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Table 4. Quality-of-Life Scores

Mean+SD Score

QLQ-C30% Ghrelin Placebo P
Group Group
Global health status score
Before 78+30 74422 .51
After 52+18 2613 < .0001
Functional scales
Physical functioning
Before 8648 92410 .62
After 78+20 72+18 42
Role functioning
Before 80+£12 888 43
After 68+16 70+15 .29
Emotional functioning
Before 78+14 82+12 .26
After 70+18 68+14 44
Cognitive functioning
Before 88411 90+10 72
After 86+14 88+18 .67
Social functioning
Before 84120 82422 .54
After 82416 78+14 .52
Symptom scales/items
Fatigue
Before 1246 1448 .37
After 22+11 34+16 .082
Nausea/vomiting
Before 5+6 4+7 .62
After 1614 36429 < .0001
Pain
Before 86 7+£9 47
After 10+£11 12+14 .59
Dyspnea
Before 8+14 7+13 .68
After 8412 714 .66
Insomnia
Before 1248 14+12 .75
After 20+12 19:+14 .37
Loss of appetite
Before 8+14 7+13 .43
After 26+14 54422 < .0001
Constipation
Before 7+13 8+12 .29
After 12+18 14420 21
Diarrhea
Before 12+14 12+18 .69
After 22+18 26422 .32
Financial difficulties
Before 1622 18+17 .58
After 18+24 1621 72

Abbreviations: SD, standard deviation.
@ Before indicates before chemotherapy; After: after chemotherapy (day 8).

oral intake of calories decreased significantly to about
25% of the baseline level at day 8 after chemotherapy de-
spite the use of a 5-HT?3 antagonist.

Several observations suggest that ghrelin may play
an important role in the delayed cisplatin-induced gastro-
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intestinal effects. In rodents, a single cisplatin administra-
tion caused a transient decrease in plasma ghrelin
concentration and prolonged suppression of both food
intake and body weight loss.”> Cotreatment with a 5-
HT3 antagonist did not result in the recovery of ghrelin
levels or dietary activity in that experiment. In our clinical
study, we observed that chemotherapy that included cis-
platin reduced plasma ghrelin levels to 67% and 57% of
the baseline levels on days 3 and 8, respectively. In addi-
tion, there was a close relation between the extent of
decline in plasma ghrelin, nutritional status, and adverse
events of chemotherapy.?® In the current trial, we demon-
strated that the administration of synthetic ghrelin during
chemotherapy successfully increased food intake and
appetite. This effect may be explained by the effect on the
GH/IGEF-1 axis. The growth-promoting effect of GH is
mediated, at least in part, by IGF-1.>* However, serum
GH and IGF-1 levels were stable in both groups, probably
because of the rapid turnover of GH. Although this phe-

. . . . 14,24
nomenon was reported previous in earlier studies, wi

should have measured GH and IGF-1 in a brief period.

5-HT?3 antagonist also was administered in the cur-
rent clinical study. Taken together, the acute and delayed
effects of cisplatin on gastrointestinal functions may
involve different mechanisms, and the delayed effects,
which seemingly are not mediated through the 5-HT?3 re-
ceptor, affect nutrition status in cancer patients more
strongly than the acute effects.

Conversely, recent reports indicate that both the 5-
HT?2C receptor and the 5-HT2B receptor, but not the 5-
HT3 receptor, mediate cisplatin-induced ghrelin suppres-
sion in rodents.'*** The 5-HT2B receptor is distributed
mainly in gastrointestinal smooth muscle,”® and the 5-
HT2C receptor is localized in the central nerve system.*®
Vagal nerve function may regulate afferent and efferent
signaling, which controls ghrelin secretion through these
5-HT2B and 5-HT2C receptors. However, in our previ-
ous study, ghrelin was administered to patients who had

(v

undergone gastrectomy and esophagectomy, which also
included truncal vagotomy, and we observed significant
effects on appetite and body weight increase.'®!" There-
fore, the association between ghrelin signaling and the
vagal nerve remains unresolved.”” In the literature, uri-
nary 5-hydroxyindole acetic acid (5-HIAA), the major
metabolite of 5-HT, increased rapidly and subsequently
returned to baseline within the first 24 hours after cispla-
tin administration, and it was associated strongly with
chemotherapy-induced emesis.>*'>*® In the current
study, serum 5-HT and 5-HIAA levels on days 3 and 8 of
chemotherapy did not increase significantly compared
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with baseline values (data not shown). Thus, because
plasma ghrelin undergoes rapid turnover, our observation
regarding 5-HIAA suggests that 5-HT does not directly
control ghrelin secretion.

In other studies, substance P and neurokinin-1
(NK-1) receptor contributed to the delayed emetic symp-
toms associated with chemotherapy.” Accordingly, an
NK-1 receptor antagonist could inhibit the binding of
substance P to the NK1 receptor in the vomiting center.”
Several studies have established that administration of
such antagonists, such as aprepitant, together with the 5-
HT3 receptor antagonist, lessens chemotherapy-induced
nausea and vomiting in patients who are receiving emeto-
genic chemotherapy during the first 120 hours after initia-
tion of chemotherapy.®® Although aprepitant was not
used commonly during the study period in our country, it
is now used widely in clinical practice. Although the exact
functional association between ghrelin and NK-1 receptor
still is under investigation, their synergistic effect would
be novel, and it would be interesting to resolve this issue
in a clinical setting in the near future.

Exogenous ghrelin, as expected,
increased oral intake and nutritional status and also main-
tained QoL during chemotherapy. However, our ultimate
objective is to ease the completion of chemotherapy and
to enhance the overall antitumor effect. In this study, the
required dose modifications in the second cycle of chemo-
therapy tended to be fewer in the ghrelin group (6
patients; 30%) than in the placebo group (10 patients;
50%). Specifically, modifications in the ghrelin group
were because of 3 episodes of neutropenia, 2 episodes of
thrombocytopenia, and 1 episode of nephrotoxicity;
whereas the reasons for modifications in the placebo
group included 6 episodes of neutropenia, 3 episodes of
nephrotoxicity, and 1 episode of diarrhea. This suggests
that ghrelin can prevent some adverse events directly in
addition to its indirect effects through improvement of
nutritional status. A larger cohort study is needed to verify
this aspect of ghrelin administration.

Another clinical question to be answered is whether
nutritional support during chemotherapy should be pro-
vided orally or intravenously.’" Recently, we conducted a
randomized trial to address this issue in patients with

successfully

esophageal cancer who were receiving cisplatin-based
chemotherapy. Various adverse effects of the chemother-
apy, including hematologic toxicity, were observed less
frequently in patients who received forced enteral nutri-
tion than in those who received parenteral nutrition,
although their total calorie intake was identical (unpub-
lished data). This observation encourages the clinical
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application of ghrelin administration, which can physio-
logically increase oral food intake.

In terms of chemotherapy regimens, for this study,
both the ACF regimen and the DCF regimen were used.
Recently, intensive chemotherapy protocols involving
multiple drugs are in fashion; however, to use such regi-
mens, the adverse effects of the regimen components must
be adequately managed. An appropriate nutrition supple-
ment through oral food intake will be more important in
the future.

In conclusion, the current study demonstrated that
short-term administration of exogenous ghrelin at the
start of cisplatin-based chemotherapy stimulated food
intake and minimized adverse events. We believe that
ghrelin administration could increase the efficiency of
chemotherapy, and we recommend the use of ghrelin in
clinical practice.
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Abstract. Background/Aim: The cross-presentation system of
tumor antigen by monocyte-derived dendritic cells (mo-DCs)
has been observed under appropriate conditions. Both CD14-
negative and CDla-positive phenotypes were critical in our
previous study. This study compared the phenotype of mo-DCs
and identified the conditions that favored T helper-1 (Thl)
cytokine production after stimulation with the hsc70 and NY-
ESO-1 pl57-165 epitope fusion protein (hsc70/ESO p157-
165). Materials and Methods: The mo-DCs were induced
from healthy donors. Their surface markers and cytokine
production were examined after stimulation with hsc70/ESO
pl57-165. Results: CDIa* and CDIla~ mo-DCs were
generated in half of the healthy donors. The concentration of
fetal calf serum in the culture medium was critical for the
induction of CDla* DCs, which were able to produce
interleukin-12 (IL-12), but not IL-10. Neutralizing IL-6 and
IL-6R antibodies affected the expression of CDla.
Conclusion: Anti IL-6 analogs may be effective adjuvants for
the development of mo-DC-based cancer vaccine.

NY-ESO-1 is a promising target antigen for specific immune
recognition of cancer because it has restricted expression in
normal tissue but frequently occurs on human tumors (1-4).
Clinical trials with this antigen have been conducted using the
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NY-ESO-1 peptide, full-length protein, and DNA (5, 6). These
cancer vaccines are designed to enhance effector T-cell
responses to tumor antigens. An appropriate antigen-presenting
cell is required to induce favorable T-cell responses (7).

Dendritic cells (DCs) are the most potent antigen-
presenting cells and they have been shown to play a critical
role in the generation of immune responses. The unique
features of antigen presentation by DCs have generated
considerable interest in their use as therapeutic vehicles,
especially for vaccination (8, 9). DCs-alone or in complexes
with tumor antigens are expected to be a powerful tool in the
development of cancer vaccines (10, 11). However, no
consensus has yet been reached on the most appropriate DC
population to be employed for immunization.

A fusion protein containing the human heat-shock cognate
protein-70 (hsc70) and ESO p157-165, epitope of NY-ESO-
1 was constructed, as part of the development of a new
strategy to vaccinate cancer patients with tumor antigens (12-
14). A previous study demonstrated that monocyte-derived
(mo)-DCs capture and endogenously process the hsc70/ESO
p157-165 fusion protein to major histocompatibility complex
(MHC) class I molecules through the cross-presentation
pathway (15, 16). However, this cross-presentation system
could not always work. This study was conducted to define
the appropriate conditions in order to use mo-DCs for
vaccination after loading with the hsc70/ESO p157-165
fusion protein.

Materials and Methods

Expression and purification of the hsc70 and NY-ESO-1 pl57-165
epitope fusion protein. The hsc70/ESO p157-165 fusion protein was
manufactured as previously described (15). Briefly, human cDNA of
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hsc70 was generated by reverse transcription-polymerase chain
reaction (RT-PCR) from the mRNA obtained from the peripheral
blood mononuclear cells (PBMCs) of a healthy volunteer. The total
mRNA was extracted from the PBMCs with an Isogen kit (Wako,
Osaka, Japan). The mRNA was transcribed to cDNA with oligo (dT)
16 primer using AMV reverse transcriptase (Promega, Tokyo, Japan).
The cDNA encoding hsc70 was amplified by LA Taq polymerase
(Takara, Tokyo, Japan) using the primers AT GGATCC C ATG TCC
AAG GGA CCT G (forward) and AT GGTACC TTA ATC AAC CTC
TTC AAT G (reverse). The amplified cDNA was cloned into a pQE31
expression vector (Qiagen, Tokyo, Japan) at 5° BamHI and 3* Kpnl
restriction sites. The hsc70/ESO p157-165 fusion protein was
generated by incorporating a mini-gene encoding NY-ESO-1 p157-
" 165 in either the forward or reverse primers containing the 5° BamH]I
and 3’ Kpnl restriction sites. Escherichia coli strain M15 was
transformed by the constructed plasmids and grown in an Luria-
Bertani (LB) medium, containing ampicillin (50 pg/ml) and
kanamycin (20 pg/ml). Protein expression was induced by 0.1 M
isopropyl-B-D-thiogalactoside (IPTG). The protein was solubilized in
buffer B (8 M urea, 0.1 M sodium phosphate, 0.01 M Tris/ HCI, pH
8.0), the lysate was centrifuged of at 10,000 xg, and the supernatant
was applied to an Ni2+-nitrilotriacetic acid (NTA) agarose column and
extensively washed with buffer C (8 M urea, 0.1 M sodium
phosphate, 0.01 M Tris/HCl, pH 6.3). The Ni2*-NTA resin-bound 6x
His-tagged protein was re-folded rapidly by washing with 15 column
volumes of urea-free Tris buffer (pH 7.5) and eluted with Tris buffer
containing 200 mM imidazole. The eluate was extensively dialyzed
against phosphate buffered saline (PBS) (pH 7.4) to remove imidazole
and then concentrated using an Amicon Ultra-15 centrifugal filter
device (Millipore, Bedford, MA, USA). The fusion proteins were
treated with Kurimover I and II (Kurita Incorporation, Tokyo, Japan)
to remove the contaminating lipopolysaccharide (LPS). The level of
LPS was determined by the Limulus ES-II test (Wako, Osaka, Japan).

Peptide. The human leukocyte antigen (HL.A)-A0201 restricted NY-
ESO-1 peptide pl157-165 (SLLMWITQC) was identified by
reactivity with cluster of differentiation 8 (CD8)* T-cell from
patients with spontaneous NY-ESO-1 immunity. This epitope (ESO
p157-165) was selected to analyze the CD8* T-cell response (17,
18). The peptide was synthesized by using the Multiple Peptide
Systems, with a purity of >86%, as determined by reversed-phase
high-performance liquid chromatography (HPLC).

Generation of dendritic cells from PBMCs. Mononuclear cells were
isolated from the peripheral blood of healthy individuals by using
Ficoll-Paque density gradient centrifugation after obtaining
informed consent (19, 20). The CD14+ monocytes were enriched by
negative isolation using magnetic beads (Dynal, Oslo, Norway).
Monocytes were seeded at a density of 1x106 cells/well in 24-well
plates in 2 ml of RPMI 1640 medium with 2.5% or 10% fatal calf
serum (FCS), 100 ng/ml granulocyte macrophage colony-
stimulating factor (GM-CSF) (Leukine; Immunex, Seattle, WA,
USA) and 50 ng/ml IL-4 (R&D Systems, Minneapolis, MN, USA).
The culture was incubated at 37°C in a humidified atmosphere with
5% CO, for 5 days. The harvested cells were characterized by flow
cytometry and were then stimulated with hsc70/ESO p157-165
fusion protein or p157-165 peptide.

Flow cytometry. The cells were processed for double-staining using
fluorescein isothiocyanate (FITC)-CD14, FITC-CD1a, phycoerythrin
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(PE)-CDS83, PE-HLLA-DR, PE-CD86 (B7.2) monoclonal antibodies
(mAbs) (BD Pharmingen, San Diego, CA, USA). Fluorescence
acquisition was carried out on a FACSCan (BD Biosciences, San
Diego, CA, USA), and data analysis was carried out using the
CellQuest software package (BD Biosciences).

Stimulation of DCs and measurement of cytokines. The harvested
cells were incubated with GM-CSF and IL-4 for 5 days and exposed
to p157-165 (5 pg/ml) or hsc70/ESO pl57-165 fusion protein
(350 pg/ml) in RPMI 1640 for 12 h. The cell culture supernatants
were collected and then particulates were removed by
centrifugation. The concentration of the cytokines (IL-10 and 12) in
the supernatants was measured by an enzyme-linked immunosorbent
assay (ELISA; Quantikine, R&D Systems, Minneapolis, MN, USA).

Neutralization of IL-6 for differentiation of DCs from monocytes.
mo-DCs were generated as described above. Anti-human IL-6
and/or IL-6R neutralizing antibodies, at a concentration of 2.5 pg/ml
(R&D Systems), were added to the cultures at day 0 and 3 (21).

Results

Phenotype of mo-DCs from healthy donors. The population
of monocytes isolated from PBMCs exhibited a unique
phenotype (Figure la). However, the mo-DCs from the
healthy donor were differentiated into two distinct
phenotypes (Figure 1b). After 5 days, culture in RPMI,
containing 10% FCS with GM-CSF and IL-4, the
expression of CD14 was down-regulated in cells from half
of the donors. On the other hand, CD1la was expressed in
those cases. The expression of CD83 was negative in cells
from all donors.

IL-10 production of mo-DCs from each donor. IL-10 was
measured in the supernatants of DCs stimulated for 12 h by
hsc70/ESO p157-165 fusion protein or p157-165 (Figure
2). CD14*CDla™ DCs secreted significant amounts of IL-
10 in response to hsc70/ESO pl157-165 fusion protein.
However, there was less IL-10 secretion stimulated by
hsc70/ESO p157-165 fusion protein in CD14"CD1a* DCs
from donors 1 and 3.

The expression of CDIa and production of cytokines from
mo-DCs. CD147CD1a™ DCs (donor 5) produced IL-10, but
IL-12, which plays a prominent role in the induction of the
T-helper 1 (Thl) immune response against cancer, was barely
secreted. Meanwhile, CD14"CD1a" DCs from donor 6
exhibited a reversed pattern of cytokine production for IL-
10 and IL-12 (Figure 3). The expression of surface markers
CD14 and CD1a of mo-DCs had an effect on the balance of
Th1 and Th2 response.

Mo-DCs from the same donor exhibited different surface
marker phenotype after induction under different conditions.
CDI14 CD1a™ DCs were generated from donor 7 following
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Figure 1. a: Phenotype of monocytes isolated by magnetic beads from peripheral blood mononuclear cells. Cells were enriched and harvested
immediately. b: Phenotype of monocyte-derived dendritic cells. Peripheral blood mononuclear cells were isolated from the peripheral blood of
healthy individuals. The CD14% monocytes enriched by negative isolation were incubated in RPMI plus 10% fetal calf serum, granulocyte
macrophage colony-stimulating factor and interleukin-4, for 6 days. The phenotypes (CD14, CDla, CD83, HLA-DR, CD86) of the harvested cells

were analyzed by flow cytometry.

culture in RPMI with 10% FCS. However, CD147CD1la™
DCs were generated under culture conditions of RPMI with
2.5% FCS, using cells from the same donor. This phenotypic
conversion changed the function of DCs, which exhibited IL-
10 production rather than IL-12, in response to stimulation
with hsc70/ESO p157-165 fusion protein (Figure 4).

The expression of CD1a and IL-6 antagonists. IL-6 affects the
differentiation of monocytes into DCs and macrophages. The
addition of IL-6 and/or IL-6R antibodies during the generation
of mo-DCs up-regulated the expression of CD1la. The
expression of CDla was remarkable following blocking of
both IL-6 and IL-6R (Figure 5). Although the DCs generated
in medium containing 2.5% FCS were almost all CD1a™ cells,
the expression of CD1a was positive following the addition of
neutralizing IL-6 and IL-6R antibodies on day O and 3. The
function of the DCs differed according to their phenotypic
features and they produced IL-12 in response to the activation
by hsc70/ESO p157-165 fusion protein (Figure 6).
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Figure 2. Interleukin-10 (IL-10) production of dendritic cells (DCs).
CDI14-CDla* DCs and CDI4*CDla- DCs were stimulated by
hsc70/ESO p157-165 fusion protein or p157-165 in RPMI medium for
12 h. The IL-10 in the supernatants of pulsed DCs was measured by an
enzyme-linked immunosorbent assay.
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activated, as described in Materials and Methods by the hsc70/ESO pl57-165 fusion protein. IL-10 and IL-12 in the supernatants of cells were
measured by an enzyme-linked immunosorbent assay.
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Discussion

NY-ESO-1 is a prototype cancer/testis antigen that is
expressed in a variety of human malignancies, but not in
normal tissues, except for the testis. Spontaneous immune
responses involving an antibody, as well as CD4" and CD8*
T-cells directed against a broad range of MHC class I- and
class II-restricted NY-ESO-1 peptides are observed in
patients with advanced NY-ESO-1-expressing tumors (22).
Therefore, NY-ESO-1 is thought to be a favorable target for
use as a cancer vaccine. The initial trials of peptide
vaccination against NY-ESO-1 were particularly effective in
generating CD8% T-cell responses. However, the clinical
outcome remains unsatisfactory.

The major role of heat shock proteins (HSPs) is to act as
a molecular chaperone, binding immature peptides during
their synthesis and assisting in their folding (23-25). The
peptides are thought to be degraded in the cytoplasm and are
then transferred to the endoplasmic reticulum by binding to
HSP70 or HSP90, but not by natural diffusion (26). In
addition, HSPs are thought to bind to a diverse array of
antigenic peptides in tumor cells, and that the tumor-derived
HSP-antigenic peptide complexes can be purified for
vaccination against cancer (27).

A mini-gene encompassing the NY-ESO-1 cytotoxic
T-lymphocyte (CTL) epitope p157-165 (ESO p157-165) was
genetically fused to the human heat shock cognate protein-70
(hsc70), and the resulting fusion proteins were expressed in E.
coli. mo-DCs captured and endogenously processed the
hsc70/ESO p157-165 fusion protein to MHC class I molecules

through the cross-presentation pathway. Finally, NY-ESO-1-
specific CTL were generated by in vitro stimulation with
hsc70/ESO p157-165 fusion protein on mo-DCs.

DCs play a crucial role in the initiation of antigen-specific
immune responses, exhibiting a variety of specializations that
contribute to their efficiency as antigen-presenting cells (9,
28). One major population of DCs is myeloid DCs which
include specific subtypes, including Langerhans -cells,
interstitial DCs and mo-DCs that have unique phenotypic
features. The CD14* monocytes are the most common source
of DCs and can be enriched by negative isolation from
PBMCs and incubated in RPMI with 10% FCS, GM-CSF and
IL-4 to generate DCs (29, 30). However, not all DCs generated
or cultured under the same conditions are equivalent (31).
They appear to be derived from multiple lineages and,
depending on their origin, site of residence, or the type of
maturation stimulus received, they program different T-cell
outcomes (32). The generated mo-DCs exhibit various
expression levels of CDla, CD14, CD83, human leucocyte
antigen-DR (HLA-DR) and CD86 according to the culture
conditions and individuals from which they are sourced. mo-
DC subsets are defined by their phenotypic features and have
a functional diversity of cytokine production that regulates the
polarization of naive T-cells to Th1 or Th2 (33-36). However,
this diversity creates difficulties in their clinical application in
cancer immunotherapy using DCs. The optimal phenotypic
features of DCs and appropriate conditions for clinical
applications must be determined.

CD1a is one of the common DC subset markers (37, 38).
The proportion of CD1a* and CD1a™ DCs varies in individuals.
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Figure 6. Interleukin-12 (IL-12) production of monocyte-derived dendritic cells (mo-DCs) following culture with antibodies to interleukin-6 (IL-6)
and IL-6R. The DCs generated in RPMI plus 2.5% fetal calf serum (FCS) and IL6/IL-6R antibodies up-regulated their expression of CDla. The IL-
12 production from DCs cultured with and without neutralizing IL-6 antibodies is shown.

CDla* DCs are able to secrete more IL-12 in response to
stimulation with LPS than do CDla™ DCs. On the other hand,
the IL-10 production of CD1a™ DCs is less, or similar to that of
CDla™ DCs (39). The present study generated two types of
DCs, CDla* and CDla", under the same conditions.
Interestingly, there were different patterns of CD1a expression
under the different conditions during induction, even when
using cells from the same donor. This strongly suggests that
the conditions of DC culture were critical for induction of the
appropriate antigen-presenting cells in vivo.

Humoral factors in the serum also affect the differentiation
of immature DCs (40, 41). Culture medium with 2.5% FCS
converted the phenotype of DCs from CD1a* to CD1a™. This
conversion also changed the cytokine production from IL-12
to IL-10. This is a critical conversion associated with the
polarization of Thl and Th2 cells. A major question was
whether this conversion was reversible. IL-6 inhibits the
differentiation of monocytes to DCs by promoting their
differentiation toward macrophages (42, 43). On the other
hand, an antagonist of IL-6 can drive monocytes to form
immature DCs. Therefore, the present study compared the
effect of anti-IL-6 agents on CDla expression. Cells treated
with both antibodies to IL-6 and IL-6R, recovered CDla
expression and secreted IL-12. These results suggest that
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anti-IL-6 analogs may be used as an effective adjuvant for
the development of a mo-DC-based cancer vaccine with the
hsc70/ESO p157-165 fusion protein.
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