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Fig. 5. Expression of DNMT3A and DNMT3B and methylation status of repetitive se-
quence in SP and MP cells. A. Expression of DNMT3A and DNMT3B mRNA in SP and MP
cells derived from HCT116 cells. DNMT3A and DNMT3B mRNA expressions were evalu-
ated in SP cells and MP cells derived from HCT116 cells. B. Quantitative pyrosequencing
analysis of LINE-1 in SP and MP cells. Quantitative pyrosequencing analysis was
performed using SP cells and MP cells derived from HCT116 cells. Representative
pyrograms of SP cells and MP cells. Gray columns represent C-to-T polymorphic sites.
C. Methylation status of LINE-1, Alu and Sat-alfa in SP cells and MP cells. SP cells and
MP cells derived from HCT116 cells were analyzed. Data represent means. Open bars
represent MP cells and closed bars represent SP cells.

Marzo et al., 1999; Mizuno et al., 2001; Girault et al., 2003; Saito et al,,
2003; Etoh et al, 2004; Lin et al. (2007, 2010)) DNTM1 over-
expression is correlated with poorer tumor differentiation in gastric
carcinomas (Etoh et al., 2004), and it is correlated with poorer prog-
nosis in hepatocellular and lung carcinomas. (Saito et al,, 2003; Lin
et al, 2010) Since CSCs/CICs are related to poorer prognosis and
also poorer differentiation, these observations suggest that poorer
differentiation and poorer prognosis might be caused by a high ratio
of CSCs/CICs that is maintained by a high expression level of DNMTT1.

We also investigated several functioning CSCs/CICs markers in-
cluding ALDH1 enzymatic activity and the expression of CD44.
ALDH1 enzyme identifies the cells that are resistant to alkylating
agents, and gives these cells cytoprotective effects. ALDH1 members
catalyze the final step in the conversion of retinol to retinoic acid
that concerns with differentiation and self-renewal. (Kemper et al,,
2010; Gires, 2011) This enzyme plays an important role in the mainte-
nance of CSCs/CICs. CD44 also has a functional role in CSCs/CICs, such
as survival, growth, differentiation and chemotherapy-resistance.
(Kemper et al., 2010; Zeilstra et al,, 2008) In addition, CD44 works as
the adhesion molecule related in migration. (Cho et al,, 2012) In this
study, the cells that had high ALDH1 activity were detected only
0.2% in DNMT1~/~ cells and CD44 expression greatly decreased in
DNMT1~/~ cells. Although we could not reveal the exact mechanisms
of how DNMT1 controls the maintenance of CSCs/CICs, deletion of
DNMT1 decreases CSCs/CICs and reduces the expressions of these
functioning molecules. Therefore, we suppose that DNMT1 might be
essential for initiating of the colon cancers. Actually, we observed
that DNMT1 positive rates were significantly correlated with SOX2,
that was reported to be as transcription factor in embryonic stem
cells (Masui et al., 2007) and to highly express in CSCs/CICs of lung
cancer (Nakatsugawa et al., 2011), positive rates in the immunohisto-
chemical staining of primary colon cancer (data not shown). Although
further analyses are required, this might be a clue that elucidates the
role of DNMT1 in CSC/CICs.

Previous report described that there are no difference in genomic
methylation status in both HCT116 cells and DNMT1 '~ cells (Rhee et
al,, 2000), and we showed there are also no difference in genomic
methylation status in SP and MP cells. Taken together, these results
indicate that the methylation status of genome does not matter for
the maintenance of CSCs/CICs.

In conclusion, we showed for the first time that DNMTT1 is essential
for maintenance of human colon CSCs/CICs. Transient suppression of
DNMTT1 is sufficient to exhaust CSCs/CICs. Our observations indicate
the possibility that transient systemic or local gene suppression of
DNMT1 is an effective approach for eradicating CSCs/CICs, which will
make disease more treatable by chemotherapy or radiotherapy.
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Prognostic impact of the expression of ALDH1
and SOX2 in urothelial cancer of the upper

urinary tract
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Aldehyde dehydrogenase 1 (ALDH1) and sex determining region-Y-related high mobility group box 2 (SOX2)
have been identified as putative cancer stem-like cell/tumor-initiating cell markers in various cancer tissues.
The aim of this study was to elucidate the prognostic impact of these putative cancer stem-like cell/tumor-
initiating cell markers in upper urinary tract urothelial cell carcinoma. Immunohistochemical staining for ALDH1
and SOX2 was carried out on archival specimens from 125 patients with upper urinary tract urothelial cell
carcinoma who underwent radical nephroureterectomy. The prognostic value of ALDH1 and SOX2 expression
and other clinicopathological features was evaluated. On univariate analysis, tumor grade, pathological T stage,
pathological N stage, lymphovascular invasion, ALDH1 expression and SOX2 expression were associated with
a poor prognosis. On multivariate analysis, the independent factors of prognosis were tumor grade (P=0.014),
pathological N stage (P=0.005) and ALDH1 expression (P=0.002). In subgroup analysis, those subgroups with
no positive, one positive or two positive resuits in immunohistochemistry for ALDH1 and SOX2 expression had
estimated 5-year cancer-specific survival rates of 80%, 49% and 22%, respectively (P<0.001). Neither ALDH1
nor SOX2 expression correlated with intravesical recurrence after radical nephroureterectomy. These findings
suggest that cancer stem-like cells/tumor-initiating cells are linked to more aggressive behavior of upper
urinary tract urothelial cell carcinoma, supporting the current cancer stem cell hypothesis. Thus, therapeutic
targeting of cancer stem-like cells/tumor-initiating cells in upper urinary tract urothelial cell carcinoma is a

future possibility.
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Upper urinary tract urothelial cell carcinomas are
uncommon and account for only 5-10% of urothe-
lial carcinomas.! Radical nephroureterectomy with
excision of an ipsilateral bladder cuff is the standard
therapy for patients with a normal contralateral
kidney.? Upper urinary tract urcthelial cell carci-
nomas that invade the muscle wall usually have a
very poor prognosis, even if radical nephroureterec-
tomy is performed appropriately.? The 5-year speci-
fic survival is <50% for pT2/ pT3 and <10% for
pT4.%* According to the most recent classifications,
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the primarily recognized prognostic factors are
tumor stage and grade.! Gender, age and the initial
location of the tumor within the upper urinary
tract are no longer accepted as prognostic factors.!
Lymphovascular invasion,®7 tumor necrosis,®*®
tumor architecture!® and concomitant carcinoma
in situ'"1? are associated with higher risks of recur-
rent disease and cancer-specific mortality. Mole-
cular markers such as microsatellite instabilities,!3
E-cadherin, hypoxia-inducible factor-1o and a
telomerase RNA component!* have been shown to
be useful for prognosis, although none of the
markers has been externally validated.!

Cancer stem-like cells/tumor-initiating cells are a
small population of cancer cells that have the proper-
ties of tumor-initiating ability, self-renewal and
differentiation. Cancer stem-like cells/tumor-initiating
cells are more resistant to chemotherapy and radio-
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therapy than non-cancer stem-like cell/tumor-initiat-
ing cell populations via various mechanisms,'?
suggesting that the existence of these cells is a prog-
nostic factor in cancer patients. In this study, we
investigated two cancer stem-like cell/tumor-initiating
cell markers. Aldehyde dehydrogenase 1(ALDH1) is a
cytosolic isoform of ALDH, and high levels of its
activity are seen not only in hematopoietic stem/
progenitor cells but also in solid cancers (eg,
breast,'®17 colorectal,'® pancreas,'® bladder?® and
prostate?’ cancers). Furthermore, expression of
ALDH1 is a gredictor of poor clinical outcome in
the breast,'5%2 lung,?® pancreatic'® and bladder?
cancers. Sex determining region-Y-related high mobi-
lity group box (SOX) 2 is a transcription factor that is
involved in the maintenance of embryonic stem cell
pluripotency and in multiple developmental pro-
cesses. It is overexpressed in certain poorly differen-
tiated subtyges of cancer (eg, lung, 2425 breast, 2627 and
colorectal?®%9 cancers). SOX2 is not only a prognostic
indicator in these cancers but also a candidate for
cancer stem-like cell/tumor-mltlatmg cell-targeting
T-cell-based immunotherapy.3°

The purpose of this study was therefore to
evaluate the relationship between cancer stem-like
cells/tumor-initiating cells and prognosis in upper
urinary tract urothelial cell carcinoma by using the
putative markers, ALDH1 and SOX2, with full
clinicopathological data and follow-up. We also
analyzed the association between cancer stem-like
cell/tumor-initiating cell marker expression and
recurrence, especially intravesical recurrence after
radical nephroureterectomy.

Materials and methods
Patients

We reviewed the clinical pathology archives of 181
consecutive patients who underwent radical ne-
phroureterectomy and were diagnosed as having
upper urinary tract urothelial cell carcinomas at the
Sapporo Medical University Hospital from June
1995 through May 2010. Patients with a previous
history of bladder cancer and patients with con-
comitant bladder cancer were excluded. Finally, a
total of 125 patients were enrolled in this study.
Informed consent was obtained from the patients to
use the surgical specimens remaining after patholo-
gical diagnosis for the investigational study, which
was approved by the Institutional Review Board
for Clinical Research at our university (No. 22-131).
All hematoxylin- and eosin-stained slides were
reviewed, and all of these specimens showed
urothelial carcinoma. The median age at operation
of the 89 male and 36 female patients was 69 years
(range 32-88). Median follow-up was 69 months
(range 6-192). All hematoxylin- and eosin-stained
slides were reviewed, and clinical stage was assig-
ned using the American Joint Committee on Cancer
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Table 1 Characteristics of the 125 patients

Characteristics

Median age in years (range) 69 (32-88)
Median follow-up (months) 69
Sex
Male 89 (71)
Female 36 (29)
Side
Right 54 (43)
Left 71 (57)
Primary site (mmain)
Renal pelvis 75 (60)
Ureter upper 11 (9)
Middle 10 (8)
Lower 29 (23)
Pathological stage
Stage 0a 16 (13)
Stage 0is 2 (2)
Stage 1 17 (14)
Stage 11 21 (17)
Stage 111 50 (40)
Stage 1V 19 {15)
Chemotherapy
Neoadjuvant 10 (8)
Adjuvant 6 (5)

Values are N (%) except where mentioned otherwise.

TNM Staging System for Renal Pelvis and Ureter
Cancer (7th edition, 2010).3! The patients’ charac-
teristics are shown in Table 1.

Immunohistochemistry and Scoring

Sections (4pm) of the formalin-fixed, paraffin-
embedded tumor specimens were immunostained
after heat-induced epitope retrieval in citrate buffer
(pH 6.0) using an autoclave with a monoclonal anti-
body against ALDH1 (dilution 1:1000; BD Trans-
duction Laboratories, San Diego, CA, USA) and a
polyclonal antibody against SOX2 (dilution 1:100;
Invitrogen, Camarillo, CA, USA). Subsequent incu-
bations with a secondary biotinylated antibody,
avidin-conjugated peroxidase complex and chromo-
gen were done on a Ventana NexES (Ventana
Medical Systems, Tucson, AZ, USA). The slides
were then counterstained with hematoxylin, rinsed,
dehydrated through graded alcohols into nonaqu-
eous solution, and cover-slipped with mounting
media. Negative controls had the primary antibody
replaced by buffer. All specimens were reviewed
independently using light microscopy in at least
five areas at x 400 magnification by investigators
who were blinded to clinicopathological data
{TT and YH). For ALDHI1, tumors presenting at least
one ALDH1-positive cancer cell were considered to
be ALDH1 positive.'®:32 For SOX2, nuclear staining



was considered positive.3® We previously reported
that the SOX2-positive rates in lung cancer were
15%, 45% and 40% in <1%, 1-10% and >10% of
tumors, respectively.?® On the basis of these results,
we used a 10% cutoff point for both negative and
positive specimens. Breast and lung cancer tissues
were used as positive controls for ALDH1 and
S0X2, respectively.

Statistical Analysis

We tested the relationships between ALDH1/S0X2
and the other clinicopathological parameters, ie,
the pathological T stage, pathological N stage, tumor
grade and lymphovascular invasion by 32 tests.
Cancer-specific survival, overall survival, recur-
rence-free survival and intravesical recurrence-free
survival were assessed by the Kaplan-Meier meth-
od, and differences between two groups were
compared using the log-rank test. For the test of

g . i , # SR

ALDH1 and SOXz in upper tract urothelial cancer

H Kitamura et al

intravesical recurrence-free survival, 16 patients
with stage IV disease were excluded. The subgroups
with two positive, one positive and no positive
immunohistochemistry results for ALDH1 and
SOX2 expression were analyzed. Univariate and
multivariate regression analyses according to the

Cox proportional hazards regression model, with

cancer-specific survival as the dependent variable,
were used to evaluate the expression of ALDH1 and
SOX2 as potential independent prognostic factors. A
value of P<0.05 was considered to indicate statis-
tical significance. The calculations were performed
using JMP™ software.

Resuits
Expression and Localization of ALDH1 and SOX2

Scattered ALDH1-positive cells were observed in
34 (27%]) of the 125 cases (Figure 1b). The ALDH1

Figure 1 Representative immunohistochemical staining of aldehyde dehydrogenase 1 (ALDH1) and sex determining region-Y-related
high mobility group box 2 (SOX2). (a) Negative ALDH1 expression in tumor cells, (b) positive ALDH1 expression in tumor cells,
(¢) negative SOX2 expression in tumor cells and (d} positive SOX2 expression in tumor cells.
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Table 2 Frequency of positive expression of cancer stem-like
cell/tumor-initiating cell (CSC/TIC) markers

Table 3 ALDH1/SOX2 expression and pathological factors in
patients with upper urinary tract urothelial cell carcinoma

CSC/TIC markers n (%)
ALDH1P9sSQOX2P08 11 (9)
ALDH1PesSQOX21e8 23 (18)
ALDH1"e8S0OX 2P0 13 (11)
ALDH17°850X2"e8 78 (62)

expression was strongly present in the cytoplasm.
SOX2 expression was mainly positive in cells
located in the peripheral regions of tumor nests,
and diffuse cytoplasmic and nuclear staining was
observed in 24 cases (19%) (Figure 1d). We
examined the mRNA expression of ALDH1 and
SOX2 by RT-PCR (Supplementary Information) and
compared it with immunohistochemical expression
of these genes in the same nine tissues. The concor-
dance rates between the two methods were 78%
for ALDH1 and 89% for SOX2 (Supplementary
Figure S1). The rates of SOX2-positive cells were
<1%, 1-10% and >10% in 19% (n=24), 62%
(n=77) and 19% (n=24) of the cases, respectively.
The percentages of ALDH1- and SOX2-positive
cancer cells were counted and subjected to statis-
tical analysis. The frequencies of the expression of
cancer stem-like cell/tumor-initiating cell markers
are shown in Table 2. In cases that were both
ALDH1- and SOX2-positive, the tumor cells were
ALDH1- or SOX2-positive or double-positive. Im-
munohistochemical staining of ALDH1 and SOX2 in
a representative double-positive case is shown in
Supplementary Figure S2.

Associations Between Expression of ALDH1 and SOX2
and Clinicopathological Variables (Table 3)

ALDH1 expression was linked to lymph node
metastasis (P=0.047) and lymphovascular invasion
(P=0.038). SOX2 expression was significantly asso-
ciated with more advanced pathological T stage
(P=0.032), more advanced pathological N stage
(P=0.019), and as well as with a trend toward to
higher tumor grade (P=0.017).

Association of ALDH1 and/or SOX2 with Survival and
Recurrence

The 5-year cancer-specific survival rates of patients
with ALDH1-negative and -positive tumors were
74% and 36%, respectively (Figure 2a). The 5-year
cancer-specific survival rates of patients with SOX2-
negative and -positive tumors were 72 and 46%,
respectively (Figure 2b). There were significant
differences in cancer-specific survival between
patients with ALDH1-negative tumors and those
with ALDH1-positive tumors (P<0.001, Figure 2a),
and between patients with SOX2-negative tumors
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Variable ALDH1 SOX2
Positive Negutive  P-  Positive Negative  P-
(%) (%) value (%) (%) value

Pathological T stage

pTa 2 (6) 0(0) 0184 1(4) 1(1)  0.032

pTis 3 (9) 13 (14) 1 (4) 15 (15)

pT1 3(9) 15 (16) 4(17)  14{14)

pT2 6 (18) 17 (19) 1(4) 22 (22)

pT3 18 (52) 43 (48) 14 (58} 47 (46)

pT4 2 (6) 3(3) 3 (13) 2 (2)
Pathological N stage

pNO 27 (79) 85(94) 0.047 18(75) 94 (93) 0.019

pN1 4(12)  2(2) 2 (8) 4(4)

pN2 3(9) 4(4) 4 (17) 3 (3)
Grade

G1 0(0) 3(3) 0083 1(4) 2(2)  0.017

Gz 10 (29) 43 (47) 4(17) 49 (48)

G3 24 (71) 45 (50) 19 (79) 50 (50)

Lymphovascular invasion
Negative 17 (50) 64 (70) 0.038 13 (54)
Positive 17 (50) 27 (30)

68 (67) 0.242
11 (46) 33 (33)

and those with SOX2-positive tumors (P=0.003,
Figure 2b). Thus, both ALDH1 and SOX2 expression
correlated with cancer-specific survival. The sub-
groups with no positive, one positive or two positive
immunohistochemistry results for ALDH1 and
SOX2 expression had estimated 5-year cancer-
specific survival rates of 80%, 49%, and 22%,
respectively (P<0.001, Figure 2c).

Kaplan—-Meier plots and log-rank tests showed
that the upper urinary tract urothelial cell carcino-
ma patients with ALDH1-positive tumor cells had
significantly shorter overall survival, than those
whose tumors were ALDH1-negative (P<0.001).
The 5-year overall survival rates of patients with
ALDH1-negative and -positive tumors were 63%
and 31%, respectively. The 5-year overall survival
rates of patients with SOX2-negative and -positive
tumors were 62% and 36%, respectively. There was
a significant difference in overall survival between
the two groups (P=0.019).

The 5-year recurrence-free survival rates of
patients with ALDH1-negative and -positive tumors
were 43% and 24%, respectively (Figure 3a). There
was a significant difference in recurrence-free
survival between the two groups (P=0.024). In
contrast, no difference was observed in recurrence-
free survival between patients with SOX2-negative
tumors and those with SOX2-positive tumors
(Figure 3b). During the follow-up, 34 (32%) of 106
patients undergoing radical nephroureterectomy for
stage <III disease had intravesical recurrence. Of
the 34 patients, 13 (38%) had systemic recurrence
and 8 (24%) died of UC. Neither ALDH1 nor SOX2
expression correlated with intravesical recurrence-
free survival (Figures 3c and d).
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Figure 2 Kaplan—Meier curves for cancer-specific survival rates
according to {(a) aldehyde dehydrogenase 1 (ALDH1) expression
status, (b) sex determining region-Y-related high mobility group
box 2 (SOX2) expression status and (¢) combined expression
status of ALDH1 and SOX2.

In univariate analysis, the pathological T stage,
pathological N stage, tumor grade, lymphovascular
invasion, ALDH1 and SOX2 were associated with
a poor prognosis (Table 4). In multivariate analysis,
the independent factors of prognosis were the patho-
logical N stage (P=0.005), tumor grade (P=0.014)
and ALDH1 expression (P =0.002) (Table 4).
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Discussion

To the best of our knowledge, this is the first study
in which the relationships between expression of
putative cancer stem-like cell/tumor-initiating cell
markers and the most clinically relevant features of
upper urinary tract urothelial cell carcinoma were
evaluated. We demonstrated that expression of both
ALDH1 and SOX2 correlated with cancer-specific
survival. In contrast, expression of these markers
was not associated with intravesical recurrence-free
survival. These findings suggested that cancer stem-
like cells/tumor-initiating cells were linked to more
aggressive behavior of upper urinary tract urothelial
cell carcinoma.

We demonstrated that ALDH1 was not only an
independent factor for prognosis but also associated
with recurrence-free survival, although there was no
relationship between ALDH1 expression and intra-
vesical recurrence-free survival. Brandt et al®
found that ALDH1 was significantly upregulated in
urothelial cancer stem-like cells compared with
non-cancer stem-like cells, indicating a potential
mode of chemoresistance in urothelial cancer stem-
like cells. Su et al?® reported that high ALDH1
expression was associated with poor prognosis
for patients with bladder urothelial carcinoma and
was an independent predictor for cancer-specific
survival. Various studies have reported that
immunohistochemically identified tumor ALDH1
expression is associated with a poor prognosis in
breast,'%22 lung,?® and pancreatic!® cancer patients.
Conversely, ALDH1 has a favorable function in
ovarian carcinoma and high expression of ALDH1
is a favorable 1prognostic factor in patients with
ovarian cancer.’® In a large study including 1420
patients with colorectal cancer of all stages, no signi-
ficant correlation could be found between ALDH
expression and survival,’® whereas the ALDH1
expression pattern had a significant impact upon
survival for G2 T3NOMO colorectal cancer in another
study.®” Our findings suggest that upper urinary
tract urothelial cell carcinoma contains ALDHI-
positive cancer stem-like cells/tumor-initiating
cells like bladder cancer, and that these cells are
associated with survival or life-threatening disease,
as 62% of the patients with intravesical recurrence
were alive without any other recurrence.

Although the roles of SOX2 in cancer cells are still
elusive, SOX2 is considered one of the candidate
cancer stem-like cell/tumor-initiating cell anti-
gens.’> We previously demonstrated that SOX2-
overexpressing lung adenocarcinoma cell lines
showed higher rates of side population cells and
higher tumorigenecity and that SOX2 mRNA knock-
down of side population cells by gene-specific
siRNA  completely * abrogated tumorigenecity
in vivo.’® In this study, we found that SOX2 was
associated with cancer-specific survival in patients
with upper urinary tract urothelial cell carcinoma.
Although there has been no report showing the
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Figure 3 Kaplan—Meier curves for recurrence-free survival rates according to (a) aldehyde dehydrogenase 1 (ALDH1) expression status
and (b) sex determining region-Y-related high mobility group box 2 (SOX2) expression status, and for intravesical recurrence-iree
survival rates according to (c¢) ALDH1 expression status and (d) SOX2 expression status.

Table 4 Prognostic factors for cancer-specific survival in univariate and multivariate analyses

Univariate analysis

Multivariate analysis

Factor
HR (95% CI) P-value HR (95% CI) P-value

Pathological T stage 2.76 (1.69-4.89) <0.001 1.68 {0.94-3.16) 0.082
Pathological N stage 2.75 (1.75-4.09) <0.001 2.18 (1.29-3.60) 0.005
Grade 6.02 (2.53-17.7) <0.001 3.36 (1.26—10.6) 0.014
Lymphovascular invasion 2.18 (1.52-3.25) <0.001 1.22 (0.76-1.96) 0.433
ALDH1 1.97 (1.38-2.81) <0.001 1.89 (1.28-2.79) 0.002
SOX2 1.78 (1.21-2.55) 0.005 1.30 (0.83-1.98) 0.256

relationship between SOX expression and prognosis
in UC, Ben-Porath et al*® reported enriched patterns
of gene sets associated with embryotic stem cell
identity, including SOX2, in the expression profiles
of bladder carcinoma. They demonstrated that high-
grade tumors showed an embryotic stem-like gene
set enrichment pattern, and concluded that an
embryotic stem-like signature was present in
poorly differentiated cancers from distinct cells of
origin. In the present study, SOX2 expression was
significantly associated with tumor grade, patho-
logical T stage and pathological N stage. This may
explain why SOX2 expression was an independent
factor for survival by univariate analysis but not by
multivariate analysis. Several studies have reported
that SOX2 is upregulated in various cancers other
than urothelial carcinoma, including lung adenocarci-
noma,?® gastric carcinoma,? breast carcinoma,?” head
and neck squamous cell carcinomas,*%4! hepatocellular
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carcinoma*®? and rectal cancer.?® Meanwhile, another
study on gastric cancer reported that SOX2 expres-
sion was related to better prognosis.*® SOX2
expression is associated with a better outcome in
squamous cell lung cancer.**

On the basis of the abilities for tumor initiation,
self-renewal and differentiation, various putative
cancer stem-like cell/tumor-initiating cell markers
have been used.*® As these markers (such as
side population, CD44 + /CD24-, CD133 +, ALDH1,
SOX2, Oct3/4, etc.) show distinct properties of
cancer stem cells, tumor tissues can show hetero-
geneity when multiple markers are examined. These
vary depending on the cancer, and not all tumor
cells identified by certain markers are cancer stem-
like cells/tumor-initiating cells.?® In this study,
18%, 10% and 9% of the upper urinary tract uro-
thelial cell carcinoma cases had ALDH1P%S0OX2"8,
ALDH1"8S0OX2P% and ALDH1P°SSOX2P% tumor



cells, respectively (Table 2). Furthermore, the num-
ber of upper urinary tract urothelial cell carcinoma
cells immunohistochemically stained for both
ALDH1 and SOX2, which are considered to have
more characteristics of cancer stem-like cell/tumor-
initiating cell, was limited in these cases (Supple-
mentary Figure S2). These results are compatible
with reported cancer stem-like cell/tumor-initiating
cell frequencies, which ranged from 1 in 2500 to 1 in
36000 in various cancers.*

There are several limitations to our study. First are
the limitations inherent to any retrospective study.
Second, radical nephroureterectomy was performed
by various surgeons over a long time period. Third,
immunochistochemistry has inherent limitations
such as reproducibility and reliability. Finally, the
roles of ALDH1 and SOX2 in upper urinary tract
urothelial cell carcinoma require further investi-
gation. '

In summary, the current results demonstrate a
direct link between the expression of cancer stem-
like cell/tumor-initiating cell markers and patient
survival in upper urinary tract urothelial cell carci-
noma. Our data support the current cancer stem cell
hypothesis for upper urinary tract urothelial cell
carcinoma, which suggests that therapeutic targeting
of cancer stem-like cells/tumor-initiating cells in
upper urinary tract urothelial cell carcinoma is a
future possibility.
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Papillary thyroid carcinoma (PTC) is a well-differentiated endo-
crine malignant tumor that develops from thyroid follicular epi-
thelium. The tumor represents the most common type of
endocrine malignancy; however, its tumorigenesis is not fully
elucidated. The aim of this study was to address the functional
role of the sorting nexin (SNX) family in PTC because of recent
experimental evidence suggesting that the SNX family members
actively control endocytotic transportation as well as cell fate.
Expression profiles of SNX family members of PTC showed a sig-
nificant quantity of transcripts of SNX5. Further immunohisto-
chemical analysis with an SNX5-specific monoclonal antibody
established in this study consistently demonstrated the preferen-
tial expression of SNX5 in PTC (94.2%, 113/120 cases) as indi-
cated by studies on 440 cases of various tumors. In contrast,
other major carcinomas originating from the lung (2.6%, 1/38
cases), breast (5.1%, 2/39 cases), and intestine (4.2%, 1/24 cases)
scarcely expressed SNX5. When we investigated models of mur-
ine thyroid tumors induced by the administration of carcinogens,
high expression of Snx5 was also observed in well-differentiated
thyroid tumors, further implying that the tumorigenesis of the
thyroid gland was tightly associated with the abundance of
SNX5/Snx5. Moreover epithelial cells expressing excess SNX5
showed high levels of Caspase-2 of an initiator caspase. Collec-
tively these findings suggest that the evaluation of SNX5 expres-
sion would support pathological diagnosis of primary and
secondary PTC. (Cancer Sci 2012; 103: 1356-1362)

he thyroid gland, controlling energy production and many

metabolic pathways, is the most common site for the
development of malignant tumors among a variety of endo-
crine organs."’ The proportion of malignant thyrmd tumors
has steadily increased over the last three decades.?™ Most
thyroid tumors originate from thyroid follicular epithelial cells
known as thyrocytes and exhibit various histopathological sub-
types, of which papillary thyroid carcinoma (PTC) comprises
the predominant subtype, with a female:male ratio of about
3:1. While PTC generally has a favorable prognosis, the tumor
can potentially metastasize to regional lymph nodes, the lung
and other organs.(s‘ Pre-existing benign thyroid lesions and
ionizing radiation are known risk factors, and gene alterations
such as BRAF and RAS point mutations, and RET/PTC and
TRK gene rearrangements have been reported in PTC.®1®
Gene regulatory factors making critical contributions during
the development of thyrocytes are of diagnostic value for PTC
in the pathologic laboratory, including thyroid transcription
factors including TTF-1 and TTF-2, a hematopoietically
expressed homeobox (HHEX), and paired box gene-8
(PAX8).7*'" However, the etiology of the tumor develop-
ment has not been fully clarified.

Cancer Sci | July 2012 | vol. 103 | no.7 | 1356-1362

Thyrocytes synthesize the thyroid hormones through a multi-

ple intracellular process coordinated by thyroid-stimulating
hormone. During the process, a transcytotic pathway of thyro-
cytes plays an important role as su%ested by anatomic exam-
inations and other studies.’ Once an iodinated
glycoprotein of thyroglobulin is synthesized, endosomes con-
vey it into a luminal area surrounded by thyrocytes. Then the
thyrocytes, if required, retrieve thyroglobulin molecules from
the primary colloidal storage and liberate triiodothyronine (T3)
and thyroxin (Tg through a lysosomal pathway using recy-
cling endosomes. ) Recent studies on the membrane-asso-
ciated traffic system of endosomes have revealed a um%ue rolc
of sorting nexin (SNX) retromer family members.‘
SNX family has the capacity to bind phopsphatldylmosnol
phosphate of the lipid bilayer of endosomes through their sig-
nature moieties of the Phox-homology (PX) domain. Once
such a membrane is recognized, various effector domains of
SNX molecules characterize the subsequent process of the
membrane compartment. Within various such domains, a Bin/
Amphiphysin/Rvs167 (BAR) domain helps SNX molecules
(called SNX-BAR) form a banana-shaped structure fitting the
curvature of small vesicles, whose domain is also shared by
non-SNX molecules involved in Alzheimer’s disease and dia-
betes mellitus.?’>? In addition to these functions, accumulat-
ing evidence reveals a more fundamental function of such
SNX-BARs, regulating signal transduction and growth activi-
ties, to control epithelial cell integrity.®!>% These facts led us
to hypothesize a possible function of the SNX family in the
tumor biology related to the development of PTC.

In this study we first demonstrated preferential expression of
SNX5 of an SNX-BAR molecule in PTC as assessed by
immunohistochemistry on 440 tumor cases. Murine models of
PTC showing Snx5 overexpression in the tumors further sup-
ported importance of SNXS in the pathogenesis of PTC. More
interestingly Caspase-2 as an initiator caspase would be under
the control of SNX5, implying that an SNX5-Caspase-2 axis
might have a pivotal role of the development of PTC.

Materials and Methods

Tissues and cell culture. Thyroid cancer tissues were obtained
from patients undergoing thyroidectomy in Sapporo Medical
University Hospital and Muroran City General Hospital in
Japan. ANl human materials analyzed in this study were
obtained with informed consent and the approval of the institu-
tional review board in each hospital. For primary culture of
tumor cells, tissues were minced into small pieces and dis-
persed in PBS containing 0.7 mg/mL Blendzyme 3 (Roche,
Basel, Switzerland) and 0.4 mg/mL DNase I (Sigma-Aldrich,
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St. Louis, MO, USA) as described previously.®® After wash-
ing the cells three times with PBS, cells were cultured in
RPMI1640 (Sigma-Aldrich) supplemented with 10% heat-inac-
tivated fetal calf serum, 50 pg/mL streptomycin and 100 units/
mL penicillin. Human embryo kidney (HEK) 293 cells and
8505¢ PTC cells were obtained from RIKEN Bioresource Cen-
ter (Japan) and maintained in modified DMEM (Sigma-
Aldrich) supplemented with the same reagents as described
above. All cells were cultured at 37°C in a humidified atmo-
sphere in 5% CO,.

Reverse transcription-polymerase chain reaction analysis.
Reverse transcription-polymerase chain reaction (RT—PCRZ was
conducted to detect transcripts as previously reported.®® Pri-
mer pairs were summarized in Table S1. The PCR cycling
conditions were as follows: 95°C for 1 min; 60°C for 1 min;
72°C for 1 min with 25 cycles. Quantitative RT-PCR was per-
formed as described in the manufacturer’s protocol for Assays-
on-Demand Gene Expression products (Applied Biosystems,
Foster City, CA, USA). To compare the levels of transcripts,
the AACT method was used to analyze triplicate specimens
according to the manufacturer’s instructions.

Antibodies, immunohistochemistry, and immunoblotting. A
mouse anti-human SNX5 monoclonal antibody (clone 48C2;
IgG2a subclass) was established per standard procedures by
immunizing mice with recombinant SNX5 protein produced in
bacterial BL21 cells containing the pET expression vector
(Merck KGaA, Darmstadt, Germany) harboring human SNX5
cDNA, which was initially obtained from human epidermal
HaCaT cells. A mouse anti-enhanced green fluorescent protein
(EGFP) mAb (JL-8; Clontech, Mountain View, CA, USA) was
used for detecting EGFP-tagged proteins in immunoblot analy-
sis. A mouse anti-TTF-1 mAb (SPT24; Nichirei, Tokyo, Japan)
and rabbit anti-thyroglobulin pAb (DAKO, Copenhagen,
Denmark) were used for immunohistochemistry. For studying
cells by immunoblotting, antibody sampler kits were used to
analyze molecules regulating apoptosis, DNA repair or cell
cycle (BD Biosciences, San Diego, CA, USA). For detecting
Caspase-2, antibodies of mouse mAb (clone 35) were used

Fig. 1. Expression of sorting nexin (SNX) family
members in papillary thyroid carcinoma (PTC). (a)
The transcripts of SNXs assessed by reverse
transcription-polymerase chain reaction (RT-PCR) in (b)
three cases of PTC. Numbers depicted correspond to
the numbers of the members of the SNX family from

SNX1 to SNX27. SNX20 is not assigned in humans. -
Glyceraldehyde 3-phosphate dehydrogenase s K
(GAPDH) depicted as a control. PCR cycles: 25 cycles. 8
(b) The transcripts of SNX5 assessed by quantitative ®
RT-PCR analysis in four normal thyroid tissues -1
(derived from surgical specimens around tumors), i
eight cases of PTC and one case of nodular 4

hyperplasia (goiter). Data are expressed as the fold
change in each sample versus normal thyroid tissue
number 1. Results show that the transcripts of SNX5

[

provided with the sampler kit as well as rabbit pAb (poly6340)
purchased from Biolegend (San Diego, CA, USA). Immunoflu-
orescence, immunohistochemistry and immunoblotting were
performed as previously described.®®*” Immunofluorescent
signals were detected under an immunofluorescence micro-
scope (IX71; Olympus, Tokyo, Japan) or confocal laser micro-
scope (R2100AG2; Bio-rad, Hercules, CA, USA). To obtain
concordant results regarding the immunohistochemical expres-
sion of SNXS5, the slides were examined on a multiheaded
microscope by three investigators. The staining profile of
SNXS5 of tissue sections was graded in accordance with
positive-staining areas as follows: less than 10% areas; (—), 10
~50% areas; (+), over 50% areas; (++).

Animal models of thyroid tumors. Thyroid carcinomas were
chemically induced in BALB/c female mice 6 weeks of age as
described previously.®® In brief, tumors were initiated with a
single subcutaneous injection of N-bis(2-hydroxypropyl)-nitro-
samine (DHPN; Toronto Research Chemicals, Toronto, Can-
ada) at 2800 mg/kg body weight. One week later, drinking
water containing 0.1% sulfadimethoxine (SDM; Sigma-
Aldrich) was provided ad [libitum for up to 12 weeks. Tissue
specimens including normal thyroid gland and tumors around
the trachea were obtained using forceps and scissors for micro-
surgery under a binocular wide-field dissecting microscope.
All of the experiments using mice were performed in accor-
dance with the institutional guidelines for the care and use of
animals.

Cell transformation and cell proliferation assay. Expression
vectors of pCMV-HA and pEGFP-C2 (Clontech) were used to
transform HEK 293 cells. Transformation of cells was per-
formed with LLF2000 (Invitrogen, Carlsbad, CA, USA) follow-
ing the manufacturer’s protocol. For retrovirus-mediated gene
transfer into 8505c¢ cells, pLVSIN-CMV-puro vector harboring
SNX5 c¢DNA was transfected into Lenti-X 293T cells using
Lenti-X HTX Packaging System as described in the manu-
facturer’s protocol (Takara, Tokyo, Japan). After transfec-
tion, cells were maintained in complete medium containing
1 pg/mL puromycin (Sigma-Aldrich). Growth activities of

gl
4
fe)
0
=
-

4

increased 3.2-fold in PTC (P < 0.05) and 1.8-fold in
nodular hyperplasia (P = 0.37).
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cells were investigated using a premix WST-1 cell prolifera-
tion assay system following the manufacturer’s instructions
(Takara).

Statistical analysis. Statistical significance was determined
using the unpaired #-test and P-values of less than 0.05 were
considered significant. Values were expressed as the
mean + standard deviation (SD).

Results

High expression of SNX5 in papillary thyroid carcinoma. Prior
to starting this study, we conducted RT-PCR analysis to investi-
gate which SNX family members were dominantly expressed in
PTC. Examinations of tissue specimens from three PTC cases
revealed that the transcripts of certain types of SNXs were
indeed detected at various levels (Fig. 1a). Among those we
examined, transcripts of SNX5 were most abundantly presented
in the tumors. To a lesser extent, transcripts of SNX1, SNX2,
SNX6, SNX9, SNX12, SNX13, SNXI18, SNX19, SNX22,
SNX23, and SNX24 were observed at moderate levels. We also
performed quantitative RT-PCR analysis on normal and tumor
tissue areas of PTC. The results demonstrated that the tran-
scripts of SNX5 in the tumor lesions were 3.2-fold increased
compared with those of normal thyroid areas (Fig. 1b).

To further determine the expression profile of SNX5 in
tumor tissues, we established a mouse anti-human SNX5
monoclonal antibody (clone 48C2) specifically reacting to a
part of the N-terminal domain of SNXS5, but not other SNXs
including SNX4, SNX6 (most similar to SNX5), and SNX8
(Fig. Sla,b). By using this mAb, we could certainly detect
SNXS5 in primary culture cells of PTC (Fig. Slc). We then per-
formed immunohistochemistry with this mAb on tissue sec-
tions from a total of 267 cases of various thyroid tumors as
summarized in Table 1. Indeed PTC, featuring papillary struc-
ture with empty-appearing nuclei, preferentially presented
SNXS (94.2%, 113/120 cases positive), like TTF-1 and thyro-
globulin (Fig. 2). The sensitivity of SNX5 was 95.2% (100/
105 cases; data not shown), very close to the values of TTF-1
and thyroglobulin (both indicating 100%, 105/105 cases).
Interestingly, when we investigated the metastatic regions of
PTC to the lymph nodes or lung, the expression of SNX5 was
seemingly observed (Fig. 3b,c). Tumor tissues of composite-
type carcinoma with PTC and poorly differentiated carcinoma
demonstrated SNX5 expression only in the region of PTC
(Fig. 3d). These findings suggested that investigation of the
expression profile of SNX5 would be useful to define primary
and secondary lesions of PTC. Normal thyrocytes very faintly
expressed SNX5 (Figs 1b and 3a), implying that the amount of
SNX5 would be enhanced during the tumorigenesis of PTC
and other thyroid-origin tumors might show possible expres-

Table 1. Expression of SNX5 in thyroid tumors

HE SNX5

TTF-1

Thyroglobulin

Fig. 2. Papillary thyroid carcinoma (PTC) preferentially presents sort-
ing nexin 5 (SNX5). Immunohistochemical analysis of formalin-fixed
paraffin-embedded (FFPE) tissue sections of PTC. Representative
images of PTC are shown after hematoxylin and eosin (HE) staining of
serial tissue sections, which were also used for immunohistochemical
staining using anti-SNX5 mAb (48C2), anti-TTF-1 mAb (SPT24) and
anti-thyroglobulin pAb. The nuclei of tumor cells express TTF-1 and
the cytoplasm present thyroglobulin and SNX5 as well. Signals were
visualized by ordinary procedures with 3,3"-diaminobenzidine tetrahy-
drochloride (DAB). Original magnification: x400.

sion of SNX5 as well. In fact some other malignant thyroid
tumors expressed SNXS. However, the positive rates were
lower than those of PTC, ranging from 0% for medullary car-
cinoma (0/4 cases) and undifferentiated carcinoma (0/5 cases)
to 41.2% for follicular carcinoma (7/17 cases). Benign tumors
and tumor-like regions such as follicular adenoma and nodular
hyperplasia (adenomatous goiter) also showed SNX5 expres-
sion with 28.6% (6/21 cases) and 67.9% (19/28 cases) positive
rates, respectively. We further studied 173 cases of major
malignant tumors not originated from thyroid as summarized
in Table 2. As a result, we found very low positive rates of
SNX5 in tumors that emerged in the lung (2.6%, 1/38 cases),
breast (5.1%, 2/39 cases), colon (4.2%, 1/24 cases), liver (0%,
0/11 cases), kidney (0%, 0/21 cases), prostate (9.1%, 1/11
cases), ovary (14.3%, 2/14 cases), and uterus (6.7%, 1/15
cases). Our findings included other malignancies such as squa-
mous cell carcinomas and lymphomas that occurred in a vari-
ety of organs, which showed negative expression of SNX35

SNX5
Organ Tissue type Total
++ + -

Thyroid gland Papillary carcinoma 107 (89.2%) 6 (5.0%) 7 (5.8%) 120
L/N metastasis 60 (85.7%) 5(7.1%) 5 (7.1%) 70

Follicular variant 0 (0%) 1 (50.0%) 1 (50.0%) 2

Follicular carcinoma 5 (29.4%) 2 (11.8%) 10 (58.8%) 17

Medullary carcinoma 0 (0%) 0 (0%) 4 (100%) 4

Undifferentiated carcinoma 0 (0%) 0 (0%) 5 (100%) 5

Follicular adenoma 4 (19.0%) 2 (9.5%) 15 (71.4%) 21

Nodular hyperplasia 13 (46.4%) 6 (21.4%) 9 (32.1%) 28

267
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Fig. 3. Expression patterns of sorting nexin 5 (SNX5) in various
tumors. Formalin-fixed paraffin-embedded (FFPE) tissue sections of
various tumors were investigated and representative results are
depicted. (a) Normal thyrocytes demonstrating very faint expression
of SNX5. (b,c) Metastasis of papillary thyroid carcinoma (PTC) to a cer-
vical lymph node and the lung as shown in (b} and (c), respectively.
(d) Composite carcinoma of thyroid gland constituting poorly differ-
entiated carcinoma demonstrating non-papillary structure with large
nuclei in the left side and PTC in the right side. Note that only areas
of PTC in (b-d) express SNX5. Solid lines separate the lesions of PTC.
Original magnification: x200.

(Table S2). Collectively these suggested the characteristic pre-
dominance of SNXS in PTC, especially in the case of differen-
tial diagnosis from those of other tissue origin.’® So far
examination of the expression profile of SNX5 would be bene-
ficial for thyroid tumors with papillary lesions, while we failed
to find any significant relationship between expression profile
of SNX5 and tumor stages in PTC cases in this study (data not
shown).

High expression of Snx5 in chemically induced murine papillary
thyroid carcinoma. Next we investigated murine models of
PTC induced by the administration of chemical reagents.®®
After injection of DHPN as an initiator, mice were given free
access to drinking water containing SDM as a promoter for
consecutive weeks. PTC was eventually emerged 12 weeks
after the administration of SDM (Fig. 4a). When the tumor
lesions were examined by quantitative RT-PCR, the levels of
transcripts of Snx5 of the tumors were found to be about two-

Table 2. Expression of SNX5 in nonthyroid tumors

fold those of normal thyroid tissue (Fig. 4b). This suggested
that high expression of SNX5 might be a prerequisite for the
tumorigenesis of PTC.

Induction of Caspase-2 by SNX5. Following these studies, we
tried to determine the functional role of SNX5 in PTC cells.
To do this we initially investigated HEK293 cells that
expressed SNX5 at high levels (HEK293-SNX5 cells) and
mock control cells (HEK293-control cells), because HEK293
cells are often used to study a fundamental role of a molecule
in concern. When examined molecules regulating DNA repair,
cell cycle and apoptosis, we unexpectedly found a novel role
of SNX5 in the regulation of Caspase-2 (Fig. 5a,%7*!}). We
next established and examined transformants of 8505¢ PTC
cells that expressed SNX5 at high levels (8505¢c-SNX5 cells)
and mock control cells (8505c-control cells). Like HEK293-
SNXS5 cells, 8505¢c-SNXS5 cells showed upregulation of Cas-
pase-2 (Fig. 5b). Immunohistochemical analysis on PTC tissue
sections further demonstrated the presence of Caspase-2
(Fig. 5d), suggesting that SNX5 would induce Caspase-2 in
PTC cells. Conversely, when we investigated 8505c trans-
formed cells, overexpression of SNX5 conferred growth advan-
tage (Fig. 5¢). Therefore it was possible to consider that the
action of Caspase-2 relating to apoptosis might probably be
abrogated in the tumor cells.

Discussion

Here we report a unique role of SNX5 frequently presented in
PTC. TTF-1, like Galectin-3 and other markers, is often used
for the pathological diagnosis of PTC, although their expression
is also noted in most other malignancies with papillary struc-
tures such as breast, intestine, and lung carcinomas. ¥ Thy-
roglobulin is tissue-specific to the thyroid gland, but it should
not be limited to PTC. As noted in this study, adenocarcinoma
originated from tissues other than thyroid scarcely presented
SNXS5, which could be used to define primary and secondary
PTC. Currently we do not know the mechanism of the upregula-
tion of SNX5 in PTC, while our results indicated that SNX-
BAR molecules, including SNX5, might have a cardinal role in
the maintenance of thyrocyte function. This was expected from
experimental evidence that SNX-BAR molecules such as
SNX1, SNX2, SNX4, SNX5 and SNX6 operate to transfer small
cargos between endosomes and the trans-Golgi network. 2
Regarding tumor biology, SNX2 is highly presented in tumor
cells as a chimeric molecule with ABL1; however, the SNX5
gene is localized on chromosome 20pll, whose locus is
believed unlikely to be altered in the majority of PTC.“>4®

A further surprising finding of this study was that SNX5 could
control Caspase-2. Caspases, a family of cysteine-dependent

SNX5
Organ Tissue type Total
b + -

Lung Adenocarcinoma 0 (0%) 1 (2.6%) 37 (97.4%) 38
Breast Papillotubular carcinoma 1(2.6%) 1(2.6%) 37 (94.9%) 39
Colon Tubular adenocarcinoma 0 (0%) 1(4.2%) 23 (95.8%) 24
Liver Hepatocellular carcinoma 0 (0%) 0 (0%) 11 (100%) 11
Kidney Clear cell carcinoma 0 (0%) 0 (0%) 10 (100%) 10
Urothelial carcinoma 0 (0%) 0 (0%) 11 (100%) 11

Prostate Adenocarcinoma 0 (0%) 1(9.1%) 10 (90.9%) 11
Ovary Serous cystadenocarcinoma 0 (0%) 2 (25.0%) 6 (75.0%) 8
Mucinous cystadenocarcinoma 0 (0%) 0 (0%) 6 (100%) 6

Uterus Endometrioid adenocarcinoma 0 (0%) 1(6.7%) 14 (93.3%) 15
173
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Fig. 4. Expression of sorting nexin 5 (Snx5) in murine papillary thyroid carcinoma (PTC) induced by specific carcinogens. (a) Frozen tissue sec-
tions of murine thyroid tumors stained with hematoxylin and eosin (HE). One week after injection of N-bis(2-hydroxypropyl)-nitrosamine (DHPN),
sulfadimethoxine (SDM) was added to drinking water. Twelve weeks later, papillary structure resembling human PTC emerged in the tissues,
compared with control mice with no chemicals. Boxed regions are magnified in high power views. Representative figures from each group of six
mice are depicted. Eso, esophagus; Tra, trachea. Original magnifications: x20, x100, x400. (b) Quantitative reverse transcription-polymerase
chain reaction (RT-PCR) analysis of Snx5 of tumors 12 weeks after administration of SDM. Data represent relative levels of Snx5 transcripts com-
pared with the levels of 18s ribosomal RNA as an internal control. Values in each group of six mice are depicted as the mean = standard devia-
tion (SD).
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Fig. 5. Induction of Caspase-2 by sorting nexin 5 (SNX5) in papillary thyroid carcinoma (PTC). (a) Immunoblot analysis to explore molecules
regulated by SNX5. HEK293 cells transiently introduced with pCMV-HA-SNX5 or mock vector were established as HEK293-SNX5 cells or HEK293-
control cells, respectively, and analyzed. Left upper panel shows that the amounts of SNX5 at the protein level increase with the amounts of the
PCMV-HA-SNX5 vector (depicted as SNX5) in contrast to the control (depicted as VC, vector control), where anti-SNX5 mAb (48C2) and anti-
B-actin mAb were used to detect signals. In the right panel, examination of apoptosis regulators shows that Caspase-2 is increased in response to
exogenous SNX5 in a dose-dependent manner, as observed by two different anti-Caspase-2 Abs of a mouse mAb (clone 35) and a rabbit pAb
(poly6340). Molecules regulating DNA repair and cell cycle were also investigated as shown ‘in the left lower and middle panels, respectively,
where there are no significant differences at the protein level in the regulators. (b) induction of Caspase-2 by SNX5 in 8505¢ PTC cells. The stable
transformants of 8505¢ cells with pLVSIN-CMV-puro-SNX5 and mock vector were established after selection with puromycin as 8505¢-SNX5 cells
and 8505c-control cells, respectively. Immunoblot analysis of these cells with the same reagents and procedures of (a) demonstrates high expres-
sion of Caspase-2 in 8505¢c-SNX5 cells compared with 8505c-control cells. (c) Cell growth potentials of 8505¢-SNX5 cells and 8505c-control cells
established in (b). Three days after seeding different cell numbers per well using a 96-well flat-bottom plate, data were analyzed by WST-1 assay
in triplicate. Values of arbitrary units of absorbance of 8505¢-SNX5 cells and 8505¢-control cells are shown in gray and open boxes, respectively.
Data represent three independent experiments using three different transformants of 8505¢-SNX5 cells and 8505¢-control cells. (d) PTC simulta-
neously presents SNX5 and Caspase-2. Immunohistochemical studies were performed on frozen sections of PTC using mouse anti-SNX5 mAb
(48C2) and anti-Caspase-2 mAb (clone 35). Images were obtained by immunofluorescence microscopy after staining of tissue sections with an
Alexa 488-conjugated goat anti-mouse pAb (green). Mouse immunoglobulin G (IgG) was used as a negative control. Original magnification:
x200.
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aspartate-direct proteases, play critical roles in the initiation
and execution of cell death.“”*® Our results demonstrated that
PTC and parts of well-differentiated tumors certainly expressed
SNXS. In contrast, poorly differentiated thyroid carcinomas
including undifferentiated carcinoma did not. These findings
probably indicate some correlation of the expression profile of
SNX5 and the malignant potential of thyroid tumors. It is
reported that functional loss of SNX1 may affect alteration of
a cell regulatory mechanism, eventually leading to malignant
progressiong implying its tumor suppressor activity in'certain
tumors.®*> Therefore, as an SNX-BAR, SNX5 might also
have a tumor-suppressive function similar to SNX1. In particu-
lar, Caspase-2 controlled by SNX5 would have clinical rele-
vance, comprising the slow growth potential of PTC.

While the manner of the action of SNXS in the accumula-
tion of Caspase-2 remains unknown, SNX-BAR molecules
have been su%gested to play multiple roles to preserve cellular
integrity. > Considering this, together with our experimen-
tal results, excess amounts of SNX-BAR molecules can pro-
voke unique functions in cells, where saturation for binding to
the corresponding curvatures of endosomes eventually results
in the emergence of a “free form“ of SNX-BAR molecules
from the endosome binding. In this regard SNX-BARs can act
not only as transporters of vesicles, but also as possible sensors
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of the number or quality of the vesicles in cells. Thyrocytes
are probably regulated by SNX-BARs, which might represent
the number of intracellular loading units of endosomes with a
traditional sorting function and eventually monitor cellular
activities. It is well recognized that abnormalities of intra-cyto-
plasmic transfer of vacuoles such as endosomes occur in many
tumor cells. SNX6, which has the ultimate function of metabo-
lism of a p27kipl tumor suppressor as indicated by cell-trans-
formation experiments, is presented in PTC like SNXS5.¢4%%0
So far further investigations will provide clues to fully illus-
trate the functional significance of the SNXS5-Caspase-2 path-
way in the tumorigenesis of PTC.
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