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Introduction

Oligodeoxynucleotides containing unmethylated CpG motifs
(CpG) are powerful immune adjuvants that induce the produc-
tion of cytokines, including IL-6, IL-10, IL-12, IFN-a/$, and
TNF-a [1,2]. Although previous studies have established that
CpG-induced immune responses are mediated by endosomal
TLRY [3-5], cytoplasmic DNA-PKcs are also involved in CpG-
signaling independent of TLR9 [6,7]. Thus, intracellular
trafficking of CpG is critical to select downstream signaling
molecules, which determine the cytokine species produced by
macrophages [7,8].

Phosphoinositide 3-kinase (PI3K) has been reported to be both
a positive and negative regulator of CpG-mediated cytokine
production. CpG-induced IL-12 production is increased in
plasmacytoid dendritic cells (pDC) from p85a™/~ mice, and by
treatment of wild-type pDC with wortmannin [9]. Likewise, CpG-
induced iNOS expression is increased by treating RAW264.7 cells
with wortmannin [10]. By contrast, another group has reported
that wortmannin inhibits CpG-induced production of IL-12, IL-6,

@ PLOS ONE | www.plosone.org

TNF-, and NO from RAW264.7 cells [11]. This inhibition has
been considered to be the result of wortmannin-mediated
disruption of class III PI3K signaling, which is responsible for
CpG uptake [11]. Similarly, wortmannin inhibits CpG-induced
IL-12 production by inhibiting CpG internalization in mouse-
derived bone marrow cells [12]. In human pDC, another PI3K
inhibitor, LY294002, also inhibits CpG-induced type I IFN
production [13]. In this case, the uptake and endosomal trafficking
of CpG are not affected, but nuclear translocation of IRF-7 was
nhibited by LY294002, and also, by a specific inhibitor of PI3KJ,
1C87114 [13]. In addition, the PI3K/mTOR/p70S6K. pathway
plays a substantial role in the spatial interaction of TLRY/
MyD88/IRF7, which is indispensable for the induction of type 1
IFN production by pDC [14]. These reports have indicated that
PI3Ks play some roles in trafficking of CpG itself or its
downstream molecules.

Pan- and/or some other specific PI3K inhibitors were used in
all of the previous studies described above. All of these inhibitors
bind competitively to the ATP binding pocket of PI3Ks and block
kinase activity. Since DNA-dependent protein kinase catalytic
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Figure 1. Increased IL-10 production following CpG stimulation
of p110y~/" cells. Macrophages from wild type (open bar) or p110y~
mice (solid bar) were incubated in 24-well plates with 10 ng/mL LPS,
200 ng/mL CpG, 50 ug/ml polyl:C or 200 nM Malp2 for 18 h. The
amount of IL-10 in the medium was determined by ELISA. The values
are the means * SD of duplicate cultures from three independent
experiments.

doi:10.1371/journal.pone.0026836.g001

subunit (DNA-PKcs) shares similar ATP binding site as a
member of the PI3K-like kinase family, these inhibitors, even
isoform-specific inhibitors, more or less inhibit DNA-PKcs [15].
This makes it difficult to elucidate the precise role of DNA-PKcs

Role of Pi3Ky on Endosomal Translocation of CpG

and PI3Ks in CpG-mediated cytokine production. In this paper,
we used class IB PI3K (p110Y) knockout mice and SCID mice
having mutations in DNA-PKcs to estimate their roles in CpG-
mediated cytokine production. In agreement with a current
report, DNA-PKcs play a substantial role in CpG-mediated IL-
10 production in macrophages [7]. By conirast, pl 10y specifi-
cally down-regulates IL-10 production following CpG-stimula-
tion. Quantitative analysis of microscopic images showed that
CpG localized preferentially with DNA-PKcs in the cytosol in
pllOy_/ " cells to a greater extent than in wild-type cells. We
propose a novel regulatory role of pli0y in CpG-induced
production of IL-10 through modulation of the intracellular
trafficking of CpG.

Results

p110y deficiency specifically increased IL-10 production
upon CpG stimulation in macrophages

Mouse macrophages generated IL-10 in response to CpG
(Fig. 1). Since PI3K has been implicated in the regulation of
TLR-induced IL-10 production [16], we tested the effect of
pl10y depletion on IL-10 production. CpG-induced IL-10
production was dramatically increased in macrophages from
p110y™/™ mouse (Fig. 1). Although IL-10 production sometimes
varied extremely between experiments, IL-10 production in wild
type mice was always approximately half of that in pl10y™/~
mice in each paired experiment. We also tested the cytokine
production using macrophages from p85¢ "/~ mice, and from
pl108¥P7XD mice; neither displayed CpG-specific changes in IL-
10 production similar to what was seen with pl10y™/~ cells (data
not shown).

(A) Wild Type (8) p110y+
8 12
jay -
E6 2 9
Ee>] =
[ [e1]
sS4 g
. R
=2 2 3
0 0
Wort Wort
(©) Wild Type (D) p110y*
4 [
-C-None -O-None
I3 --CpG o -@-CpG
E E 4
k- [«
g2 g
7 %2
= 1K =
0 1 1 3 0 I N
0 0.01 0.1 1 10 0 0.01 0.1 1 10
Wortmannin(pM) Wortmannin(uM)

Figure 2. Inhibition of CpG-induced IL-10 production by wortmannin. Macrophages from wild type (A, C) or p110y

=/~ mice (B, D) were pre-

incubated with 0.1 uM (+ in A, B), or increasing concentration of wortmannin (C, D) for 15 min, followed by the addition of 10 ng/mL LPS (A, B) or
200 ng/mL CpG (A-D), for 18 h. The amount of IL-10 in the medium was determined by ELISA. The values are the means * SD of duplicate cultures

from three independent experiments.
doi:10.1371/journal.pone.0026836.g002
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Figure 3. Irrelevance of the kinase activity of p110y in the
regulation of IL-10 production. (A) Macrophages from wild type or
p110y™/~ mice were pre-incubated with 10 uM A$252424 for 15 min,
followed by the addition of 100 ng/mL C5a for 5 min. Total cell lysates
from the treated cells were analyzed by Western blot. (B and C)
Macrophages from wild type (B) or p110y™/~ mice (C) were pre-
incubated with increasing concentrations of AS252424 for 15 min,
followed by the addition of 200 ng/mL CpG for 18 h. The amount of IL-
10 in the medium was determined by ELISA. The values are the means
+ SD of duplicate cultures from three independent experiments.
doi:10.1371/journal.pone.0026836.9003

Wortmannin inhibited IL-10 production induced by CpG,
but increased that induced by LPS

Macrophages were treated with a pan-PI3K inhibitor, wort-
mannin. CpG-induced IL-10 production was almost completely
inhibited by wortmannin while LPS-induced IL-10 production
was rather increased in wild type cells (Fig. 2A). The effect of
wortmannin on LPS-induced IL-10 production may be the result
of the inhibition of pl10y, because the augmentation was not
observed in pl10y™'" cells (Fig. 2B). However, wortmannin
inhibited severely CpG-induced IL-10 production in pl10y™/~
cells, as well as in wild type cells (Fig. 2C. D). The inhibition by
wortmannin was specific to IL-10 production, because IL-12
production was unchanged by the treatment (data not shown).

@ PLOS ONE | www.plosone.org
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Figure 4. Failure of CpG to stimulate IL-10 production in SCID
mice. Macrophages from wild type (open bar) or SCID (solid bar) mice
were preincubated with 0.1 uM wortmannin (+) or vehicle (—) for
15 min, followed by the addition of 10 ng/mL LPS or 200 ng/mL CpG,
for 18 h. The amount of IL-10 in the medium was determined by ELISA.
The values are the means * SD of duplicate cultures from three
independent experiments.

doi:10.1371/journal.pone.0026836.g004

These data indicate that the target molecule of wortmannin
responsible for the suppression of CpG-induced IL-10 was not
pl10y.

p110y-mediated negative regulation of IL-10 production
was independent of kinase activity

Since a pan-PI3K inhibitor, wortmannin, did not mimic the
effect of pl110y deficiency on CpG-induced IL-10 production, we
next tested the effect of the pl10y-specific inhibitor, AS252424, on
CpG-induced IL-10 production. Cda-induced Akt phosphoryla-
tion was completely abolished in p110y™ ™ cells (Fig. 3A) [17].
The result confirmed that the C5a action is dependent on p110y.
AS5252424 inhibited the Cba-induced Akt phosphorylation
(Fig. 3A), indicating that the compound is a powerful tool for
investigating the role of pl10y. Surprisingly, AS252424 did not
cause an increase in CpG-induced IL-10 production in the wild
type cells nor in pl10y™" cells (Fig. 2B, C). These data suggest
that the negative regulation of CpG-induced IL-10 production by
pl10y was not dependent on its kinase activity.

CpG-induced IL-10 production was abolished in SCID
mice

Recently, an indispensable role of DNA-PKcs in CpG-induced
IL-10 production has been reported [7]. Since DNA-PKcs has a
PI3K-like catalytic domain, the kinase activity is susceptible to
wortmannin. As reported earlier [7], CpG-induced IL-10
production was defective in SCID mice (Fig. 4). Additionally,
wortmannin inhibited significantly CpG-induced IL-10 produc-
tion in wild type, whereas it did not affect this process in SCID
mice (Fig. 4). This result suggests that wortmannin suppressed
CpG-induced IL-10 production through inhibition of DNA-PKcs.
By contrast, LPS-induced IL-10 production in SCID was identical
to wild type with the same background mice (Fig. 4).

Co-localization of DNA-PKcs and CpG was increased in
p110y™"" cells

CpG is internalized via endocytosis and immediately moves into
the lysosomal compartment [5,18,19]. A recent study reported
that endosomal CpG preferentially induces IL-12 production, but,
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Figure 5. Increased co-localization of CpG and DNA-PKcs in p1107~/~ cells. Macrophages from wild type or p1107™/~ mice were incubated
with 0.5 uM rhodamine-CpG (A) or rhodamine-CpG/lipofectamine LTX/Plus (C) for 60 min. The cells were washed, fixed, permeabilized, and stained
with anti-DNA-PKcs antibody and Alexa 488-labeled secondary antibody. (B) The imaging data in (A) were quantified and shown as means * SD.

doi:10.1371/journal.pone.0026836.g005

when released from the endosome, it associates with DNA-PKcs in
cytoplasm and induces a greater amount of IL-10 [7]. Therefore,
we hypothesized that CpG localized to the endosomal compart-
ment in the wild type cells, and was more cfficiently released into
the cytosol in p110y™"" cells. To quantify the co-localization of
CpG and DNA-PKcs, macrophages were incubated with
rhodamine-labeled CpG, fixed with formaldehyde, permeabilized,
and incubated with anti-DNA-PKcs antibody. The merged arca
was calculated from the imaging data as described under materials
and methods. The Co-localization area of CpG and DNA-PKcs
was significantly increased i 110y™/7 cells (Fig. 5A, B).
Interestingly, CpG complexed with cationic liposomes composed
of Lipofectamine (L'TX) and Plus reagent localized in large vesicles
both in wild type and pl110y™/ cells, and scarcely co-localized
with DNA-PKes (Fig. 5C). Since wortmannin did not affect CpG

“E). PLoS ONE | www.plosone.org

uptake or localization of CpG or DNA-PKcs (data not shown), the
PI3K mhibitor exclusively inhibits the kinase activity of DNA-
PKes.

Manipulation of CpG localization with cationic liposomes
abolished the effect of p110y deficiency on cytokine
production

It scemed interesting to determine IL-10 production by CpG
complexed with the lipofection reagent, which hardly co-localizes
with DNA-PKcs. When cells were stimulated with this CpG/
lipofection reagent, IL-10 production was decreased both in wild-
type and p1107™7" cells (Fig. 6). In addition, the augmentation of
IL-10 production scen in pl 10y ™/ cells was completely abolished
using this delivery system (Fig. 6).
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Figure 6. The effect of lipofection reagent on CpG-induced
cytokine production. Macrophages from wild type (open bar) or
p110y™'~ mice (solid bar) were incubated in 24-well plates with
200 ng/mL CpG or CpG/lipofectamine LTX/Plus reagent complex for
18 h. The amount of IL-10 (A) and iL-12 (B) in the medium was
determined by ELISA. The values are the means + SD of duplicate
cultures from three independent experiments.
doi:10.1371/journal.pone.0026836.g006

CpG preferentially localized in the early endosome in
wild type cells, and in lysosomes in p110y™/~ cells

We next tested the cellular delivery of CpG using an
early endosome marker, EEAl, an endosome marker, dextran,
and an acidic lysosome marker, LysoTracker. Quantitative
analysis of microscopic images showed that more CpG merged
with EEAl and dextran in wild type cells than in pl10y™/~
cells (Fig. 7A, B, D, E). By contrast, CpG preferentially merged
with LysoTracker in pi10y™/" cells more than in wild-type
cells (Fig. 7C, F). To further investigate the role of pl10y in
CpG localization, Cos7 cells were transfected with pl10y
and its mutant forms (unlike macrophages, Cos7 cells do
not express pll0y). As shown in Fig. 8, most of the CpG
was co-localized with LysoTracker in Cos7 cells transfected
with vehicle alone, while scarcely co-localized with LysoTracker
in the cells transfected with wild type pllOy. Interestingly,
overexpression of a kinase-dead mutant of p110y also inhibited
the acidification of CpG-containing endosome. By contrast,
the Ras-binding domain mutant form showed no effect on
the CpG localization. These results suggest that PISK pll0y
play a role in endosomal acidification independent of its
kinase activity. Since endosomal acidification is known to precede
the endosomal leakage, acidification of CpG containing endosome
may accelerate CpG translocation to the cytosol and the resultant
association with DNA-PKcs to increase IL-10 production in
macrophages.

@ PLoS ONE | www.plosone.org
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CpG-induced but not LPS-induced IL-10 production was
suppressed by inhibitors of endosomal acidification

Effect of chemical inhibitors of endosomal acidification [20] on
CpG-induced IL-10 production was next examined. Both NH;Cl
and chloroquine strongly inhibited CpG-induced IL-10 produc-
tion without affecting LPS-induced one (Fig. 9). The result
supported our hypothesis that endosomal acidification is required
for CpG-induced IL-10 production.

Discussion

In this study, we have identified a novel function of PI3K p110y
in the regulation of CpG localization. We have demonstrated this
function using p110y~/~ macrophages and Cos7 cells transfected
with pll0y. In macrophages, more CpG merged with the
endosome markers, EEA] and dextran, in wild type cells than in
pl10y™/" cells, whereas preferentially merged with the acidic
Iysosome marker, LysoTracker, in pl10y™/~ cells to a greater
extent than in wild-type cells. In Cos7 cells, which do not express
p110y, most of the CpG was co-localized with LysoTracker, and
scarcely co-localized with the dye in the cells transfected with
pl110y. Another novel finding reported in this paper is that IL-10
production was increased specifically in pl10y™"" cells following
CpG-stimulation. In p110y™/" cells, the increased acidification of
CpG containing endosomes and the resultant leakage of CpG to
the cytosol, where DNA-PKcs resides, appears to be responsible
for the modulation of cytokine production. For this reason, CpG-
induced, but not LPS-induced, IL-10 production was almost
completely abolished in SCID mice having mutations in DNA-
PKcs. Furthermore, wortmannin, an inhibitor of DNA-PKcs,
inhibited completely CpG-induced IL-~10 production both in wild-
type and in p110y~"~ cells. In addition to these, manipulation of
the delivery system with cationic liposomes, which severely
blocked the cytosolic delivery of CpG both in pi 10y™/" and wild
type cells, resulted in decreased IL-10 production. Finally, an
intriguing point in this study is that the actions of p110y on both
the CpG delivery system and cytokine production were indepen-
dent of its kinase activity.

Several kinase-independent functions of pll0y have been
reported previously. Protein complexes containing pll0y are
known to activate phosphodiesterase (PDE3B) in cardiomyocytes
to degrade cAMP in a manner independent of its kinase activity
[21,22]. Since increases in the cAMP level results in augmentation
of TLR-mediated IL-12 production, with a decrease in IL-10
production [23], we had hypothesized that the increased IL-10
production in the absence of p110y might be the result of elevated
cAMP levels. To answer this question we tested some reagents
known to increase cAMP, such as forskolin, prostaglandin E,, 3-
isobutyl-1-methylxanthin or dibutyryl cAMP in IL-10 production.
Although these reagents more or less enhanced IL-10 production,
the effect was not specific to CpG stimulation, but rather, was
commonly observed in TLR-stimulation (data not shown). The
other kinase-independent functions of pll10y are reported in
vascular repair and platelet aggregation [22]. In addition, wild-
type or the kinase-dead mutant of pl10y can block the growth of
human colon cancer cells [24]. Although the mechanism of these
kinase-independent actions of pl110y remains to be clarified, a
scaffolding role for p110y has been suggested [22].

p110y™"" mice show severe defects in immune responses, and
are protected completely against systemic anaphylaxis [25-28].
Additionally, in models of rheumatoid arthritis, systemic lupus
erythematosus, and atherosclerosis, loss of p110y activity results in
protection against disease progression [29-31]. Since IL-10 is an
anti-inflammatory cytokine, the increased IL-10 production in
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Figure 7. CpG localization in macrophages from wild type and p1107™/" mice. Macrophages from wild type or p1107™/~ mice were
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EEA1 antibody and Alexa 488-labeled secondary antibody. The imaging data in (A, B, C) were quantified and shown as means = SD in (D, E, F). %

p<0.05, **; p<0.01.
doi:10.1371/journal.pone.0026836.g007

pl10y-deficient cells may contribute, at least in a part, to
protection against excessive inflammation. It is also likely that
the increased IL-10 and decreased IL-12 production in p110y™/~
macrophage might explain partly the development of colorectal
carcinomas in pl10y™/™ mice [24], because the IL-12-mediated
Thl response favors cffective anti-tumor immune responses [32].
Although further studies arc needed to confirm the i zizo effect of
p1107 on the translocation of CpG, our findings suggest that when
pl10y is considered as a drug target for immune diseases
[15,33,34], not only its lipid kinase function, but also its kinase-
independent function should be considered.

Materials and Methods

Reagents

LPS (E. coli serotype 0111: B4), FITC-Dextran (average MW
40 kD) and C5a were from Sigma-Aldrich. Wortmannin was from
Kyowa Medex (Tokyo, Japan). 5'-rhodamine-labeled, 5'-FITC-
labeled and unlabeled CpG DNA (HPLC-purified phosphorothio-
ate with the sequence of TCC ATG ACG TTC CTG ATG CT)
were synthesized by Hokkaido System Science (Sapporo, Japan).
LysoTracker Red was obtained from Lonza. Lipofectamine LTX
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Reagent, Plus Reagent and RPMI 1640 medium were from
Invitrogen. The Protein Assay Kit was purchased from Bio-Rad.
AS-252424 was from Cayman. Anti-pAkt (Serd473) antibody was
from Cell Signalling, anti-Akt1/2 and anti-DNA-PKcs antibodics
were from Santa Cruz, and anti-EEAL was from GenScript. The
IL-10 ELISA assay kit was from Biolegend.

Animals and cell isolation

All animal experiments were carried out in accordance with the
NIH Guide for Care and Use of Laboratory Animals and
approved by the animal care and use committee at Hiroshima
University (Permit number: A08-23 and A08-46).

Female C57BL/6 mice, 8-12 weeks old, were purchased from
Japan SLC, Inc. SCID, C.B-17/lcr™™, C.B-17/Icr-SCID/SCID
mice were purchased from CLEA Japan. pl10y™/" mice on the
C57BL/6 background were bred and maintained at Akita
University (Akita, Japan). Thioglycollate-elicited macrophages
were harvested from these mice. Briefly, mice were injected
intra-peritoneally with 2 mL 3% thioglycollate broth. After 3 days,
the peritoneal exudate cells were collected by washing the
peritoneal cavity with ice-cold phosphate-buffered saline (PBS).
The cells were seeded at about 5-10x10° cells/well in 24-well
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Figure 8. Effect of overexpression of p110y on CpG localization in Cos7 cells. Cos7 cells were transfected with PI3K p110yor its mutant
forms as described under materials and methods. Cells prepared in this manner were incubated with 50 nM LysoTracker red and 0.5 uM FITC-CpG for

30 min. The cells were washed and observed as live cells.
doi:10.1371/journal.pone.0026836.g008
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Figure 9. Effect of inhibitors of lysosomal acidification on IL-10
production. Macrophages from wild type mice were preincubated
with 20 mM NH,4CI, 50 puM Chloroquine or vehicle for 15 min, followed
by the addition of 10 ng/mL LPS or 200 ng/mL CpG, for 18 h. The
amount of IL-10 in the medium was determined by ELISA. The values
are the means * SD of duplicate cultures from three independent

experiments. *¥; p<0.01.
doi:10.1371/journal.pone.0026836.9g009

PLoS ONE | www.plosone.org

plates and incubated in humidified 5% COq at 37°C for [-2 hin
RPMI 1640 medium supplemented with 10% fetal bovine serum
(FBS) (MBL, Nagoya, Japan), to allow the cells to adhere to the
wells. Non-adherent cells were removed by washing with PBS and
the attached cells were used for experiments. Cos7 cells [35] were
cultured in DMEM medium supplemented with 10% IBS.

Plasmids and transfection

Mammalian  expression plasmids, pcDNA3  (Invitrogen),
pcDNA3 containing wild-type pl10y, pcDNA3 containing a
kinase-dead (R947P) mutant, or encoding a Ras binding site
mutant (DASAA; T232D, K251A, K254S, K235A and K256A)
[36] are transfected in to Cos7 cells using the Lipofectamine 2000
Reagent for 24 h.

Western blot

Cells were washed with PBS and lysed in 50 pL lysis buffer
containing 25 mM Tris-HCl1 (pH 7.4), 0.5% Nonidet P-40,
150 mM NaCl, 1 mM sodium orthovanadate (NazVOy), 1 mM
EDTA, 0.1% BSA, 20 mM sodium fluoride, I mM phenylmethyl-
sulfonyl fluoride, 2 uM leupeptin, 20 uM p-amidinophenyhmethyl-
sulfonyl fluoride, and 1 mM dithiothreitol. The cell lysates were
centrifuged at 15,000 rpm for 10 min. Supernatants were
collected and the protein concentration was determined using
the Bio-Rad assay kit. Total cell lysates (100 pg protein) were
mixed with 10 uL 5x sample buffer 62.5 mM Tris, pH 6.8, 1%
SDS, 10% glycerol, 5% 2-mercaptoethanol, and 0.02% bromo-
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phenol blue) and heated at 100°C for 5 min. The proteins were
separated by SDS-PAGE and transferred electrophoretically onto
a polyvinylidene difluoride (PVDF) membrane (Millipore). The
membrane was blocked with 5% skim milk and incubated with the
appropriate antibodies. Antibody binding was detected using a
chemiluminescent substrate (Perkin-Elmer).

ELISA
Macrophage culture supernatants were used for the quantifica-
tion of p40 and IL-10 using a commercially available ELISA kit.

Microscopy

Macrophages in multi-well, glass-bottom dishes (Greiner bio-
one) were allowed to adhere for 60 min before the addition of
rhodamine- or FITC-CpG. Where indicated, FITC-dextran or
LysoTracker Red was added with CpG. The cells were washed
four times to remove excess CpG before live cell imaging.
Alternatively, the cells were fixed with 4% formaldehyde in PBS
for 15 min, permeabilized with PBS containing 0.3% Triton X-
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