(ER Dorsey MD, R Shivakoti BA); London School of Hygiene and Tropical Medicine, London, UK (L) Bacchus PhD, J C Child MSc, K Devries PhD. K Edmond PhD. G Falder MSc, J Mak MSc, Prof N Pearce PhD, H Stöckl PhD); Independent Consultant, Geneva, Switzerland (A N Bahalim MEng); Sri Ramachandra University, Chennai, India (Prof K Balakrishnan PhD, S Ghosh MS); University of Auckland, Auckland, New Zealand (S Barker-Collo PhD); Yale University, New Haven, CT, USA (Prof M L Bell PhD); School of Public Health (J Leigh MBBS, T Driscoll PhD), Department of Rheumatology, Northern Clinical School (E Smith PhD). Institute of Bone and Joint Research (J S Chen PhD, Prof L March MD, L Sanchez-Riera MD. N Wilson PhD), University of Sydney, Sydney, NSW, Australia (F Blyth PhD, C Bonner MPH. S Darling MPH, G L Jacklyn MPH, J Orchard MPH, E Passmore MPH); National Institute of Psychiatry, Mexico City, Mexico (Prof G Borges ScD); Metropolitan Autonomous University, Mexico City, Mexico (Prof G Borges); Vision and Eye Research Unit, Anglia Ruskin University, Cambridge, UK (Prof R Bourne MD); Institut de Recherche pour le Développement, Martinique, France (M Boussinesg MD); University of British Columbia, Vancouver, BC, Canada (Prof M Brauer ScD): Department of Pediatrics (R Weintraub MBBS), Centre for Health Policy, Programs and Economics (Prof L Degenhardt PhD), School of Population Health (Prof R Room PhD), University of Melbourne, Melbourne, VIC, Australia (Prof P Brooks MD. Prof R Marks MBBS): University of Liverpool, Liverpool, UK (Prof N G Bruce MBBS, M Dherani PhD, D Pope PhD); Insititute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands (Prof B Brunekreef PhD); Flinders University, Adelaide, SA, Australia (C Bryan-Hancock BPsych, T Lathlean MA); National Drug and Alcohol Research Centre (B Calabria BPsyc, Prof L Degenhardt, also include a third level to distinguish between non-exclusive breastfeeding during the first 6 months and discontinued breastfeeding from 6 to 23 months. We calculated burden attributable to all (67) risk factors and clusters of risk factors except for physiological risks and air pollution. These two clusters present analytical challenges for computation of the aggregate burden. For example, the effects of high body-mass index are partly mediated through high blood pressure, high total cholesterol, and high fasting plasma glucose, and household air pollution from solid fuels (wood, crop, residues, animal dung, charcoal, and coal) contributes to ambient particulate matter pollution. We ranked results for 43 risk factors and clusters of risk factors, grouping together occupational carcinogens, non-exclusive and discontinued breastfeeding, and tobacco smoking with second-hand smoke on the basis of common exposure sources. Our estimation of disease burden attributable to a risk factor had five steps: 1) selection of risk—outcome pairs to be included in the analysis based on criteria about causal associations; 2) estimation of distributions of exposure to each risk factor in the population; 3) estimation of etiological effect sizes, often relative risk per unit of exposure for each risk—outcome pair; 4) choice of an alternative (counterfactual) exposure distribution to which the current exposure distribution is compared. We selected an optimum exposure distribution, termed the theoretical-minimum-risk exposure distribution for this purpose; and 5) computation of burden attributable to each risk factor, including uncertainty from all sources. Further details about the data and methods used for specific risk factors are available on request. ## Selection of risk-outcome pairs The inclusion criteria for each risk-outcome pair that we applied were: 1) the likely importance of a risk factor to disease burden or policy based on previous work; 2) availability of sufficient data and methods to enable estimation of exposure distributions by country for at least one of the study periods (1990 and 2010); 3) sufficient evidence for causal effects based on high-quality epidemiological studies in which the findings were unlikely to be caused by bias or chance, analogous to the criteria used for assessment of carcinogens with convincing or probable evidence (panel). Sufficient data to estimate outcome-specific etiological effect sizes per unit of exposure were also needed; and 4) evidence to support generalisability of effect sizes to populations other than those included in the available epidemiological studies or satisfactory models for extrapolating them. Table 1 shows the risk-outcome pairs that were included in the final analysis, on the basis of these criteria. ### Distribution of exposure to each risk factor For most risk factors, a systematic search was done to identify published and, when possible, unpublished data sources to estimate risk factor exposure distributions in 1990 and 2010. Strategies to identify data sources included searching survey databases such as the WHO Global Database on Child Growth and Malnutrition, searching general citation databases such as Google Scholar and PubMed, manual searching of reference lists of articles and conference abstracts, and contacting experts in the relevant fields. Data sources included censuses, health examination and nutrition surveys, and community-based epidemiological studies. Because data for risk factor exposure are often incomplete or missing for many populations, models were used to generate a complete set of current exposure distributions for risk factors for each country and for both years, including uncertainty. Table 1 shows for each risk factor the main sources of data and the modelling approach used for estimation of present risk factor exposure distributions. Briefly, risk factor models were designed to use available data and information for exposures in countries, for several years, and for different age groups to generate estimates for all countries, for both years, and for all relevant age groups. Estimation of exposure was done with statistical models that used predictors such as time, geography, and other variables that were relevant to the exposure of interest—eg, income per person. For each risk factor, we tested a wide array of covariates for prediction of exposure distributions, drawing from covariates included in databases created or collated at the Institute for Health Metrics and Evaluation for GBD 2010. If relevant, the model also included age. Finally, each analysis accounted for important study characteristics such as national versus subnational representativeness, and the measures and instruments used for measuring exposure. In addition to this general approach, specific methods were used for some risk factors. For tobacco including second-hand smoke, much scientific literature exists about alternative methods to estimate cumulative exposure, based on the premise that present prevalence and consumption data do not take into account likely variations in duration and intensity of smoking. In this case, we used the method of Peto and Lopez,2 which uses lung cancer mortality as a marker (ie, smoking impact ratio) of cumulative population exposure to smoking for cancers and chronic respiratory disease. We used epidemiological data to estimate lung cancer mortality in non-smokers separately for China, other countries in the high-income Asia Pacific region, and all remaining countries. 119,120 For all other outcomes, we used 10-year lagged tobacco smoking prevalence. We also applied an approach analogous to the smoking impact ratio for occupational exposure to asbestos, for which we used mesothelioma mortality, separately estimated, as a marker of asbestos exposure. For ambient particulate matter pollution, two complete, high resolution estimates exist of the concentration of particulate matter smaller than $2.5 \, \mu m$ in aerodynamic | | Exposure definition | Outcomes | Subgroup | Main data sources for exposure | Exposure
estimation
method | Theoretical-
minimum-risk
exposure
distribution | Source of relative risks | |---|---|--|---|---|--|--|--| | 1. Unimproved | water and sanitation | | | | | | | | 1.1.
Unimproved
water source | Proportion of households using
an unimproved water source
(unprotected wells or springs,
vendor-provided water, tanker
trucks, surface water, and other
unspecified sources) | Intestinal infectious diseases | All ages | Population surveys and censuses | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | All households use
an improved water
source (household
connection, a public
tap or standpipe, a
tubewell or
borehole, a
protected well or
spring, or
rainwater
collection) | New
meta-analysis | | 1.2.
Unimproved
sanitation | Proportion of households using unimproved sanitation (traditional latrines, open latrines without squatting slabs, bucket latrines, hanging latrines, open defecation or no facilities, and other unspecified facilities) | Intestinal infectious diseases | All ages | Population surveys and censuses | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | All households use improved sanitation (public sewers, septic systems, flush or pour-flush facilities, ventilated improved latrines, simple pit latrines with squatting slabs, and composting toilets) | New
meta-analysis | | 2. Air pollution | | | | | | | | | 2.1. Ambient
particulate
matter
pollution | Ambient concentration of particles with an aerodynamic diameter smaller than 2·5 μm, measured in μg/m³ | Lower respiratory infections;
trachea, bronchus, and lung
cancers; IHD; cerebrovascular
disease; COPD | Age <5 years
for lower
respiratory
tract infection;
≥25 years for
all others | Surface monitor
measurements, aerosol
optical depth from
satellites, and TM5 global
atmospheric chemistry
transport model ¹²⁻²⁶ | Average of
satellite and
chemistry
transport
estimates,
calibrated to
surface
monitor
measurements | 5·8–8·8 μg/m³ | Integrated
exposure-
response curvi | | 2.2. Household
air pollution
from solid fuels | Proportion of households using
solid fuels for cooking (coal,
wood, charcoal, dung, and
agricultural residues) | Lower respiratory infections;
trachea, bronchus, and lung
cancers; HD; cerebrovascular
disease; COPD; cataracts | Age <5 years
for lower
respiratory
tract infection;
≥25 years for
all others | Population surveys and censuses | Mixed effect
regression | All households
using clean fuels for
cooking (vented
gas, electricity) | Integrated exposure-
response curve for lower respiratory tract infection IHD, and stroke; new meta-analysis for cataracts, COPD, and lung cancer | | 2.3. Ambient
ozone pollution | Ambient concentrations of ozone in air, measured in parts per billion | COPD | Age ≥25 years | TM5 global atmospheric
chemistry transport
model ²²⁻²⁴ | TM5 global
atmospheric
chemistry
transport
model ²²⁻²⁴ | 33·3-41·9 parts per
billion | Jerrett and
colleagues ²⁷ | | 3. Other environ | mental risks | | | | | | | | 3.1. Residential radon | Residential radon, measured in Bq/m³ | Trachea, bronchus, and lung cancers | All ages | Direct household
measurements from
surveys | Mixed effect
regression | 10 Bq/m³ | Darby and colleagues ²⁸ | | 3.2. Lead
exposure | Blood lead (measured in µg/dL)
and bone lead (measured in
µg/g) | Intellectual disability; systolic blood pressure, which has effects on: RHD; IHD; ischaemic stroke; haemorrhagic and other non-ischaemic stroke; HHD; aortic aneurysm; the aggregate of cardiomyopathy and myocarditis and endocarditis; the aggregate of atrial fibrillation and flutter, PVD, other CVD; CKD | <15 years for
intellectual
disability;
≥25 years for
all others | Examination surveys and epidemiological studies | DisMod 3 | Bone lead level
expected from age-
specific cumulative
exposure to blood
lead of 0·09652
µmol/L ²⁹ | Lanphear and
colleagues, ³⁰
Navas-Acien
and
colleagues ³¹ | | | Exposure definition | Outcomes | Subgroup | Main data sources for exposure | Exposure
estimation
method | Theoretical-
minimum-risk
exposure
distribution | Source of relative risks | |---|--|--|---|--|--|--|---| | (Continued from | previous page) | | | | | | | | 4. Child and mat | ternal undernutrition | | | | | | | | 4.1. Suboptimal
breastfeeding | | | | | | | | | 4.1.1. Non-
exclusive
breastfeeding | Proportion of children younger
than 6 months with
predominant, partial, or no
breastfeeding | Intestinal infectious diseases; the aggregate of lower respiratory infections, upper respiratory infections, and otitis media | Age
0–5 months | Population surveys | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | All children
exclusively
breastfed for first
6 months | Lamberti and
colleagues, ³²
Black and
colleagues ¹⁰ | | 4.1.2.
Discontinued
breastfeeding | Proportion of children aged
6–23 months with discontinued
breastfeeding | Intestinal infectious diseases | Age
6–23 months | Population surveys | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | Continued
breastfeeding until
2 years | Lamberti and
colleagues, ³²
Black and
colleagues ¹⁰ | | 4.2. Childhood
underweight | Proportion of children less than
-3 SDs, -3 to -2 SDs, and -2 to
-1 SDs of the WHO 2006
standard weight-for-age curve | Intestinal infectious diseases;
measles; malaria; the aggregate of
lower respiratory infections, upper
respiratory infections, and otitis
media; protein–energy
malnutrition | Age <5 years | Examination surveys and epidemiological studies | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | Proportion of the
WHO 2006
reference
population in each
SD range | Black and
colleagues ¹⁰ | | 4.3. Iron
deficiency | Haemoglobin, measure in g/L | The aggregate of maternal haemorrhage and maternal sepsis; iron-deficiency anaemia | All ages | Examination surveys and epidemiological studies | Mixed effect regression | Country-specific | Stoltzfus and colleagues ³³ | | 4.4. Vitamin A
deficiency | Proportion of children with
serum retinol concentration
<70 μmol/L | Intestinal infectious diseases;
measles; vitamin A deficiency | Age 6 months
to 5 years | Examination surveys and epidemiological studies | DisMod 3 | No childhood
vitamin A
deficiency | Imdad and
colleagues, ^{34,35}
adjusted for
background
prevalence | | 4.5. Zinc
deficiency | Proportion of the population with inadequate zinc intake based on estimated mean daily amount of absorbable zinc per head in the food supply compared with mean physiological requirements | Intestinal infectious diseases; lower respiratory infections | Age 1-4 years | Food and Agricultural
Organization food balance
sheets | Mixed effect
regression | No inadequate zinc intake | Yakoob and
colleagues, ³⁶
adjusted for
background
prevalence | | 5. Tobacco smok | ring, including second-hand smol | (e | | | | | | | 5.1. Tobacco
smoking | Smoking impact ratio for cancers and chronic respiratory disease, 10-year lagged tobacco smoking prevalence for all other causes including cardiovascular diseases | Tuberculosis; oesophageal cancer; nasopharynx cancer; pancreatic cancer; kidney and other urinary organ cancers; bladder cancer; stomach cancer; leukaemia; liver cancer; trachea, bronchus, and lung cancers; cervical cancer; colon and rectal cancer; mouth cancer; diabetes mellitus; IHD; cerebrovascular disease; the aggregate of HHD, atrial fibrillation and flutter, aortic aneurysm, PVD, and other CVD; COPD; the aggregate of pneumoconiosis, asthma, other interstitial lung disease, and other chronic respiratory diseases | Age ≥25 years | Mortality data including vital registration, verbal autopsy, and population surveys for smoking prevalence | CoDEM ³³ | No tobacco
smoking | Re-analysis of
the Cancer
Prevention
Study 2 ³⁸⁻⁴⁰ | | 5.2. Second-
hand smoke | Proportion of children and non-smoking adults reporting exposure to second-hand smoke | The aggregate of lower respiratory infections, upper respiratory infections, and otitis media; trachea, bronchus, and lung cancers; IHD; cerebrovascular disease | Age <5 years
for the
aggregate of
lower
respiratory
infections,
upper
respiratory
infections, and
otitis media,
age ≥25 years
for all others | Population surveys | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No second-hand smoke exposure | US Department of Health and Human Services, 41 Oono and colleagues, 42 Jones and colleagues 43,44 | | | Exposure definition | Outcomes | Subgroup | Main data sources for exposure | Exposure
estimation
method | Theoretical-
minimum-risk
exposure
distribution | Source of relative risks | |-------------------------------------|---
--|--|--|--|--|---| | (Continued from | previous page) | | | | | | | | 6. Alcohol and d | rug use | | | | | | | | 6.1. Alcohol use | Average consumption of pure alcohol (measure in g/day) and proportion of the population reporting binge consumption of 0.06 kg or more of pure alcohol on a single occasion | Tuberculosis; lower respiratory infections; oesophageal cancer; the aggregate of mouth cancer, nasopharynx cancer, cancer of other part of pharynx and oropharynx; liver cancer; larynx cancer; breast cancer; colon and rectum cancers; diabetes mellitus; IHD; ischaemic stroke; haemorrhagic and other nonischaemic stroke; HHD; atrial fibrillation and flutter; cirrhosis of the liver; pancreatitis; epilepsy; transport injuries; the aggregate of falls, drowning, fire, heat, and hot substances, poisonings, exposure to mechanical forces, intentional self-harm, and interpersonal violence; alcohol use disorders | All ages for alcohol use disorders, transport injuries, and interpersonal violence; ≥15 years for all others | Population surveys, alcohol sales, production, and other economic statistics | Mixed effect
regression ⁴⁵ | No alcohol
consumption | Published
studies ⁴⁶⁻⁵⁹ | | 6.2. Drug use | Proportion of the population reporting use of cannabis, opioids, and amphetamines, proportion of the population reporting use of injecting drugs | Drug use disorders; schizophrenia; HIV/AIDS; the aggregate of acute hepatitis B, liver cancer secondary to hepatitis B, and cirrhosis of the liver secondary to hepatitis B; the aggregate of acute hepatitis C, liver cancer secondary to hepatitis C, and cirrhosis of the liver secondary to hepatitis C; intentional self-harm | All ages | Population surveys,
registries, and indirect
measures | DisMod 3 | No use of cannabis,
opioid, or
amphetamines, no
use of injecting
drugs | New meta-
analyses,
published
studies ^{60,61} | | 7. Physiological r | isk factors | | | | | | | | 7.1. High fasting
olasma glucose | Fasting plasma glucose,
measured in mmol/L | Diabetes mellitus; IHD;
cerebrovascular disease; CKD;
tuberculosis | Age ≥25 years | Examination surveys and epidemiological studies | Bayesian
hierarchical
regression ⁶² | Mean
4·9-5·3 mmol/L
(SD 0·3 mmol/L) | Meta-
regression of
pooled
prospective
studies ⁶³⁻⁶⁶ | | 7.2. High total
cholesterol | Total cholesterol, measured in mmol/L | IHD; ischaemic stroke | Age ≥25 years | Examination surveys and epidemiological studies | Bayesian
hierarchical
regression ⁶⁷ | Mean
3·8-4·0 mmol/L
(SD 0·9 mmol/L) | Meta-
regression of
pooled
prospective
studies ^{68,69} | | 7.3. High blood
oressure | Systolic blood pressure,
measured in mm Hg | RHD; IHD; ischaemic stroke, haemorrhagic and other non-ischaemic stroke; HHD; the aggregate of cardiomyopathy and myocarditis and endocarditis; the aggregate of atrial fibrillation and flutter, PVD, and other CVD; aortic aneurysm; CKD | Age ≥25 years | Examination surveys and epidemiological studies | Bayesian
hierarchical
regression ⁷⁰ | Mean 110-115 mm
Hg (SD 6 mm Hg) | Meta-
regression of
pooled
prospective
studies ⁷¹⁻⁷³ | | 7.4. High body-
nass index | Body-mass index, measured in
kg/m² | Oesophageal cancer; gallbladder and biliary tract cancer; pancreatic cancer; kidney and other urinary organ cancers; breast cancer; uterine cancer; colon and rectum cancers; diabetes mellitus; IHD; ischaemic stroke; HHD; the aggregate of cardiomyopathy and myocarditis and endocarditis; the aggregate of atrial fibrillation and flutter, PVD, and other CVD; CKD; osteoarthritis; low back pain | Age ≥25 years | Examination surveys and epidemiological studies | Bayesian
hierarchical
regression ⁷⁴ | Mean
21-0-23-0 kg/m²
(SD 1 kg/m²) | Meta-
regression of
pooled
prospective
studies ⁷⁵⁻⁷⁸ | # Articles | | Exposure definition | Outcomes | Subgroup | Main data sources for exposure | Exposure
estimation
method | Theoretical-
minimum-risk
exposure
distribution | Source of relative risks | |---|--|---|---------------|---|----------------------------------|---|--| | (Continued from | previous page) | | | | | | | | 7.5. Low bone
mineral density | Standardised bone mineral density measured at the femoral neck | Hip fracture falls; non-hip fracture falls | Age ≥50 years | Examination surveys and epidemiological studies | DisMod 3 | 90th percentile of
NHANES-III
cohort ⁷⁹ by age | Johnell and
colleagues ⁸⁰ | | 8. Dietery risk fa | actors and physical inactivity | | | | | | | | 8.1. Diet low in
fruits | Dietary intake of fruits (fresh,
frozen, cooked, canned, or dried
but excluding fruit juices and
salted or pickled fruits) | The aggregate of oesophageal cancer, mouth cancer, the aggregate of nasopharynx cancer, cancer of other part of pharynx and oropharynx, and larynx cancer; trachea, bronchus, and lung cancers; IHD; ischaemic stroke; haemorrhagic and other non-ischaemic stroke | Age ≥25 years | Nutrition and health surveys | DisMod 3 | Mean 300 g/day
(SD 30 g/day) | New meta-
analysis,
published
studies ^{81,82} | | 8.2. Diet low in vegetables | Dietary intake of vegetables
(fresh, frozen, cooked, canned, or
dried vegetables including
legumes but excluding salted or
pickled, juices, nuts and seeds,
and starchy vegetables such as
potatoes or corn) | The aggregate of mouth cancer, nasopharynx cancer, cancer of other part of pharynx and oropharynx, and larynx cancer; IHD; ischaemic stroke; haemorrhagic and other non-ischaemic stroke | Age ≥25 years | Nutrition and health surveys | DisMod 3 | Mean 400 g/day
(SD 30 g/day) | New meta-
analysis, He
and
colleagues ^{\$1} | | 8.3. Diet low in
whole grains | Dietary intake of whole grains
(bran, germ, and endosperm in
their natural proportions) from
breakfast cereals, bread, rice,
pasta, biscuits, muffins, tortillas,
pancakes, and others | Diabetes mellitus; IHD;
cerebrovascular disease | Age ≥25 year | Nutrition and health surveys | DisMod 3 | Mean 125 g/day
(SD 12-5 g/day) | Mellen and
colleagues, ⁸³
de Munter and
colleagues ⁸⁴ | | 8.4. Diet low in nuts and seeds | Dietary intake of nut and seed foods including, for example, peanut butter | IHD | Age ≥25 years | Nutrition and health surveys | DisMod 3 | Mean 114 g per
week (SD 11·4 g per
week) | Kelly and
colleagues ⁸⁵ | | 8.5. Diet low in
milk | Dietary intake of milk including
non-fat, low-fat, and full-fat
milk but excluding soya milk
and other plant derivatives | Colon and rectum cancers | Age ≥25 years | Nutrition and health surveys | DisMod 3 | Mean 450 g/day
(SD 45 g/day) | World Cancer
Research Fund
and American
Institute for
Cancer
Research ⁸² | | 8.6. Diet high in
red meat | Dietary intake of red meat (beef, pork, lamb, and goat but excluding poultry, fish, eggs, and all processed meats) | Colon and rectum cancers; diabetes mellitus | Age ≥25 years | Nutrition and health surveys | DisMod 3 | Mean 100 g per
week (SD 10 g per
week) | World Cancer
Research Fund
and American
Institute for
Cancer
Research, 82
published
studies 86.87 | | 8.7. Diet high in
processed meat | Dietary intake of meat
preserved by smoking, curing,
salting, or addition of chemical
preservatives, including bacon,
salami, sausages, or deli or
luncheon meats like ham,
turkey, and pastrami | Colon and rectum cancers; diabetes mellitus; IHD | Age ≥25 years | Nutrition and health surveys | DisMod 3 | No dietary intake of processed meat | World Cancer
Research Fund
and American
Institute for
Cancer
Research, 82
Micha and
colleagues 87 | | 8.8. Diet high in
sugar-
sweetened
beverages | Dietary intake of beverages with
≥50 kcal per 226·8 g serving,
including carbonated beverages,
sodas, energy drinks, fruit drinks
but excluding 100% fruit and
vegetable juices | Diabetes
mellitus and body-mass index with subsequent effects on: oesophageal cancer; gallbladder and biliary tract cancer; pancreatic cancer; kidney and other urinary organ cancers; breast cancer; uterine cancer; colon and rectum cancers; diabetes mellitus; IHD; ischaemic stroke; HHD; the aggregate of cardiomyopathy and myocarditis and endocarditis; the aggregate of atrial fibrillation and flutter, PVD, and other CVD; CKD; osteoarthritis; low back pain | Age ≥25 years | Nutrition and health surveys | DisMod 3 | No dietary intake of
sugar-sweetened
beverages | New meta-
analysis | | | vegetable jotes | colon and rectum cancers; diabetes mellitus; IHD; ischaemic stroke; HHD; the aggregate of cardiomyopathy and myocarditis and endocarditis; the aggregate of atrial fibrillation and flutter, PVD, and other CVD; | | | | | (Continu | | | Exposure definition | Outcomes | Subgroup | Main data sources for exposure | Exposure
estimation
method | Theoretical-
minimum-risk
exposure
distribution | Source of relative risks | |---|---|--|---------------|--|--|---|--| | (Continued from | previous page) | | | | | | | | 8.9. Diet low in
fibre | Dietary intake of fibre from all
sources including fruits,
vegetables, grains, legumes,
and pulses | Colon and rectum cancers; IHD | Age ≥25 years | Nutrition and health
surveys | DisMod 3 | Mean of 30 g/day
(SD 3 g/day) | World Cancer
Research Fund
and American
Institute for
Cancer
Research, 82
Pereira and
colleagues 88 | | 8.10. Diet low
in calcium | Dietary intake of calcium from
all sources, including milk,
yogurt, and cheese | Colon and rectum cancers; prostate cancer | Age ≥25 years | Nutrition and health
surveys | DisMod 3 | Mean of
1200 mg/day (SD
120 mg/day) | World Cancer
Research Fund
and American
Institute for
Cancer
Research, 82 Ch
and
colleagues 89 | | 8.11. Diet low
in seafood
omega-3 fatty
acids | Dietary intake of eicosapentaenoic acid and docosahexaenoic acid, measured in mg/day | Death caused by IHD | Age ≥25 years | Nutrition and health surveys | DisMod 3 | 250 mg/day | Updated
published
review of
Mozaffarian
and
colleagues ⁹⁰ | | 8.12. Diet low in
polyunsaturated
fatty acids | Dietary intake of omega-6 fatty
acids from all sources, mainly
liquid vegetable oils, including
soybean oil, corn oil, and
safflower oil | IHD | Age ≥25 years | Nutrition and health
surveys | DisMod 3 | Substitution of present saturated fatty acid intake up to a mean intake of polyunsaturated fatty acids of 12% of energy (SD 1·2%) | Jakobsen and
colleagues, ⁹¹
Mozaffarian
and
colleagues ⁹² | | 8.13. Diet high
in trans fatty
acids | Dietary intake of trans fat from
all sources, mainly partially
hydrogenated vegetable oils
and ruminant products | IHD | Age ≥25 years | Nutrition and health surveys | DisMod 3 | Mean of 0.5% of
energy (SD 0.05%) | Mozaffarian
and
colleagues ⁹³ | | 8.14. Diet high
in sodium | 24 h urinary sodium, measured
in mg/day | Stomach cancer; systolic blood pressure which has effects on: RHD; IHD; ischaemic stroke, haemorrhagic and other non-ischaemic stroke; HHD; the aggregate of cardiomyopathy and myocarditis and endocarditis; the aggregate of atrial fibrillation and flutter, PVD, and other CVD; aortic aneurysm; CKD | Age ≥25 years | Nutrition and health
surveys | DisMod 3 | Mean of
1000 mg/day (SD
100 mg/day) | Re-analysis of
observational
studies for
stomach
cancer and
randomised
studies for
blood pressur
lowering ^{82,94} | | 8.15. Physical
nactivity and
ow physical
activity* | Proportion of the population in categories of physical activity: level 0, <600 MET-minutes per week (inactive); level 1, 600-3999 MET-minutes per week (low-active); level 2, 4000-7999 MET-minutes per week (moderately active); and level 3, ≥8000 MET-minutes per week (highly active) | Breast cancer; colon and rectum cancers; diabetes mellitus; IHD; ischaemic stroke | Age ≥25 years | Population surveys | DisMod 3 | All individuals are
highly active
(level 3) | Danaei and colleagues ¹¹ | | 9. Occupational i | risk factors | | | | | | | | 9.1.
Occupational
carcinogens | | | | | | | | | 9.1.1.
Occupational
exposure to
asbestos | Cumulative exposure to asbestos using mesothelioma in a smoking impact ratio analogue | Ovarian cancer; other neoplasms;
larynx cancer; trachea, bronchus,
and lung cancers | Age ≥15 years | Vital registration mortality
data, asbestos production,
import, and export
statistics | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No exposure to asbestos | Published
studies ⁹⁵⁻⁹⁸ | | | | | | | | 10 | es on next pag | # Articles | | Exposure definition | Outcomes | Subgroup | Main data sources for exposure | Exposure
estimation
method | Theoretical-
minimum-risk
exposure
distribution | Source of relative risks | |--|--|-------------------------------------|---------------|--|--|--|--| | Continued from | previous page) | | Talenda. | | | | | | 9.1.2.
Occupational
exposure to
arsenic | Proportion of population ever exposed (by taking into account worker turnover) ^{93,300} based on distribution of the population in nine industries† | Trachea, bronchus, and lung cancers | Age ≥15 years | Labour force surveys,
censuses, and International
Information System on
Occupational Exposure to
Carcinogens | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No occupational exposure to carcinogens | Lee-Feldstein ^a | | 9.1.3.
Occupational
exposure to
benzene | Proportion of population ever
exposed (by taking into account
worker turnover) ^{99,300} based on
distribution of the population in
nine industries† | Leukaemia | Age ≥15 years | Labour force surveys,
censuses, and International
Information System on
Occupational Exposure to
Carcinogens | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No occupational
exposure to
carcinogens | Khalade and colleagues ¹⁰² | | 9.1.4.
Occupational
exposure to
beryllium | Proportion of population ever exposed (by taking into account worker turnover) ^{99,100} based on distribution of the population in nine industries† | Trachea, bronchus, and lung cancers | Age ≥15 years | Labour force surveys,
censuses, and International
Information System on
Occupational Exposure to
Carcinogens | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No occupational exposure to carcinogens | Schubauer-
Berigan and
colleagues ¹⁰³ | | 9.1.5.
Occupational
exposure to
cadmium | Proportion of population ever exposed (by taking into account worker turnover) ^{99,300} based on distribution of the population in nine industries† | Trachea, bronchus, and lung cancers | Age ≥15 years | Labour force surveys,
censuses, and International
Information System on
Occupational Exposure to
Carcinogens | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No occupational
exposure to
carcinogens | Hutchings and
colleagues ⁹⁵ | | 9.1.6.
Occupational
exposure to
chromium | Proportion of population ever exposed (by taking into account worker turnover) ^{39,200} based on distribution of the population in nine industries† | Trachea, bronchus, and lung cancers | Age ≥15 years | Labour force surveys,
censuses, and International
Information System on
Occupational Exposure to
Carcinogens | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No occupational exposure to carcinogens | Rosenman and
colleagues ¹⁰⁴ | | 9.1.7
Occupational
exposure to
diesel engine
exhaust | Proportion of population ever exposed (by taking into account worker turnover) ^{93,100} based on distribution of the population in nine industries† | Trachea, bronchus and lung cancers | Age ≥15 years | Labour force surveys,
censuses, and International
Information System on
Occupational Exposure to
Carcinogens | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No occupational
exposure to
carcinogens | Lipsett and colleagues ¹⁰⁵ | | 9.1.8.
Occupational
exposure to
second-hand
smoke | Proportion of population ever
exposed (by taking into account worker turnover) ^{93,100} based on distribution of the population in nine industries† | Trachea, bronchus, and lung cancers | Age ≥15 years | Labour force surveys,
censuses, and International
Information System on
Occupational Exposure to
Carcinogens | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No occupational
exposure to
carcinogens | Stayner and colleagues ¹⁰⁶ | | 9.1.9.
Occupational
exposure to
formaldehyde | Proportion of population ever exposed (by taking into account worker turnover) ^{93,100} based on distribution of the population in nine industries† | Leukaemia; nasopharynx cancer | Age ≥15 years | Labour force surveys,
censuses, and International
Information System on
Occupational Exposure to
Carcinogens | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No occupational
exposure to
carcinogens | Collins and
colleagues, ¹⁰⁷
Hauptmann
and
colleagues ¹⁰⁸ | | 9.1.10.
Occupational
exposure to
nickel | Proportion of population ever exposed (by taking into account worker turnover) ^{93,100} based on distribution of the population in nine industries† | Trachea, bronchus, and lung cancers | Age ≥15 years | Labour force surveys,
censuses, and International
Information System on
Occupational Exposure to
Carcinogens | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No occupational
exposure to
carcinogens | Grimsrud and
colleagues ^{109,110} | | 9.1.11.
Occupational
exposure to
polycyclic
aromatic
hydrocarbons | Proportion of population ever exposed (by taking into account worker turnover) ^{98,200} based on distribution of the population in nine industries† | | Age ≥15 years | Labour force surveys,
censuses, and International
Information System on
Occupational Exposure to
Carcinogens | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No occupational
exposure to
carcinogens | Armstrong
and
colleagues ¹¹¹ | | 9.1.12.
Occupational
exposure to
silica | Proportion of population ever exposed (by taking into account worker turnover) ^{95,100} based on distribution of the population in nine industries† | Trachea, bronchus, and lung cancers | Age ≥15 years | Labour force surveys,
censuses, and International
Information System on
Occupational Exposure to
Carcinogens | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No occupational exposure to carcinogens | Kurihara and
colleagues ¹¹² | | 9.1.13.
Occupational
exposure to
sulphuric acid | Proportion of population ever exposed (by taking into account worker turnover) ^{98,100} based on distribution of the population in nine industries† | Larynx cancer | Age ≥15 years | Labour force surveys,
censuses, and International
Information System on
Occupational Exposure to
Carcinogens | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | No occupational
exposure to
carcinogens | Soskolne and colleagues ¹¹³ | | | Exposure definition | Outcomes | Subgroup | Main data sources for exposure | Exposure
estimation
method | Theoretical-
minimum-risk
exposure
distribution | Source of relative risks | |--|--|--|--|---|--|---|--| | (Continued from | previous page) | | | | | | | | 9.2.
Occupational
asthmagens | Proportion of population exposed based on distribution of the population in eight occupational groups (professional, technical, and related workers; administrative and managerial workers; clerical and related workers; sales workers; service workers; agriculture, animal husbandry, and forestry workers, fishermen and hunters; production and related workers; and transport equipment operators and labourers) | Asthma | Age ≥15 years | Labour force surveys and censuses | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | asthmagen
exposures | Published
studies ¹¹⁴⁻¹¹⁶ | | 9.3. Occupational particulate matter, gases, and fumes | Proportion of population
exposed based on distribution
of the population in nine
industries† | COPD | Age ≥15 years | Labour force surveys and censuses | Gaussian
process
regression ¹⁹⁻²¹ | No occupational
exposure to
particulates, gases,
or fumes | New meta-
analysis | | 9.4.
Occupational
noise | Proportion of population
exposed based on distribution
of the population in nine
industries† | Hearing loss | Age ≥15 years | Labour force surveys and censuses | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | Background noise exposure | New meta-
analysis | | 9.5.
Occupational
risk factors for
injuries | Fatal occupational injury | | Age ≥15 years | International Labour
Organization injury
database | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | Five injury deaths
per 1 000 000
person-years | | | 9.6.
Occupational
low back pain | Proportion of population exposed based on distribution of the population in eight occupational groups (professional, technical, and related workers; administrative and managerial workers; clerical and related workers; sales workers; service workers; agriculture, animal husbandry, and forestry workers, fishermen and hunters; production and related workers; and transport equipment operators and labourers) | Low back pain | Age ≥15 years | Labour force surveys and censuses | Spatiotemporal
Gaussian
process
regression ¹⁹⁻²¹ | All individuals have
the ergonomic
factors of clerical
and related workers | New meta-
analysis | | 10. Sexual abuse | and violence | | | | | | | | 10.1. Childhood
sexual abuse* | Proportion of the population who have ever experienced childhood sexual abuse, defined as the experience with an older person of unwanted non-contact, contact abuse, or intercourse, when aged 15 years or younger | Alcohol use disorders, unipolar depressive disorders, intentional self-harm | All ages | Population surveys and epidemiological studies | DisMod 3 | No childhood
sexual abuse | New meta-
analysis | | 10.2. Intimate
partner
violence* | Proportion of the population
who have ever experienced one
or more acts of physical or
sexual violence by a present or
former partner since age
15 years | Abortion, unipolar depressive disorders, intentional self-harm, interpersonal violence | Age
15–49 years
for abortion,
≥15 years for
all others | Population surveys and epidemiological studies | DisMod 3 | No intimate partner violence | New meta-
analysis,
Beydoun and
colleagues ¹¹⁷ | | IHD=hypertensive h
nanufacturing; elect | neart disease *Not assessed for 1990 be
tricity, gas, and water; transport, storag | olmonary disease. CVD=cardiovascular ar
ecause of absence of exposure data. †Ag
ge, and communication; construction; fin
cheoretical-minimum-risk exposur | riculture, hunting, fo
nancing, insurance, r | restry, and fishing; mining and q
eal estate, and business services;
 | uarrying; wholesale a | nd retail trade and restau | rants and hotels | P K Nelson MHSc), University of New South Wales, Sydney, NSW, Australia (C Bucello BPsyc); Cabrini Institute, Malvern, VIC, Australia (Prof R Buchbinder MBBS); Monash University, Melbourne, VIC, Australia (Prof R Buchbinder, D Hoy PhD); Telethon Institute for Child Health Research, Centre for Child Health Research (Prof J Carapetis MBBS), University of Western Australia, Perth, WA, Australia (Prof F Bull PhD); Health Canada, Ottawa, ON, Canada (RT Burnett PhD. J M Zielinski PhD); Colorado School of Public Health, Aurora. CO, USA (ProfT E Byers MD); National Institute of Environmental Health Sciences. Research Triangle Park, NC, USA (H Chen PhD, S London MD): Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Prof AT-A Cheng MD); Health Effects Institute, Boston, MA. USA (A Cohen MPH): Victorian Infectious Diseases Reference Laboratory, Melbourne, VIC, Australia (B C Cowie MBBS); Clinical Trial Services Unit (P McGale PhD), University of diameter (PM_{2.5}) in ambient air: TM5 estimates—based on a nested three-dimensional global atmospheric chemistry transport model—which simulates both particulate matter and ozone at a high spatial resolution; ^{22,23,121} and satellite-based estimates, which are based on satellite observations of aerosol optical depth, a measure of light extinction by aerosols in the total atmospheric column. ²⁵ TM5 and satellite-based estimates of PM_{2.5}, measured in $\mu g/m^3$, were averaged at a $0\cdot 1^\circ \times 0\cdot 1^\circ$ grid cell resolution (equivalent to roughly 11 km×11 km at the equator) and linked to available measures of PM_{2.5} from ground-based monitors. We used a regression model with the average of TM5 and satellite-based estimates as the predictor to estimate ground-based PM_{2.5} for all grid cells. ²⁶ For ozone, we relied solely on the TM5 model. Few population-based surveys have measured
zinc deficiency based on serum zinc concentration; ¹²² however, intervention trials show a benefit of zinc supplementation for reduction of diarrhoea and lower respiratory infections in populations that have high zinc deficiency. ¹⁰ Because of the paucity of data for serum zinc concentrations, we measured zinc deficiency at the population level on the basis of dietary sources of zinc, expanding on previous work of the International Zinc Nutrition Consultative Group. ¹²³ This approach uses national food balance sheets produced by the UN Food and Agriculture Organization to estimate a country-specific mean fractional absorption of zinc. The estimated mean daily per person amount of absorbable zinc in the food supply was compared with the mean physiological requirements of the population to calculate the percentage of the population with inadequate zinc intake. #### Effects of risk factors on disease outcomes Table 1 shows the sources of effect sizes per unit of exposure for each risk factor. Some effect sizes were based on meta-analyses of epidemiological studies. For several risk factors without recent systematic reviews or for which evidence had not recently been synthesised, new metaanalyses were done as part of GBD 2010. We used effect sizes that had been adjusted for measured confounders but not for factors along the causal pathway. For example, effect sizes for body-mass index were not adjusted for blood pressure. For some risk-outcome pairs, evidence is only available for the relative risk (RR) of morbidity or mortality. In these cases, we assumed that the reported RR would apply equally to morbidity or mortality, unless evidence suggested a differential effect. For example, studies of ambient particulate matter pollution suggest a smaller effect on incidence of cardiovascular and respiratory disease than on mortality;124-126 the published work on consumption of seafood omega-3 fatty acids suggests an effect on ischaemic heart disease mortality but not on incidence of ischaemic heart disease.90 Evidence for the RR of diarrhoea from unimproved water and sanitation is complicated by the complexity of available epidemiological studies, since the comparison groups varied greatly between studies. The comparison group used varied widely. For example, some studies compare an improved water source (eg, piped water) with an unimproved water source (eg, river water); in other studies the comparison is between two different types of improved water source (eg, piped water vs a protected well). Furthermore, studies often examine a combination of water, sanitation, and hygiene interventions. Previous reviews have yielded conflicting results about the magnitude of the effect sizes.¹²⁷⁻¹³¹ We re-examined the epidemiological evidence for the effects of water and sanitation by reviewing the relation between water, sanitation and hygiene, and diarrhoea, starting with previous reviews. 128-131 We did a metaregression of 119 studies that was designed to adjust for intervention and baseline group characteristics. First, we compared indicator variables for each of the intervention components (improved sanitation, hygiene, point-of-use water treatment, source water treatment, and piped water) with a reference category (improved water source). Second, we also included indicator variables for the baseline characteristics-ie, whether the baseline was an unimproved or improved water source or sanitation—as covariates to account for the heterogeneous control groups. Our analysis showed a significant effect of both improved water and improved sanitation compared with unimproved water and sanitation; we did not note a # Panel: The World Cancer Research Fund grading system¹¹⁸ # Convincing evidence Evidence based on epidemiological studies showing consistent associations between exposure and disease, with little or no evidence to the contrary. The available evidence is based on a substantial number of studies including prospective observational studies and where relevant, randomised controlled trials of sufficient size, duration, and quality showing consistent effects. The association should be biologically plausible. # Probable evidence Evidence based on epidemiological studies showing fairly consistent associations between exposure and disease, but for which there are perceived shortcomings in the available evidence or some evidence to the contrary, which precludes a more definite judgment. Shortcomings in the evidence may be any of the following: insufficient duration of trials (or studies); insufficient trials (or studies) available; inadequate sample sizes; or incomplete follow-up. Laboratory evidence is usually supportive. The association should be biologically plausible. ## Possible evidence Evidence based mainly on findings from case-control and cross-sectional studies. Insufficient randomised controlled trials, observational studies, or non-randomised controlled trials are available. Evidence based on non-epidemiological studies, such as clinical and laboratory investigations, is supportive. More trials are needed to support the tentative associations, which should be biologically plausible. ## Insufficient evidence Evidence based on findings of a few studies which are suggestive, but insufficient to establish an association between exposure and disease. Little or no evidence is available from randomised controlled trials. More well-designed research is needed to support the tentative associations. significantly greater effect of piped water or point-of-use or source water treatment compared with improved water. Particulate matter smaller than 2.5 µm is a common useful indicator of the risk associated with exposure to a mixture of pollutants from diverse sources and in different environments, including ambient particulate matter pollution from transportation, wind-blown dust, burning of biomass, and industrial sources; second-hand smoke; burning of biomass and coal for household energy; and active smoking. 132,133 However, existing studies cover only small concentration ranges—for example, ambient particulate matter pollution studies have been restricted to yearly average concentrations of particulate matter smaller than $2.5 \,\mu m$ of roughly $5 \,\mu g/m^3$ to $30 \,\mu g/m^{3,134-137}$ but much higher concentrations of ambient particulate matter have been recorded in polluted cities in Asia and elsewhere. The relation between concentration of small particulate matter and risk of disease is probably non-linear. 132,133 To inform estimates of risk across the full range of concentrations, we used the approach of Pope and colleagues132 and integrated epidemiological evidence for the hazardous effects of particulate matter at different concentrations from different sources and environments. Methods for estimation of the integrated exposureresponse curves for each cause are described elsewhere.138 Briefly, we compiled study-level estimates of the RR of mortality associated with any or all of ambient air pollution, second-hand smoke, household air pollution, and active smoking for the following outcomes: ischaemic heart disease, stroke, lung cancer, chronic obstructive pulmonary disease, and acute lower respiratory tract infection in children. We evaluated several non-linear functions with up to three parameters for fitting the integrated exposureresponse relation and assessed them by calculation of the root mean squared error. An exponential decay with a power of concentration was the functional form that provided the best fit for all five outcomes. The integrated exposure-response curve was then used to generate effect sizes specific to the amount of ambient particulate matter smaller than 2.5 µm for each population. For ischaemic heart disease and stroke, evidence shows that household air pollution affects intermediate outcomes, such as blood pressure,139 but not clinical events. For acute lower respiratory tract infection, the integrated exposureresponse curve enabled us to extrapolate beyond the partial exposure-response measured in the RESPIRE trial.140 For effects of household air pollution on chronic obstructive pulmonary disease and lung cancer we use the effect size based on new systematic reviews and meta-analyses. Several dietary factors affect ischaemic heart disease and stroke, including consumption of fruits, vegetables, nuts and seeds, whole grains, processed meat, polyunsaturated fats, and seafood omega-3 fatty acids. 81.83.85.87.90-92.141.142 We updated earlier systematic reviews and meta-analyses for fruits, vegetables, and seafood omega-3 fatty acids, which included both observational and intervention studies if available. A systematic review¹⁴³ of randomised clinical trials of supplementation with seafood omega-3 fatty acids reported non-significant effects on several outcomes, and a significant effect for mortality from ischaemic heart disease—the primary outcome in GBD 2010. In view of this finding, we tested whether a significant difference exists between the randomised clinical trials of seafood omega-3 fatty acid supplementation and observational studies of seafood-omega 3 fatty acid intake. The effect of seafood omega-3 fatty acids tended to be lower in randomised controlled trials than in observational studies, however, this difference was not statistically significant (p=0.057). Therefore, we used the effect size based on the combination of randomised clinical trials and observational studies but also did a sensitivity analysis with the effect size based on randomised clinical trials. Estimates of the RR associated with dietary risk factors are based largely on observational studies that control for age, sex, and other cardiovascular risk factors. However, some early observational studies do not fully control for other dietary components. Protective dietary risk factors such as consumption of fruits, vegetables, and whole grains, tend to be positively correlated with each other and negatively
correlated with harmful dietary risk factors such as consumption of processed meat. Therefore, RRs estimated for single risk factors in observational studies could overestimate the protective or harmful effect of that risk factor. In effect, the partially adjusted RR will include some of the effects associated with other correlated diet components, particularly since the exposure measure for dietary risk factors is energy adjusted to a standard calorie intake. To examine this issue, we did further empirical assessments using studies of dietary patterns and randomised controlled feeding studies. Studies of dietary patterns144-148 have estimated the effects of beneficial diets (prudent or Mediterranean diets) and harmful diets (western diets); these studies capture the overall effects of differences in dietary components. For example, a prudent diet has lots of fruits, vegetables, fish, and whole grains. For each of the dietary pattern studies we computed the estimated RR for dietary pattern groups with the RRs from the meta-analyses of single dietary risk factors, the reported differences in dietary intake, and assuming a multiplicative relation between RRs for individual components. Results of this internal validation study show that overall, estimation of the effect of dietary pattern based on the RRs reported for single risk factors was much the same as the effect reported in the study; across four large cohort studies of seven dietary patterns the average ratio for the estimated RR reduction compared with the measured RR reduction was 0.98. In addition to the dietary pattern studies, we also investigated the evidence for the effects of dietary risk factors from randomised controlled feeding studies, such as DASH¹⁴⁹ and OmniHeart,¹⁵⁰ which measured the effect of dietary changes on blood pressure and LDL cholesterol. We used meta-regression to estimate the pooled effect of Oxford Oxford UK (Prof S Darby PhD): MRC Hearing and Communication Group, Manchester, UK (Prof A Davis PhD): European Commission, Joint Research Centre, Brussels, Belgium (F Dentener PhD, R Van Dingenen PhD); Beth Israel Medical Center, New York City, NY, USA (D C Des Jarlais PhD); Federal Ministry of Health. Khartoum, Sudan (S Eltahir Ali Mcs): Mayo Clinic. Rochester MN USA (P | Erwin MLS): Institute of Public Health (I Powles MBBS). Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK (S Fahimi MD): Digestive Disease Research Center (Prof R Malekzadeh MD), Tehran University of Medical Sciences. Tehran, Iran (F Farzadfar MD); Carnegie Mellon University, Pittsburgh, PA, USA (S Flaxman BA); University of Edinburgh, Edinburgh, Scotland, UK (Prof F G R Fowkes FRCPE): Addiction Info Switzerland, Lausanne, Switzerland (Prof G Gmel PhD); Centre for Addiction and Mental Health, Toronto, ON, Canada (K Graham PhD. Prof JT Rehm PhD, K Shield MHSc); University of Otago, Dunedin, New Zealand (R Grainger PhD, TR Merriman PhD); Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (Q Lan PhD), National Institutes of Health, Bethesda, MD, USA (R Grainger, B Grant PhD); University of Bristol, Bristol, UK (Prof D Gunnell DSc); College of Physicians and Surgeons (Prof M M Weissman PhD), Mailman School of Public Health, Columbia University, New York City, NY, USA (H R Gutierrez BS. Prof M M Weissman); Parnassia Psychiatric Institute, The Hague, Netherlands (Prof H W Hoek MD); Australian National University, Canberra, ACT, Australia (A Hogan PhD); Albert Einstein College of Medicine, Yeshiva University, New York City, NY, USA (H D Hosgood III PhD); Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada (Prof H Hu MD); US