indirect
Not applicable to hiPSCs  Detecting only the cells that  Detecting only the cells that

express the known maker express the known marker
molecules genes
Gating techniques strongly
mﬂuence the result

LLOD 1% of PA-1 0 1% of hlPSC ==<0.002% of hiPSC*
(TRA-I 60) (Lin28)

In vivo tumorigenicity
assay using SCID mice!?

Tumor formation

Detection of tumorigenic or
undifferentiated pluripotent

cells

D:rect

Analyzing tumor formation
in a specific microenviron-
ment

Costly
Time-consuming

245 undifferentiated hESCs
with 106 feeder fibroblasts
(0.025%)

* Not based on the calculation found in Ref. 13) because the background signal from the negative controls (primary RPE cells) was not detectable.

5, fERIDZ—)
AL DA Z T 2 BHY

A THREE N/ PA-L RO a0 = — 0% U — D,
HETe>TWe —4, B> ho—Le LT i RPE filla %

FMCRE R MR {a%E LE  (retinal pigment epithe-
lium; RPE) A% fAty,

B R R k72 & - iPS
WIES/nweEnd I &

VB0 X100 ED

H5a7arb
ELE LU TEHE LSS,
FEAOWTIEEAE (FCh23 RPE filid) i

L‘c‘l. RIMLRE~

MEAS M &7 b b ES/iPS #illa o 4 358 % DEIE T PA-1 Ml 2 H_INGT 5 &b, 20
TR ZEMHT S EEDN TS ROCK [ HoOMIizan— —EmRNED b:hf:ﬁﬁ 0.5% 72
R Y-27632 HGAE T THREL-BE8, REXRE L 0.25% O#ETPA- 1 ilgZERMLAZE&E, O
M T QBRI SN T, TS DR M O —BHABRHENEETICI0OHEELE %

O—)L (#{CH53E RPE M D H)
Rk I0

= — TR
TR

B AL RPE

LA LMETH D MWL hEED

ZEBICRMEE b

MR E N,
KIZ, BERIERE L TORWIEEE 2 S ET S 7\“5‘% PA-1 il 2 i3 2121,
=, &Uﬂf'ﬁ‘i’?ﬁﬂlﬂﬂﬁ”\0)%'1%1!:2%*2322%%&0}?&/\ AR OBD 1%
BT BRI Z T D721, #REER R 7z
TOE MIRTZ I\?’J)lx“//—_?:‘ﬁHiH@PA-IODDD B —nh—5% 2 )N0H
SR AERM L 2 & 2 A, KRREL oMl 2 < iPS #l} @%:’rﬁ‘iﬁ’é%: LT, 7o—H4 MAb

EHEAfRoEF )V —2 & L THIRES
AWwThbhbNhWMmE L sl AT
—h—&&EN5 Octd/4, Sox2 &
X TRA-1-60 125§ SR RBFUAIC L - T, Kb

MimAREL/-ZElA, IOHMOEETHIO iPS e & bRIE & v B T & 2 2 LR T h
@RS NN . RICHEIDRER D 7=. Bz, TRA-1-60 |3 k4316 iPS Mifu 7=V Thz
Z—ERABRR BT D PA-1 HIBE O H BT % 5 <., MAEA AHMME (embryonal carcinoma) TH ¥
ffiL7m. EEMBEOET IV — 2 &L TR E%E BLThwaEanTHn, WH - 2eltdMmo kT
RPE fllfaZ 0wy, MBRADOHRHBBAZRD 2 UM AREEZSND, %JJ%E;W%RPE%H] Jalz iPS fila
T, ZHZ 1%, 0.5%, 0.25% DOE|E T PA-1 filfl w A INA 7T HIEERI dUEAIE (RIACRE %
ERNT B2 7 EBEREL 2. TORKRE, 1 RPE i) Lm-:}\'@“éik,’n‘ﬂ:%fﬁﬂiz@*ﬁétﬁliﬁ?i%ffﬁ
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BURER, 01%LL FORABTHIEEBRR
W7 FmnEonsd I EMHM x> 7.
FEutE RT-PCR T, HEDOY—A—RIETHE
AR M N IPSfifla T 2 ERE R
FIEEEBROLDICEALSNDD, EOT—H—)
RETHS7H,), TULTHRHEEIEDI Sun, &
NWHZEITHET HABEMIEENARIEIICEEAER
W, FIThivbiud, RO IR SR
THEENBEEFELTOCT3/4, KLF4, C-MYC,
SOX2, NANOG, LIN28, REX1 %5818, ZiH O
TEDOBETRIEMNRMAMEOBEARELS L T
W, BoE T AEEHE L2 BE ORARSMEM
JHOBMHBERIZEDLS 5 0nhE, Rl EHH
MOEF Iy —RAEL T, B¥EXKDDZ— B
BB TO—3 1 hA MUY —0& & &ERRIC IR
7% RPE filfn & H Wiz, Mt ORsE, #{LH% RPE
MM TH-> TH, C-MYC, KLF4 R REXIIZ, b
NiPSHIRE T ORI % 100% & LI=5 &, 8%-25
XD NINTREL THWBI ENASHhERS .
R L U TOMILENFE - W #OHAT
UTE, COREORBEROETD oz
RFEH] EFxMdLNAEN, LrLliahis,
BEH-DO1EHOBRERN10-100FEENS
iPS @ s B R O Iz 9 T iR 9 % iPS
MO 21T 5 1T, JORIEOERM T £2<
K+4THsDH. —F, OCT3/4, SOX2, NANOG,
LIN28 DHfL53% RPE I B T 2 EFRBEL,
%F iPS MlELE T 1/1000 i Td > 7=, RPE flligic
iPS e % Z)X-1 & L CHMET L7245 R, OCT3/4,
SOX2, NANOG 7% f5F212 L /= iPS $Ja o #x HiBR R
IZFENFRN, 0.01%,0.06%,0.07% TdH 7.
LIN28 T DTk, #0148 RPE s 4 <
WmHENaho iz, (RFFc 732 OO
T T IEDOTEE +EHREEED 3/ WD EE
DHFEICED FHRMBRE RO 5 Z &L TEAan
S/ Lo Lients, ANA ZERBRRUE - iPS
Hl e sk RPE Sl 2 WL 2 n 6, 0.002% 2%
O iPS MBESIE A L 72BIZ® LIN28 DA E 2T
S FIVINBEIENA I EMNBEENE RTINS,
Thabbt, LIN28 Z{gHIIC3 UL, #5 (@ RPE
I 1 {EOENS TR AT 2 R iPS i iE % kil
TEDHZ &S, TOHFKL, bNbhomDE
BRO, LflEhOB®E L N IPSHImORE S

Vol. 133 (2013)

FEELTIE, #FMBHLELTARINTWDHIED
P RBENELS, FR25E8 ANSHGEN
TWBMFE QML & femERRE > & — ki
DB L iPS #ifE sk RPE M 2 W 72 BRI FEaT
BEOPFTH@RUERRBRE L THEHINZIZEST
W5, Birbhbiud, 70— 0lEREDORIN
FZURMERFFEORBICED, ER2RED LH
EHATNBEZATHY, FkmIziE, iPS fifz
B3k RPE 2721 Tl <, L ORABHEDEW iPS
IR E S RTHIAE O BT A LIS H B T 5 & & A HIRR
b,

B, RUALMIEE in vitro THRHT AR ELT
W, BICHEALEFEDED, e OREHMZE
ATHIEZ SR L, OB 2T 5D
H5. IS EHEAIEHETRMEIER AR EL
M D 2 BE TENT, BRSO EmEET
WIZDEWT EAVREE NS D, BRABRICED 2
EDOIESME, RO, B, JAITR
AR T T, BBV in vive &R YR
F— Lo THREBICHE I NDERELEEE R
5 5.

1. &HYIC

 ~ ES/iPS H#ifi e i o & S 7aiiig - 4
M T RS (FAEEREN) 2 UsgEsrit
BB A BT 30 EREITHETELRNY, Lo
T, BEFATE, MHE - fA T8 R Oh THEFIC
RS L TREOMNELRIZDOWT, KRBT
EFle 5y A T ORELHHBELREBRL, BEH9IC
HTRETHDEELASND. 2B, Hp OB
TARTREBFAWFEMEEDZ, BEMESEHKOR
o W RER - JAIIRVAL T TR ERY
TLTHBBICHHENZ HDOTH S, BB
(A EDLERE) BE - FMiconTs, ENT
DR ZREIFATHHDTIERL, &ERBRED
BENERRAZHMLZD AT, VAT - UAY
REVAMIBERIL > 74 —L R a2k
DEZHETOIEMBEHETHLEEABND.

b NHEL =% B RT-PCR @ HiLiLH
WTIPS HIEDIRADHER S L THW SIS LIN2S
i, #MlEOHCEREOHIISICEES L TWwWAHEE
DINTHBY, SFERFOILPHEIRE 07 —T &
N iPSHIDOKBISI THRLENE L TNz Y 1 A
AV VRFOD T —LX s LY I ELOT ) —




No. 12

1387

THe SMEREM S IPSHIREFET SEICAL
AMERFO 1 DE L THARMEFTH D, F
7o, RO LIRER AT AMIRIA FE L THTS
NBHTAZ7ORNAD -f&, let-7 7Ok 7%
HET 2 &EHEDNTND. @ b MRS T
12 LIN28 708 L ThWAH EOMEDEH D Z
Ems, LIN28 3k ~iPS flHa Dbtk < —
F)— & LTIV T < A A E R O B O < —
H—E L THEHTH B EAREENSD. bhb
NOFEW e B RT-PCR 2 AW HEHI LN
W, LIN28 i3k hiPS i@l B W TIE®mIER L T
WBHDOOD, EMEHHELUN D2 < D MBI B W
THERBHRE<ED SN TWARNYL, TRbb, 4l
Nz BT BRI /2] RSN T
NWAHZEWTEA, LnhLiahs, TOEREAND
ZAFE<WELEATIHLZL., INHEHLMITS
&V, MOk EE, ZorbERE, b DHIEE
&S HEBige O R Ee Iy UCERE R
Ty hERBIENRSTPREINGS, bbhD
in vitro FEAE O FE R WX T L TOIPS
MR B AEHIE O BB - RV RDIZDTH -
7ot FD LA S OB RIIE GERL
%’Qﬂ:) EEATAHIET, i<, EEREALOHU
EOHEEDAL SV, TROSEHLOKNS D
HBMEOMRE L THEEREEZEASNLET
(LIN28) %S HIEMMTE, ¥ ORE
W3 THMREETZRBICEZFDOD LITREITS
FRAERREBZETH D, Linhi- THEESDOERL
D= DT I FRIL B2 OETH - T,
JEWMICEETHD., Lnl, FIHILAERADALS
T, BONIRRO Y WIREEITEE R,
ZNEZ-oMTICHBE NS EEHTRICE > T, #
LD L — RN FORREWIHL LT
T ATIIEETAIENTELMDLNRNEL
IWMHAEEOIED, [#HE) 212Va1T5HI
VAR A RS SRR T W B,

BE ARNTHEMLETIEICBO TRIEZ A
BH TR, THREAWD E LRI e
(AAST), JIELH Mo/ (565 ae IR B )
B EE (I CDB), /%< 0T HI%H
2 5 U7 [ TR, T S RSP O B 12 A C
BoEERLET

D

2)

3)

4)

5)

6)

7

8)

9N

10)
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BNIP3 Plays Crucial Roles in the Differentiation and
Maintenance of Epidermal Keratinocytes

Mariko Moriyama'?*, Hiroyuki Moriyama'*, Junki Uda', Akifumi Matsuyama®, Masatake Osawa® and
Takao Hayakawa'

Transcriptome analysis of the epidermis of Hes7 ™/~ mouse revealed the direct relationship between Hes1 (hairy
and enhancer of split-1) and BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3), a potent inducer of
autophagy. Keratinocyte differentiation is going along with activation of lysosomal enzymes and organelle
clearance, expecting the contribution of autophagy in this process. We found that BNIP3 was expressed in the
suprabasal layer of the epidermis, where autophagosome formation is normally observed. Forced expression of
BNIP3 in human primary epidermal keratinocytes (HPEKs) resulted in autophagy induction and keratinocyte
differentiation, whereas knockdown of BNIP3 had the opposite effect. Intriguingly, addition of an autophagy
inhibitor significantly suppressed the BNIP3-stimulated differentiation of keratinocytes, suggesting that BNIP3
plays a crucial role in keratinocyte differentiation by inducing autophagy. Furthermore, the number of dead cells
increased in the human epidermal equivalent of BNIP3 knockdown keratinocytes, which suggests that BNIP3 is
important for maintenance of skin epidermis. Interestingly, although UVB irradiation stimulated BNIP3 expression
and cleavage of caspase3, suppression of UVB-induced BNIP3 expression led to further increase in cleaved
caspase3 levels. This suggests that BNIP3 has a protective effect against UVB-induced apoptosis in keratinocytes.
Overall, our data provide valuable insights into the role of BNIP3 in the differentiation and maintenance of

epidermal keratinocytes.

Journal of Investigative Dermatology advance online publication, 6 February 2014; doi:10.1038/id.2014.11

INTRODUCTION

The skin epidermis is a stratified epithelium. Stratification is a
key process of epidermal development. During epidermal
development, the single layer of basal cells undergoes asym-
metric cell division to stratify, and produce committed
suprabasal cells on the basal layer. These suprabasal cells
are still immature and sustain several rounds of cell divisions
to form fully stratified epithelia. Recent studies have identified
numerous molecules involved in epidermal development,
although how these molecules coordinate to induce proper
stratification of the epidermis remains to be elucidated.
Previously, by integrating both loss- and gain-of-function
studies of Notch receptors and their downstream target Hes1
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(hairy and enhancer of split-1), we demonstrated the multiple
roles of Notch signaling in the regulation of suprabasal cells
(Moriyama et al, 2008). Notch signaling induces
differentiation of suprabasal cells in a Hesl-independent
manner, whereas Hes1 is required for maintenance of the
immature status of suprabasal cells by preventing premature
differentiation. In light of the critical role of Hes1 in the
maintenance of spinous cells, exploration of the molecular
targets of Hes1 in spinous layer cells may lead to the discovery
of the molecules required for differentiation of spinous layer
cells to granular layer cells. Because Hes1 is thought to be a
transcriptional repressor (Ohtsuka et al., 1999), loss of Hes1 is
expected to cause aberrant upregulation of genes that are
normally repressed in spinous layer cells. To identify these
genes, we previously conducted comparative global transcript
analysis using microarrays and found several candidates that
may play a crucial role in regulating epidermal development
(Moriyama et al., 2008). One of the genes that was highly
expressed was BNIP3 (BCL2 and adenovirus E1B 19-kDa-
interacting protein 3), an atypical pro-apoptotic BH3-only
protein that induces cell death and autophagy (Zhang and
Ney, 2009).

The molecular mechanism through which BNIP3 induces
cell death is not well understood; however, it has
been reported that BNIP3 protein is induced by hypoxia in
some tumor cells and that the kinetics of this induction
correlate with cell death (Sowter et al, 2001). In contrast,

www jidonline.org
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BNIP3-induced autophagy has been shown to protect HL-1
myocytes from cell death in an ischemia-reperfusion model
(Hamacher-Brady et al., 2007). Induction of autophagy by
BNIP3 has a protective effect in some conditions, whereas in
others it is associated with autophagic cell death. Recent
evidence also suggests that BNIP3, through autophagy, is also
required for the differentiation of chondrocytes under hypoxic
conditions (Zhao et al., 2012).

Autophagy was initially described based on its ultra-
structural features of the double-membraned structures that
surrounded the cytoplasm and organelles in cells, known
as autophagosomes (Mizushima et al., 2010). To date, only
microtubule-associated protein light chain 3 (LC3), a
mammalian homolog of yeast Atg8, is known to be
expressed in autophagosomes and, therefore, it serves as a
widely used marker for autophagosomes (Kabeya et al., 2000;
Mizushima et al, 2004). Autophagy is an evolutionarily
conserved catabolic program that is activated in response to
starvation or changing nutrient conditions. Recently,
autophagy was shown to be involved in differentiation of
multiple cell types, including erythrocytes, lymphocytes,
adipocyte, neuron, and chondrocyte (Srinivas et al, 2009;
Mizushima and Levine, 2010).

Epidermal cornification, the process of terminal keratino-
cyte differentiation, requires programmed cell death in a
similar but different pathway from apoptosis (Lippens et al.,
2005). Cornification is also accompanied by activation of
lysosomal enzymes and organelle clearance. Moreover, some
researchers have reported that autophagy may play a role in
epidermal differentiation (Haruna et al., 2008; Aymard et al,,
2011; Chatterjea et al., 2011). Therefore, it is likely that BNIP3
is involved in cornification through cell death or autophagy.

In this study, transcriptome analysis of Hes7™’~ mouse
epidermis revealed that Hes1 could directly suppress BNIP3
expression in epidermal keratinocytes. We also found that
BNIP3 was expressed in the suprabasal layer of the human
skin epidermis, where autophagosome formation was
observed. BNIP3 was also sufficient to promote cornification
through induction of autophagy. Finally, we found that BNIP3
had a protective effect against UVB-induced apoptosis in
keratinocytes in vitro. Our data thus indicate that BNIP3, an
inducer of autophagy, is involved in the terminal differentia-
tion and maintenance of epidermal keratinocytes.

RESULTS

Hes1 directly represses BNIP3 expression in epidermal cells and
keratinocytes

We previously performed a microarray analysis with epider-
mal RNAs isolated from wild-type and Hes?™/~ mice
(Moriyama et al, 2008) and found that BNIP3 was
preferentially overexpressed in Hes1™/~ epidermis. The
upregulation of Bnip3 in the Hes1 ™'~ epidermis was
confirmed by quantitative PCR (Q-PCR) and immuno-
fluorescent staining (Figure Ta and b). As HesT is thought to
be a transcriptional repressor (Ishibashi et al., 1994), it might
play a repressive role in the regulation of BNIP3 expression.
In accordance with this hypothesis, BNIP3 expression in
Hes1~/~ epidermis at embryonic day 15.5 was observed in

journal of Investigative Dermatology

the suprabasal layers (Figure 1b), where Hesl has been
reported to be expressed in wild-type epidermis at the same
age (Blanpain et al., 2006; Moriyama et al., 2008). To confirm
whether Hes1 suppresses BNIP3 expression, an adenoviral
vector expressing Hes1 was used to infect human primary
epidermal keratinocytes (HPEKs) and, subsequently, the
expression level of BNIP3 was quantified by Q-PCR and
western blot analysis. The BNIP3 protein was detected as
multiple bands between 22 and 30kD as previously reported
(Vengellur and LaPres, 2004; Walls et al., 2009; Mellor et al.,
2010; Sassone et al., 2010). We found that Hes1 induced a
substantial reduction of BNIP3 expression in HPEKs at the
mRNA and protein levels (Figure 1c and d), demonstrating that
Hes1 is involved in the repression of BNIP3. To determine
whether Hes1 directly regulates BNIP3 expression, we per-
formed chromatin immunoprecipitation (ChlP) assays. We
identified at least 5 Hesl consensus binding sites 1kb
upstream of the transcription initiation site of the human
BNIP3 gene, and subsequent Q-PCR analysis revealed that a
DNA fragment located at — 247 to — 87 was slightly ampli-
fied from crosslinked chromatin isolated by Hes1 immuno-
precipitation (Figure Te). We also found an additional site
between —212 and + 22 that was strongly amplified. These
data clearly show that Hes1 specifically binds to the promoter
region of BNIP3 and directly suppresses its expression.

BNIP3 is expressed in the granular layer of the epidermis, where
autophagosome formation is observed

To determine the BNIP3 expression profile in the epidermis,
we performed immunofluorescent staining in human skin
epidermal equivalent. BNIP3 was expressed in the granular
layer of epidermal equivalent 18 days (Figure 2a and b) or 24
days (Figure 2c and d) after exposure at the air-liquid inter-
face. BNIP3 expression in the granular layer was also observed
in the normal human skin epidermis (Figure 2g and h). Recent
reports show that BNIP3 is expressed in mitochondria and that
it induces autophagy (Quinsay et al., 2010). In addition, some
researchers have reported that autophagy may play a role in
epidermal differentiation (Haruna et al,, 2008; Aymard et al.,
2011; Chatterjea et al., 2011). We therefore investigated
whether autophagy occurred in the epidermis, especially in
the granular layers. To quantitate the level of autophagy,
cytosol to membrane translocation of the autophagy marker
EGFP-LC3 (Kabeya et al., 2000) was monitored in a human
skin equivalent model (Mizushima et al, 2004). When
autophagy is active, autophagosomes containing EGFP-LC3
are visible as fluorescent puncta (Kabeya et al,, 2000). As
expected, EGFP-LC3 puncta were observed in the granular

‘layers of the epidermal equivalent (Figure 2e). Moreover,

endogenous LC3 dots were observed in the granular layers
of normal human skin epidermis (Figure 2f). These data
suggested that BNIP3 might be involved in the induction of
autophagy in the granular layer of the epidermis.

BNIP3 is required for terminal differentiation of keratinocyte by
induction of autophagy in vitro

To investigate the involvement of BNIP3 in the induction of
autophagy, we transduced HPEKs stably expressing EGFP-LC3
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Figure 1. BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3) is directly suppressed by HES1 (hairy and enhancer of split-1). (a) Quantitative
PCR (Q-PCR) analysis of Bnip3 expression in dorsal skin epidermis from either wild-type (WT) or Hes1 knockout (KO) embryo (embryonic day 14.5 (E14.5)).
(b) Immunofluorescent analysis of Bnip3 expression in dorsal skin epidermis from either WT or Hes? KO embryo (E15.5). Keratin 14 staining is shown in
green and Bnip3 staining is shown in red. The blue signals indicate nuclear staining. Scale bars =20 pm. (¢) Q-PCR and (d) western blot analysis of BNIP3
expression in human primary epidermal keratinocyte (HPEK) cells infected with adenoviruses expressing enhanced green fluorescent protein (EGFP) or Hest.
(c) Each expression value was calculated with the AACt method using UBE2D2 as an internal control. (d) Numbers below blots indicate relative band intensities
as determined by Image) software. (e) Specific binding of Hes1 to the BNIP3 promoter. HPEK cells were infected with adenoviral constructs expressing
hemagglutinin (HA)-tagged Hes1, and processed for chromatin immunoprecipitation (ChIP) with an anti-HA antibody and normal rabbit immunoglobulin G
(Cont rab-lgG) as a nonimmune control. Q-PCR amplification of the region of the BNIP3 gene described in the indicated map (upper panel; nucleotides — 360 to
—244 (1); nucleotides —247 to —~ 87 (2); —212 to +22 (3)) was also performed. The amount of precipitated DNA was calculated relative to the total input
chromatin. All the data represent the average of three independent experiments £ SD. **P<0.01.

with a BNIP3 adenoviral vector. BNIP3 expression was found
to be sufficient to trigger the formation of EGFP-LC3 puncta
that was significantly reduced by addition of 3-methyladenine
(3-MA), an inhibitor of autophagy (Figure 3a and b). On the
other hand, BNIP3" knockdown markedly decreased the
punctuate distribution of EGFP-LC3 in differentiated HPEKs
(Figure 3¢ and d). Furthermore, flow cytometry analysis using
a green fluorescent probe used to specifically detect auto-
phagy (Cyto-ID autophagy detection dye) (Chan et al., 2012)
also showed that BNIP3 was required for the autophagy
induction (Figure 3¢ and f). These data indicate that BNIP3
is involved in the induction of autophagy in HPEKs. Intrigu-
ingly, these data also confirm the previous finding that
autophagosome induction is accompanied by keratinocyte
differentiation (Maruna et al., 2008). We observed that the
number of mitochondria was decreased in the granular layers,
where BNIP3 expression and autophagosome formation was
observed (Figure 4a). In addition, mitochondria were signi-
ficantly decreased in the differentiated HPEKs in vitro
{Figure 4b). Colocalizations of mitochondria and EGFP-LC3
dot were observed only in the differentiating keratinocytes
(Figure 4c), suggesting the contribution of autophagy in the
decrease of mitochondria. BNIP3 expression was also corre-
lated with decreased mitochondria in HPEKs, whereas addi-
tion of 3-MA restored mitochondrial numbers (Figure 4d).
Furthermore, we also observed colocalization of mitochondria

and EGFP-LC3 dot in BNIP3-overexpressing HPEKs
(Figure 4e). These data indicated that mitochondria were
removed by BNIP3-induced autophagy. Next, we investigated
the involvement of BNIP3 in the differentiation of epidermal
keratinocytes. Western blot analysis and immunofluorescent
staining revealed that BNIP3 expression increased during
differentiation (Figure 5a and b). Knockdown of BNIP3
significantly suppressed keratinocyte differentiation when the
cells were treated with differentiation medium (Figure 5¢ and
d), indicating that BNIP3 is required for terminal differentiation
of keratinocyte. On the other hand, forced expression of
BNIP3 in HPEKs markedly stimulated loricrin expression
(Figure 5e and f). To determine whether BNIP3-dependent
keratinocyte differentiation was induced by autophagy, 3-MA
was added to the cells transduced with BNIP3. As shown in
Figure 5e and f, 3-MA notably abolished the keratinocyte
differentiation induced by BNIP3, suggesting that BNIP3 is
required for terminal differentiation of keratinocyte by induc-
tion of autophagy.

BNIP3 maintains epidermal keratinocytes

To further determine the roles of BNIP3 in epidermal differ-
entiation, the human skin epidermal equivalent was recon-
stituted from HPEKs stably expressing a BNIP3 RNA
interference (RNAI). Unfortunately, we did not observe drastic
differentiation defects; however, we unexpectedly discovered
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Human skin equivalent

Normal human skin

Figure 2. BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3) is
expressed in the granular layer of the human epidermis. (a~e) Human skin
epidermal equivalents were constituted from (a-d) normal human primary
epidermal keratinocytes (HPEKs) or (e) HPEKs transfected with EGFP-LC3 by
lentiviral vector. Cells were grown for (a, b) 18 days and (c-e) 24 days after
exposure at the air-liquid interface. (f-i) Normal human skin epidermis.

@, ¢, f) Expression pattern of loricrin (LOR). (b, e, h) Expression pattern of
BNIP3. (i) Control staining without BNIP3 antibody is shown. (d)
Autophagosome formation determined by EGFP-LC3 puncta. (g) Endogenous
expression pattern of LC3. The blue signals indicate nuclear staining. The
dotted lines indicate (a-e) the boundary between the epidermis and the
membrane or (f~i) the boundary between the epidermis and the dermis.
Scale bars=20pm. BL, basal layer; GL, granular layer; SC, stratum corneum
(cornified layer); SP, spinous layer.

that “sunburn-like cells’” existed in BNIP3 knockdown epi-
dermal equivalent (Figure 6a and b). We therefore hypothe-
sized that BNIP3 might play a key role in the survival of
epidermal keratinocytes. To evaluate this hypothesis, HPEKs
were irradiated with 20mjem ™2 UVB. UVB irradiation
triggered the formation of autophagosome that was signifi-
cantly reduced by BNIP3 knockdown (Figure 6¢c—e). As shown
in Figure 6f, UVB irradiation induced cleavage of caspase3
and BNIP3 expression. Intriguingly, knockdown of UVB-
induced BNIP3 by RNAi further increased the amount of
cleaved caspase3, suggesting that BNIP3 is required for the
protection of keratinocytes from UVB-induced apoptosis
(Figure 6f).

Journal of Investigative Dermatology

a EGFP-LC3
Cont

Bnip3 Bnip3 + 3-MA

o

EGFP-LC3 c
60 G 100

*k *

|

Cyto-ID

50 4
40 4
30 4
20
10 4

80 1

60

40 -

10 1

Cells with
autophagosomes (%)

Cells with
autophagosomes (%)

Cont Bnip3 Bnip3
3-MA

d EGFP-LC3

Cont Bnip3 Bnip3
3-MA

miR neg miR BNIP3_1

—_

e X
80 EGFP-LC3 50

40 A

20 1

Cells with
autophagosomes (%)
Cells with
autophagosomes (%)

0
miR (\Qg .g:\ .g(}
& o

Figure 3. BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3)
stimulates autophagy. (a, b) EGFP-LC3-expressing human primary epidermal
keratinocytes (HPEKs) were transduced with DsRed (Cont) or BNIP3. As an
inhibitor of autophagy, 3-methyladenine 3-MA (5 mm) was added. Cells were
then stained with anti-EGFP at 24 hours after transduction. (a) EGFP-LC3
staining is shown in green. Scale bars =20 um. (b) The percentage of EGFP-
LC3-positive cells with more than five puncta were quantified and are
presented as the mean of three independent experiments + SD. (c) HPEKs were
transduced with DsRed (Cont) or BNIP3. As an inhibitor of autophagy, 3-MA
(5 mm) was added. Autophagy induction was determined by Cyto-ID staining
and quantified by flow cytometry. (d, ) EGFP-LC3-expressing HPEKs were
transduced with miR neg, miR BNIP3_1, or miR BNIP3_2 and induced to
differentiate. Cells were then stained with anti-EGFP at 8 hours after
differentiation induction. (d) EGFP-LC3 staining is shown in green. Scale
bars = 20pum. (e) The percentage of EGFP-L.C3-positive cells with more

than five puncta were quantified and are presented as the mean of three
independent experiments  SD. (f) HPEKs were transduced with miR neg, miR
BNIP3_1, or miR BNIP3_2 and induced to differentiate. Autophagy induction
was determined by Cyto-1D staining and quantified by flow cytometry.

All the data represent the average of three independent experiments +SD.
**P<0.01; *0.01<P<0.05.
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dotted lines indicate the boundary between the epidermis and the membrane. Scale bars=20um. BL, basal layer; GL, granular layer; SC, stratum corneum
(cornified layer); SP, spinous layer. (b) Nondifferentiated control (Cont) or differentiated human primary epidermal keratinocytes (HPEKSs; Dif) were subjected to
immunofluorescent staining 2 days after induction of differentiation. Mitochondrial staining is shown in red. The blue signals indicate nuclear staining. Scale
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experiments  SD. (¢) EGFP-LC3-expressing HPEKs were differentiated. Cont or Dif were stained with anti-mitochondria (red) and anti-EGFP (green) 8 hours after
induction of differentiation. Graph indicates the linescan analysis of the red and green fluorescent channels. Initial point of linescan is indicated as 0, and terminal
point is indicated as 1. The arrows mark the colocalization of the two proteins. (d) HPEKs were transduced with enhanced green fluorescent protein (EGFP;
Cont) or BNIP3 (BCL2 and adenovirus E1B 19-kDa-interacting protein 3). As an inhibitor of autophagy, 3-methyladenine 3-MA (5 mm) was added. Cells were then
fixed and stained with anti-mitochondria 48 hours after transduction. Scale bar=20pum. The graph indicates the percent of median brightness calculated

by BZ Analyzer Software (Keyence) as the mean of three independent experiments. **P<0.01; *0.01 < P<0.05. (e} EGFP-LC3-expressing HPEKs were
transduced with mock (Cont) or BNIP3. Cells were then fixed and stained with anti-mitochondria (red) and anti-EGFP (green) 24 hours after transduction. Graph
indicates the linescan analysis of the red and green fluorescent channels. Initial point of linescan is indicated as 0, and terminal point is indicated as 1. The
arrows mark the colocalization of the two proteins.

DISCUSSION

In this study, we demonstrated that BNIP3, a potent inducer of
autophagy, plays a role in the terminal differentiation and
maintenance of epidermal keratinocytes. It has been suggested
that autophagy plays a role in the skin epidermis, but few

attempts have been made to clarify the involvement of
autophagy in skin epidermis.

We found that the HES1 transcriptional repressor directly
suppressed BNIP3 expression in mouse epidermis and HPEKs
{Figure 1). Moreover, our results revealed that BNIP3 was
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required for the differentiation of keratinocytes in vitro. (a, b) Human primary
epidermal keratinocytes (HPEKs) were differentiated and BNIP3 expression was
observed. (a) Nondifferentiated control (Cont) or differentiated HPEKs (Dif)
were subjected to immunofluorescent staining. BNIP3 staining is shown in
green. Mitochondrial staining is shown in red. The blue signals indicate
nuclear staining. Scale bar=20pm. (b) Western blot (WB) analysis. Proteins
extracted from Cont or Dif were probed with anti-BNIP3 or anti-actin.

(c, d) HPEKs were infected with adenoviral vectors expressing miR neg, miR
BNIP3_1, or miR BNIP3_2 followed by induction of differentiation. Cells were
then immunostained with a loricrin antibody 9 days after transduction.

(e, f) HPEKs were infected with adenoviral vectors expressing enhanced green
fluorescent protein (EGFP; Cont) or BNIP3 and subjected to immunofluorescent
staining against loricrin (LOR) 6 days after transduction. As an inhibitor of
autophagy, 3-methyladenine 3-MA (5 mm) was added. Phase contrast images
(Ph) and LOR staining are shown. Scale bars =200 um. (d, f) Percentages of
LOR-positive differentiated cells were calculated by computerized image
analysis. The data represent the average of three independent

experiments * SD. **P<0.01.

expressed in the granular layers of mouse epidermis, its
human skin epidermal equivalent, and its normal human skin

epidermis (Figures 1 and 2). These data are consistent with our

Journal of Investigative Dermatology

previous report showing that Hes1 is expressed in the spinous
layers, where it represses the regulatory genes for differentia-
tion to maintain the spinous cell fate (Moriyama et al., 2008).
Hence, it can be inferred that Bnip3 expression is suppressed
in the spinous layers by Hes1, whereas it is upregulated in the
granular layers where Hes1 expression is absent. In addition,
our finding that BNIP3 is required for keratinocyte differen-
tiation fits our idea that Hesl represses certain regulatory
genes to prevent the premature differentiation of spinous
cells. Our in vitro data suggest that BNIP3 is involved in
keratinocyte differentiation through autophagy (Figures 3-5).
The mechanisms underlying the involvement of autophagy in
keratinocyte differentiation remain elusive; however, consid-
ering that keratinocyte differentiation induced mitochondrial
clearance and BNIP3 expression (Figure 4 and 5), BNIP3-
induced autophagy may be responsible for the removal of
mitochondria that may be required for the terminal differentia-
tion of epidermal keratinocytes. During reticulocyte differen-
tiation, programmed clearance of mitochondria induced by
BNIP3L/Nix, a molecule closely related to BNIP3, has been
reported to be a critical step (Schweers et al, 2007).
Therefore, keratinocytes likely possess the same differen-
tiation mechanism that reticulocytes -have, although further
investigation will be required for elucidation.

In contrast to the results from differentiation in two-dimen-
sional culture, we did not observe drastic differentiation
defects in the BNIP3 knockdown human epidermal equivalent
except for the existence of ““sunburn-like cells” (Figure 6). This
might be because of the incomplete suppression of BNIP3 in
the BNIP3 knockdown keratinocytes, and/or might be because
of the redundancy between BNIP3 and BNIP3L/Nix, a homo-
log of BNIP3, as we found in our preliminary study that Bnip3|
is also expressed in the epidermis (data not shown). Although
the phenotypes of BNIP3-null mice were published in 2007,
these researchers found that BNIP3-null mice had no increase
in mortality or apparent physical abnormalities (Diwan et al.,
2007). Generally, impairment of epidermal differentiation
or skin barrier formation results in an obvious defect. Thus,
BNIP3-null epidermis seems to exhibit subtle, if any, abnor-
malities. On the basis of these findings, the involvement
of BNIP3 in epidermal differentiation must be investigated in
the future. In-depth analysis of the BNIP3-null epidermis
phenotype could help elucidate the role of BNIP3 in mouse
epidermal differentiation.

Despite the lack of obvious differentiation defects in the
human epidermal equivalent, our data showing that BNIP3
knockdown caused the appearance of ““sunburn-like cells” is
regarded as an example of apoptosis (Young, 1987), revealing
a new role of BNIP3 in keratinocyte maintenance.
Furthermore, requirement of BNIP3 for protection from
UV-induced apoptosis was confirmed in two-dimensional
keratinocyte cultures (Figure 6e). The underlying mechanism
of this prosurvival function of BNIP3 in keratinocytes remains
unclear; however, previous reports have demonstrated that
hypoxia-induced autophagy through BNIP3 is critical for the
prosurvival process (Bellot et al., 2009). Recently, it has been
reported that UVA induces autophagy to remove oxidized
phospholipids and protein aggregates in epidermal keratino-
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stained with anti-EGFP at 8 hours after UVB irradiation. (d) The percentage of EGFP-LC3-positive cells with more than five puncta were quantified and are
presented as the mean of three independent experiments £ SD. (e) Autophagy induction was determined by Cyto-1D staining and quantified by flow cytometry.
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as the means of three independent experiments. Scale bars =20 um. **P<0.01

cytes (Zhao et al, 2013). Because our data indicate that
UVB-induced autophagy is mediated by BNIP3 (Figure 6¢ and
d), it is possible that autophagy induced by BNIP3 also plays a
role in the maintenance of keratinocytes. Further analysis is
required to confirm these results.

UV-induced apoptotic cells appear within 12 hours and
are predominately located in the suprabasal differentiated
keratinocyte compartment of human skin (Gilchrest et al,
1981). Moreover, differentiated keratinocytes appear to be
most sensitive to the UV light that induces p53-dependent
apoptosis (Tron et al., 1998). Tron et al. (1998) demonstrated
that differentiated keratinocytes in p53-null mice exhibited
only a small increase in apoptosis after UVB irradiation
compared with the increase observed in normal control
animals (Tron et al., 1998). Interestingly, because p53 has
been reported to directly suppress BNIP3 expression (Feng
et al, 2011), BNIP3 might be abundantly upregulated in
suprabasal cells in p53-null animals, resulting in the resistance
to UVB-induced apoptosis. Indeed, our preliminary study

showed that p53 knockdown enhanced UV-induced BNIP3
expression in HPEKs (data not shown). Therefore, BNIP3
expression in suprabasal cells appears to be important for
the protection of differentiated keratinocytes from normal
environmental stress such as weak UV exposure in vivo.

A recent report on a role for autophagy in epidermal barrier
formation and function was identified in atg7-deficient mice
(Rossiter et al., 2013). The authors showed that autophagy was
constitutively active in the suprabasal epidermal layers as we
report in this study (Figure 2). However, in contradiction to
our results, the authors concluded that autophagy was not
essential for the barrier function of the skin. This may
be because of the presence of an alternative Atg5/Atg7-
independent autophagic pathway (Nishida et al., 2009) in
the epidermis. This Atg5/Atg7-independent pathway is also
independent of LC3, but forms Rab9-positive double-
membrane vesicles. Moreover, protein degradation via this
pathway is inhibited by 3-MA and is dependent on Beclin 1.
Our data demonstrate that: (1) BNIP3 induced the formation of
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EGFP-LC3 puncta (Figure 4) and (2) 3-MA significantly
diminished the formation of GFP-LC3 puncta and keratinocyte
differentiation induced by BNIP3 (Figure 5). These findings
suggest that BNIP3 in the epidermis induced both conven-
tional and Atg5/Atg7-independent autophagy. Intriguingly,
GFP cleaved from GFP-LC3 also accumulates in the Atg7-
deficient epidermis (Rossiter et al, 2013), thereby
demonstrating the existence of an alternative autophagic
pathway (Juenemann and Reits, 2012) in the epidermis.
Further investigation will be required to determine whether
Beclin 1 and Rab9 are indispensable for the BNIP3-induced
autophagy and subsequent differentiation of keratinocytes.

In summary, our data reveal that expression of BNIP3 in
granular cells induces autophagy and is involved in the
terminal differentiation and maintenance of skin epidermis.
Studies on the involvement of autophagy in skin epidermis
have attracted considerable attention recently. In addition,
increasing evidence suggests the involvement of BNIP3 in the
differentiation of several cell types, including oligodendro-
cytes (ltoh et al., 2003), osteoclasts (Knowles and Athanasou,
2008), and chondrocytes (Zhao et al., 2012); however, the
precise role of BNIP3 in this process remains to be
investigated. Our study thus provides new insights into the
functions of BNIP3 in differentiation and homeostasis.

MATERIALS AND METHODS

Histology and immunofluorescent analysis

Samples and embryos were fixed in 4% paraformaldehyde,
embedded in optimal cutting temperature compound, frozen, and
sectioned at 10 um. Sections were then either subjected to hematox-
ylin and eosin staining or immunohistochemical analysis as pre-
viously described (Moriyama et al., 2006). Details are described in
Supplementary Materials Online.

Cell culture

HPEKs were purchased from CELLnTEC (Bern, Switzerland) and
maintained in CnT-57 (CELLNTEC) culture medium according to the
manufacturer’s protocol. For induction of differentiation, the medium
was changed to CnT-02 (CELLnTEC) at confluent monolayers of
HPEKs, followed by adding calcium ions to 1.8 mm. The generation of
human skin equivalents was performed using CnT-02-3DP culture
medium (CELLNTEC) according to the manufacturer’s protocol.

Design of artificial microRNAs and plasmid construction

Oligonucleotides targeting a human BNIP3 sequence compatible for
use in cloning into BLOCK-T Pol II miR RNAi expression vectors
(Invitrogen, Carlsbad, CA) were obtained using the online tool
BLOCK-IT RNAI Designer. The oligonucleotide sequences used in
this study are shown in Supplementary Table ST online. Cloning
procedures were performed following the manufacturer’s instructions.

Adenovirus and lentivirus infection

Adenoviruses expressing EGFP, Hes1, BNIP3, and miR BNIP3 were
constructed using the ViraPower adenoviral expression system (Invi-
trogen) according to the manufacturer’s protocol. Lentivirus expressing
EGFP-LC3 (from Addgene plasmid 21073, Cambridge, MA) and miR
BNIP3 plasmid was constructed and used to infect keratinocytes as
previously described (Moriyama et al., 2012; Moriyama et al., 2013).

Journal of Investigative Dermatology

RNA extraction, complementary DNA generation, and Q-PCR
Total RNA extraction, complementary DNA generation, and Q-PCR
analyses were carried out as previously described (Moriyama et al.,
2012). Details of the primers used in these experiments are shown in
Supplementary Table S2 online.

Western blot analysis

Western blot analysis was performed as previously described
(Moriyama et al, 2012; Moriyama et al, 2013). Details are
described in Supplementary Materials Online.

ChIP assay

The ChIP assay was performed using the SimpleChIP Enzymatic
Chromatin IP Kit (Magnetic Beads) (Cell Signaling Technology,
Danvers, MA) according to the manufacturer’s instructions. Hemag-
glutinintagged Hes1 was immunoprecipitated with rabbit polyclonal
antibody against hemagglutinin tag (ab9110, Abcam, Cambridge, MA).
Immunoprecipitated DNA was analyzed by Q-PCR. Relative quantifi-
cation using a standard curve method was performed, and the
occupancy level for a specific fragment was defined as the ratio of
immunoprecipitated DNA over input DNA. Details of the primers used
in these experiments are shown in Supplementary Table S2 online.

Flow cytometry analysis

For autophagy detection, Cyto-ID Autophagy detection kit (Enzo Life
Sciences, Plymouth Meeting, PA) was used according to the manu-
facturer’s instructions. Details are described in Supplementary
Materials Online.
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