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Epithelial ovarian cancer (EOC) is hallmarked by a high degree of heterogeneity.
To address this heterogeneity, a classification scheme was developed based on
gene expression patterns of 1538 tumours. Five, biologically distinct
subgroups — Epi-A, Epi-B, Mes, Stem-A and Stem-B — exhibited significantly
distinct clinicopathological characteristics, deregulated pathways and patient
prognoses, and were validated using independent datasets. To identify subtype-
specific molecular targets, ovarian cancer cell lines representing these molecular
subtypes were screened against a genome-wide shRNA library. Focusing on the
poor-prognosis Stem-A subtype, we found that two genes involved in tubulin
processing, TUBGCP4 and NAT10, were essential for cell growth, an observation
supported by a pathway analysis that also predicted involvement of microtubule-
related processes. Furthermore, we observed that Stem-A cell lines were indeed
more sensitive to inhibitors of tubulin polymerization, vincristine and vinorel-
bine, than the other subtypes. This subtyping offers new insights into the
development of novel diagnostic and personalized treatment for EOC patients.
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INTRODUCTION

Epithelial ovarian cancer (EOC) is the most lethal gynaecologic
malignancy. The global disease burden is approximately
225,000 new cases per year with a survival rate of 30% (Bray
et al, 2013). EOC, like most other cancers, represents a
heterogeneous collection of distinct diseases that arise as a
consequence of varied somatic mutations and epigenetic changes
acquired during the process of tumourigenesis and tumour
progression. This heterogeneity is apparent in tumour histo-
pathology such as serous, mucinous, endometrioid and clear cell
histotypes. It is now established that the discrete histological
types differ with respect to variable clinical features, including
epidemiological risk, spread patterns, somatic mutations,
chemotherapeutic response and patient prognosis (Gilks & Prat,
2009). The histologically distinct subtype, high-grade serous
adenocarcinoma, is the most common subtype and accounts for
approximately 70% of all ovarian carcinoma. Although this
histotype has distinguishing clinical characteristics from the other
subtypes, patients with this histological subtype still show
diverse outcomes and usually low survival rates, even after the
same or very similar treatment regimens (Gilks & Prat, 2009). One
possible reason for this low survival rate is that the high degree of
heterogeneity of EOC is not considered in the current standard of
care (Vaughan et al, 2011). Thus, it is critically important to
develop a systematic scheme to dissect the heterogeneity of
EOC (Bast et al, 2009; Vaughan et al, 2011).

Genome-scale expression data has been instrumental in
characterizing the complex biological diversity of human cancer
(Alizadeh et al, 2000; Perou et al, 2000; Verhaak et al, 2010).
Subtypes identified through expression microarray analyses are
coupled with multiple clinical parameters, such as patient
prognosis, age of onset and molecular marker expression
(Alizadeh et al, 2000; Perou et al, 2000; Verhaak et al, 2010).
Efforts to dissect EOC heterogeneity have correlated expression
patterns with clinical features, such as histological types,
aggressiveness and patient outcomes (Denkert et al, 2009;
Helland et al, 2011; Mok et al, 2009; The Cancer Genome Atlas
Research Network, 2011; Tothill et al, 2008). However, due to
varied sample sizes and analytical criteria, the reported subtypes
of EOC are similar but not completely the same (Helland et al,
2011; The Cancer Genome Atlas Research Network, 2011; Tothill
et al, 2008; Verhaak et al, 2013), with reports of six molecular
subtypes in 285 serous and endometrioid EOC (Tothill et al,
2008), yet only four molecular subtypes in 489 high-grade serous
EOC (The Cancer Genome Atlas Research Network, 2011). Thus,
a refined classification scheme with intense phenotypic char-
acterization remains to be established. Also, the molecular targets
relevant to cancer cell growth in these transcriptional subtypes
have not been identified. The development of diagnostic and
therapeutic strategies based on such a scheme is paramount for
improving therapeutic efficacy in patients with EOC.

Despite recent successes with molecular targeted therapies
for chronic myelogenous leukaemia, ER- or Her2-positive breast
cancer, and EGFR-mutated lung cancer, targeted therapies for

-EOC have not been as encouraging (Quintas-Cardama et al,
2009; Rosell et al, 2010; Yaziji et al, 2004). One approach for the

© 2013 The Authors. Published by john Wiley and Sons, Ltd on behalf of EMBO.
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identification of specific targets for EOC subtypes is the use of a
genome-wide, systematic, functional assessment of cancer cell
growth (proliferation and/or viability). The recent success in
suppressing the growth of cultured lung cancer cells with
activating EGFR mutations by siRNA (Sordella et al, 2004)
unveiled the sensitivity of siRNA-based approaches in distin-
guishing drivers of tumour growth. RNAI libraries, such as The
RNAI Consortium (TRC) lentiviral library (Moffat et al, 2006;
Root et al, 2006), have enabled systematic genetic studies in
mammalian cells, and have identified the genes responsible for
proliferation and viability in human cancer cell lines, particu-
larly in the context of synthetic lethality (Barbie et al, 2009; Luo
et al, 2008; Scholl et al, 2009).

The TRC library contains 80,000 lentivirally expressing short
hairpin RNAs (shRNAs), corresponding to 16,000 human genes.
In a systematic screen, a library such as this could be employed to
help isolate key regulators of cancer cell growth on a genome-wide
scale in a pooled format. Cultured cells would be infected with
a pool of the shRNA-expressing lentivirus library such that a
typical cell is subjected to only one integration event of an sShRNA-
expressing lentiviral genome into the host. Infected cells would
then be allowed to proliferate for a period of time to permit the
amplification or depletion of hairpins accordingly. Although the
vast majority of shRNAs have minimal effects on cell proliferation
and/or viability, an shRNA that silences the expression of a
critical gene will be relatively depleted. Conversely, the relative
amplification of an shRNA suggests that it targets a gene with an
inhibitory role in cell growth. These integrated hairpins are
then subsequently retrieved from the genomic DNA by PCR
amplification, and the abundance of each shRNA sequence can be
measured with microarray hybridization (Luo et al, 2008) or with
next-generation sequencing technology (Sims et al, 2011).

Notably, the successful application of this platform led to
the discovery of PAX8 as having a more essential role in
proliferation and survival in ovarian cancer cell lines than in cell
lines from other tissues (Cheung et al, 2011). Furthermore, TBK1
was identified as a synthetic lethal partner of oncogenic KRAS in
an earlier report using this method (Barbie et al, 2009). Despite
these successes, this technology has not been used to identify
subtype-specific growth-promoting genes, particularly in the
context of ovarian cancer.

Here, we describe a functional genomic approach to dissect the
heterogeneity of EOC. We established a large-scale meta-analysis
of EOC microarray datasets to determine EOC molecular subtypes.
Next, we integrated EOC cell line data into the molecular
subtyping scheme to derive an in vitro working model
representative of each molecular subtype. Finally, we utilized
genome-wide shRNA screening to identify molecular targets
crucial for cell growth in a selected subtype, which linked the
subtype with tubulin polymerization inhibitory drugs.

RESULTS

Molecular heterogeneity of epithelial ovarian cancer
We used a large collection of ovarian tumour gene expression
data (n=1538; serous: 1335, mucinous: 27, clear cell: 25,
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endometrioid: 96, and others: 55 samples; note that the
histological distribution is largely biased toward serous
adenocarcinoma as opposed to typical clinical setting) derived
from 16 independent studies (Supporting Information Table 1)
(Anglesio et al, 2008; Bild et al, 2006; Bowen et al, 2009; Denkert
et al, 2009; Hendrix et al, 2006; Hogdall et al, 2003; Hsu et al,
2007; Iorio et al, 2010; Jochumsen et al, 2007, 2009; Mok et al,
2009; Pejovic et al, 2009; The Cancer Genome Atlas Research
Network, 2011; Tone et al, 2008; Tothill et al, 2008; Tung et al,
2009). Among the 16 datasets, the dataset from TCGA was the
largest in sample number (n=406; 26.4% of all samples). All
publicly available datasets were included at the time of the study
(April 2010), and compiled with an Oslo cohort dataset (BD
and JMN). A strong batch-effect was removed by ComBat,
eliminating technical differences across data collection sites,
while conserving meaningful variations (Supporting Informa-
tion Fig 1A and B) (Chen et al, 2011; Johnson et al, 2007).
A preliminary statistical power analysis showed that 1500 or
more samples were required to achieve sufficient statistical
power (> 0.8) in capturing the complexity and dynamicity of
EOC (Supporting Information Fig 2; Supporting Information
Materials and Methods) (Fox & Mathers, 1997). In this
collection, known prognostic factors were correlated with
patient overall survival by univariate and multivariate Cox
proportional hazards analyses (Table 1).

To identify EOC molecular subtypes, we applied consensus
clustering (CC) to the collection and detected five clusters (Fig 1A)
that were characterized by markers of differentiation or cell-type
status and stromal components, including the presence of
infiltrated inflammatory cells (Supporting Information Table 2).
Subtypes were annotated by applying single sample gene set
enrichment analysis (ss-GSEA) (Verhaak et al, 2010) with
literature-curated gene signatures for epithelial, mesenchymal
and stem cells (Supporting Information Text), and confirmed this
characterization with the use of appropriate markers. The
sithouette plot and SigClust (Liu et al, 2008b) analysis confirmed
tumour similarity within each subtype, indicating the robustness
of the classification (Supporting Information Fig 3A). The
subtype distribution by cohorts and histology is presented in
the Supporting Information Text and Supporting Information
Figs 4A and B. Subtype distribution within the samples, taken by
laser capture microscopy (GSE10971, GSE14407 and GSE18520),
implied that the subtypes were intrinsic to cancer cells, and not
dependent on stromal cells (Supporting Information Text).

We compared our subgrouping with a previous classification
(285 samples; GSE9891) included in our combined dataset
(Tothill et al, 2008). An overall concordance of 82.9% for all of
the subtypes was found (Supporting Information Table 3;
Supporting Information Fig 3B); thus, our large-scale analysis
confirmed the previous study, and provided finer distinctions
not detectable with fewer samples. Also, we noted that the
proposed molecular subtypes were akin to that of serous ovarian
carcinoma as proposed by The Cancer Genome Atlas Research
Network (2011} (Supporting Information Fig 3B). However, the
subtyping schemes from the previous studies did not show a
one-to-one match with our proposed classification (Supporting
Information Table 3; Supporting Information Fig 3B; Supporting
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Information Text; see the mutual relationships among Epi-A or
Epi-B/C2, C3 or C4/Immunoreactive or Differentiated). This
discrepancy may suggest a shared biological feature across these
subgroups and hence may cause an imperfect distinction among
the subtypes with predictive models as described later (Fig 1D;
Supporting Information Fig 8C; Supporting Information Table §;
Supporting Information Text). We also noted that TCGA
molecular subtyping did not include a Stem-B/C6 population
(Supporting Information Fig 3B; Supporting Information Text).
The proposed subtypes in the current study are similar to the
previously identified molecular subtypes yet reveal novel
biological features.

Correlation of subtype with clinicopathological parameters
We correlated the subtypes with various clinicopathological
parameters to ascertain their clinical relevance (Supporting
Information Fig 6A; Supporting Information Tables 4A and B;
note that the clinicopathological information obtained with each
dataset was neither standardized nor centrally reviewed across
the datasets; therefore, there might be misdiagnosed or mis-
evaluated samples included). We found a significant correlation
between subtype and patient outcome: Epi-A, Epi-B and Stem-B
subtypes had a better prognosis in a Kaplan-Meier analysis
(Fig 1B), while Mes and Stem-A tumours were linked with
poorer outcomes. The Mes subtype included more advanced
staged and metastasized tumours (Supporting Information
Fig 6A; Supporting Information Tables 4A and B), whereas
some Stem-A tumours were already found to be at stages 1 and 2
(Supporting Information Fig 6B), with poorer outcomes than
those of other subtypes, even at stages 1 and 2 (Supporting
Information Fig 6B), Furthermore, Stem-A tumours were
enriched in older patients (Supporting Information Fig 6A;
Supporting Information Tables 4A and B). The Stem-B subtype,
on the other hand, was characterized by multiple histological
types, including the majority of mucinous, endometrioid and
clear cell carcinoma and some serous carcinoma (Supporting
Information Figs 4B, 5 and 6A; Supporting Information
Tables 4A and B). Focusing solely on serous tumours
(Supporting Information Fig 6D), the frequency of Epi-A-
classified tumours decreased significantly as tumour classifica-
tion moved from serous tumours with low malignant potential
(LMP) through to high-grade tumours, whereas the opposite
shift in pattern was true for Mes and Stem-A serous tumours. All
subtypes displayed high-grade serous carcinoma, with distinc-
tions in survival in Kaplan-Meier curves (Supporting Informa-
tion Fig 6C). The effect of molecular subtyping on prognosis
was significant in both the univariate and multivariate Cox
regression analyses with multiple combinations of clinically
relevant parameters and status (Table 1; Supporting Information
Tables 5A-E; Supporting Information Text).

Clear distinctions were also observed in the enrichment of the
gene expression signatures for various pathways. The ss-GSEA
analysis of 1538 samples using 6898 gene sets (GSEA databases
Supporting Information Table 6) revealed a subtype-specific
enrichment of 207 gene sets (Fig 1C; Supporting Information
Table 7) (Subramanian & Simon, 2011). Mes tumours correlated
with Metastases and TGF-g-related pathways, consistent with
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Table 1. Univariate and multivariate Cox proportional hazards regression analysis for multiple clinical variables and tumour subtypes.

Clinical variables Sample size (total n=539) Univariate (HR, 95% CI) p-value Multivariate (HR, 95% Cl) p-value
Age (year)

<55 175 (32.47%) 1 1

>55 364 (67.53%) 1.403 (1.071-1.839) 0.0141 1.285 (0.9781-1.687)* 0.07173°
Stage

loril 47 (8.72%) 1 1 :

1 or v 492 (91.28%) 3.907 (1.843-8.285) 0.00038 3.429 (1.591-7.389)% 0.00165°
Grade

1 17 (3.15%) 1 1

>2 522 (96.85%) 2.58 (0.9578-6.949) 0.0608 1.365 (0.494-3.763)° 0.54799°
Metastasis

Primary 500 (92.76%) 1 1

Metastasis 39 (7.24%) 1.349 (0.8323-2.185) 0.224 1.391 (0.854-2.27)7 0.1853?
Subtype

Non-Epi-A 483 (89.61%) 1 1

Epi-A 56 (10.39%) 0.7103 (0.4498-1,122) 0.142 0.9449 (0.5834—1.53’)b 0.8176"

Non-Epi-B 384 (71.24%) 1 1

Epi-B 155 (28.76%) 0.69 (0.5206-0.9144) 0.0098 0.7347 (0.5532-0.976)° 0.033"

Non-Mes 361 (66.98%) 1 1

Mes 178 (33.02%) 1.171 (0.907-1.513) 0.225 1.01 (0.7771—’.!..324)b 0.9164°

Non-Stem-A 411 (76.25%) 1 1

Stem-A 128 (23.75%) 1.417 (1.075-1.868) 0.0135 1.382 (1.045~-1.83)° 0.0234°

Non-Stem-8 517 (95.92%) 1 1

Stem-B 22 (4.08%) 1.204 (0.6383-2.271) 0.567 1.14 (0.6033-2.149)° 0.6886°

Epi-A, epithelial-A; Epi-B, epithelial-B; Mes, mesenchymal; Stem-A, stem-like-A; Stem-B, stem-like-B.

p-values below 0.05 are shown in red.

*Multivariate Cox regression analysis of clinical variables with Stem-A subtype.

°For multivariate Cox regression, each subtype was independently analysed with the other clinical variables (age, stage, grade and metastasis) from the remaining

subtypes.

their link with epithelial-mesenchymal transition (EMT) and
metastasis (Supporting Information Fig 6A) (Maruyama et al,
2000; Yin et al, 1999). In comparison, chromatin modification
gene sets were highly enriched in the Stem-A subtype (Fig 1C;
Supporting Information Table 7). Overall, this expression-based
subtyping scheme dissected ovarian serous carcinoma hetero-
geneity into subgroups with similar biological properties.

Predictive framework for EOC subtype classification

We next developed a predictive model with BinReg as a
potential diagnostic tool for quantitative gene expression-based
subgroup assignment (Supporting Information Fig 7A and B)
(Gatza et al, 2010). This was performed using microarrays of
representative samples for each subtype (n =50 per subtype).
Fig 1D shows predicted probabilities for subtype status of the
remaining samples (n=1413) not used in building predictive
model. A comparison of the subtype predicted by BinReg with
that classified by the CC (Fig 1A) revealed an overall 78.8%
concordance for all subtypes (78.5% for core samples) (Fig 1D;
Supporting Information Table 8), and a highly similar pattern of
patient outcomes (Fig 1B; Supporting Information Fig 7C). This
demonstrated the powerful predictive capability of the method,
with the concordance comparable with those reported in
previous studies for multiple breast cancer cohorts (Supporting
Information Text) (Calza et al, 2006; Haibe-Kains et al, 2012).
We affirmed the accuracy of this method using 10-fold cross-
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validation (Supporting Information Figs 8A-C) (Blum et al,
1999; Kim, 2009; Konavi, 1995), 3-way split cross-validation
(Ewens & Grant, 2001), and also by comparing BinReg to
ClaNC (Supporting Information Fig 9; Supporting Information
Materials and Methods).

To ensure the robustness of the classifier, we performed
validation on five independent ovarian cancer datasets (total
n=418; Supporting Information Table 1) (King et al, 2011;
Konstantinopoulos et al, 2010; Meyniel et al, 2010) that were
not included in the prediction modelling. We observed
high concordance for the gene expression patterns and clinico-
pathological characteristics in the predicted molecular subtype
(Fig 1E; Supporting Information Tables 4A, C and D). Using 260
samples from the validation set (GSE19829 [n = 28], GSE30311
[n=47] and GSE26712 [n=185]), for which patient outcome
information was supplied (Konstantinopoulos et al, 2010), the
Kaplan-Meier analysis on the BinReg-predicted molecular
subtypes revealed a similar pattern of patient prognoses with
that of the original CC analysis (p = 0.0372 by the log-rank test;
Fig 1B; Supporting Information Fig 7D) for subtypes other than
Stem-B (Supporting Information Text). ClaNC (Dabney, 2006;
Verhaak et al, 2010) further confirmed the highly comparable
and predictive capability of this EOC subtyping (Supporting
Information Fig 8D). Thus, the molecular subtype prediction
model can assign clinical samples with unknown subtype status
with high accuracy.

EMBO Mol Med (2013) 5, 1-16
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Figure 1. CC analysis revealed five subtypes of epithelial ovarian carcinoma.

A.

Gene expression heatmap for the five tumour clusters (red = high; green = low expression). CC of 1538 samples identified five subtypes, designated by the
associated gene components. Note the similarities between Epi-A/Stem-B subtype tumours, between Epi-A/Epi-B subtypes for epithelial genes, and the
expression pattern of Epi-A/Stem genes. Also note that none of cultured cell-line data was included in this analysis.

Kaplan—Meier survival analysis for each subtype. Among data for 1538 patient samples, survival information for 978 samples was available (GSE3149: 143,
GSE9891: 277, TCGA: 400, GSE14764: 80, GSE18520: 53 and Oslo ¢cohort: 25 samples) (Epi-A: 80, Epi-B: 264, Mes: 284, Stem-A: 220, Stem-B: 61 and others: 69
samples) and used for the Kaplan-Meier analysis.

Subtype-specific pathway enrichment. Heatmap shows subtype-specific single sample gene set enrichment analysis (ss-GSEA) scores (false discovery rate
(FDR) in significance analysis of microarrays (SAM) g =0%, receiver operating characteristic (ROC) >>0.85) for 1538 ovarian cancer samples. Red = high;
green = low enrichment scores. Gene sets are aligned in descending value of ROC. Samples are aligned by subtype classification and SW. Deep colour = positive
SW (core samples); pale colour = samples classified, but negative SW. “Others” indicates the unclassified samples not grouped in any of the five subtypes in the
initial CC analysis in Fig 1A. Arrows indicate positions of selected pathways.

. Ovarian cancer subtype predictors (BinReg). A heatmap is shown for the predicted probabilities of subtype status on 1413 clinical samples not used in the

subtype predictor generation. Red = high; blue = low. Samples were aligned according to subtype classification by CC and SW. Colour as for (C). “Others” is
represented as for (C).

. Heatmap of Spearman correlation Rho between the subtype of training data (n = 1538) and the BinReg predicted subtype of samples in five independent

datasets (GSE19829, GSE20565, GSE30311, GSE26712 and GSE27651; total n=418). The validation samples are aligned harizontally according to the
predicted subtype, whereas the training samples are aligned vertically according to the subtype. Yellow = high correlation; black = low correlation.
Abbreviations: Epi-A, epithelial-A; Epi-B, epithelial-B; Mes, mesenchymal; Stem-A, stem-like-A; Stem-B, stem-like-B.

Identification of representative cell lines for each subtype

Cell lines corresponding to each EOC subtype were identified for
in vitro modelling. We performed two rounds of CC on a pool of
datasets from 142 cultured EOC cell lines, resulting in Epi-A: 29,
Epi-B: 10, Mes: 34, Stem-A: 42 and Stem-B: 27 cell lines
(Supporting Information Figs 10A and B); the results were
unambiguously supported by similarity matrices, the silhouette
values with significant p-value by SigClust (Fig 2A) (Liu et al,
2008b), as well as consistent subtype assignments amongst

EMBO Mol Med (2013) 5, 1-16

biological replicates of 28 cell lines (Supporting Information
Table 9; Supporting Information Text). The cell-line subtype
predictors (Fig 2B) were then applied to tumour core samples to
estimate the molecular similarity of the subtypes between
in vivo tumours and in vitro cell lines. We observed a high level
of accuracy in the area under the curve (AUC: 0.744 to 0.918)
and a high concordance between the predicted tumour subtype
by a cell-line classifier with the initially assigned tumour
subtype (75.8-87.9%) (Fig 2B). Furthermore, we found a high

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

28



Research Article

www.embomolmed.org

A subtyping scheme for epithelial ovarian cancer

A B
R < SigClust . Mes Stem-A Slem-B
2 s . pvalus Cell Line
- L o4 x102 Signature
L 35x10% Clinical
Sample
]
18x30 Probability
23
1.5 %10 Auc F
29x102.
0z <02 0.7437 Q.7694 0.8860 0.9183 07714
s ’ Concordance  87.92% 75.83% 81.26% 86.25% 87.92%
< ; v p=0.0029
Epi-B = s —————————— p=0,0005
i ; - " @ =0.0028
Epi-A Mes Stem-A Stem-B E - P=0.0416
: Cadl adhasion = ] v ! £=0.0127
2 r p=00140
0; % 2564« ‘iv
[ Fibrinolysls 3
£ gy S :
w hromabin o o - : 3
. modification 2 161 o e
©
=
& Y T T Y g
<)
.
0.0 1.0 f £=0.0145
— p=0.0051
Concordance  Epi-A les Stem-A  Stem-8 = 40 e ———— v p=0.0126
8 £ 10%4 . W »
Tumor to 73.23% 8595%  77.46% 80.89% 85.92% Z 10 . E
CellLine  (72.87%) (86.04%) (78.29%) (83.72%) (85.27%) = £ %
g0 '
o) o
© s} ® ¥ v v

Figure 2. identification of cell line subtype status.

A.

o

Five subtypes in ovarian cancer cell line classification. Left panel. CC matrix of 142 ovarian cell lines. Red = high; white == low similarity. Middle panel. Gene
expression heatmap of ovarian cell lines. Red = high; green =1low expression. Right panel. Silhouette analysis for each subtype. Column to the right of
sithouette plot is the SigClust (Liu et al, 2008b) p-value indicative of cluster significance for each subtype.

Prediction of clinical samples by cell line predictors using BinReg. Upper panel. Gene expression heatmaps for subtype predictors based on cell line expression
data. Red = high; blue =low expression. Middle panel. Predicted probability of core clinical samples for cell-line subtype predictor by BinReg. Each subtype
signature detected the probability difference between the corresponding subtype from the remaining subtypes with statistical significance (p < 0.0001;
Mann-Whitney U-test). Lower panel. Receiver operating characteristic (ROC) analyses of subtype predictors. Overall accuracy is shown by the area under the
ROC curve (AUC) (Pejovic et al, 2009). Concordance (%) of the subtype status derived from CC with the prediction based on the cell line subtype predictors.
Upper panel. Cell line subtype-specific pathway enrichment. Subtype-specific single sample gene set enrichment analysis (ss-GSEA) scores (false discovery rate
(FDR) of the significance analysis of microarrays (SAM) g = 0%, ROC > 0.85 as overexpressed gene sets) for 142 ovarian cell lines are shown as a heatmap.
Red = high; green =low enrichment scores. Gene sets aligned in descending value of ROC; samples are aligned according to the subtype classification by CC
and the SW. Deep colour = positive SW (core samples); pale colour =samples classified to a subtype, but negative SW. Arrows indicate positions of selected
pathways. Lower panel: Concordance {%) of the subtype status (from CC by genes) with the prediction result (from BinReg based on the subtype predictors by
enrichment scores). The number in parentheses indicates the accuracy of the prediction against core samples.

. Characterization of in vitro phenotypes of cell lines in each subtype. Upper panel. Population doubling time of a cell line was measured with the MTS assay

(Matsumura et al, 2011) and is shown as dot plots. Lower panel. Anchorage-independent cell growth ability for each cell line was measured using the
methylcellulose assay (Mori et al, 2009). Log;,-transformed colony number is shown. p-values were computed by Mann-Whitney U-test, Abbreviations: Epi-A,
epithelial-A; Epi-B, epithelial-B; Mes, mesenchymal; Stem-A, stem-like-A; Stem-B, stem-like-B.

correlation between clinical tumour subtype and cell line
subtype in the Spearman correlation map analysis (Supporting
Information Fig 10C). These findings indicated a high level of
similarity between ovarian cancer cell lines and tumour
transcriptomic expression patterns (Fig 2B; Supporting Informa-
tion Fig 10C).

We next compared the pathway activation for these 142 cell
lines with that of the clinical tumours using ss-GSEA analysis
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(Figs 1C and 2C; Supporting Information Table 10). Epi-A cell
lines were characterized by cell adhesion-related gene sets,
reflecting enrichment of epithelial cell markers. Importantly,
33 of the 402 cell line subtype-specific gene sets were shared
with tumours, including enrichment of fibrinolysis pathway and
chromatin modification in the Mes and Stem-A subtypes,
respectively (Supporting Information Table 10); this was
confirmed with BinReg analyses using a statistical model with

EMBO Mol Med (2013) 5, 1-16
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pathway enrichment scores (Fig 2C). We estimated the subtype
status of clinical samples by fitting a Bayesian probit regression
model with the subtype-specific enrichment scores for cell lines.
Reverse estimations were also performed from the tumour
samples to the cell lines. By applying the same method as in
Fig 2B, we observed high levels of concordance between the
predicted subtype of tumours by the cell-line ss-GSEA pathway
classifier with the initially assigned tumour subtype (54.2-
81.1%) and reciprocally high concordance between the
predicted cell line subtype by a tumour ss-GSEA pathway
classifier with the original cell line subtype (72.9-86.0%). These
results indicated strong similarity between cell lines and
tumours in the pattern of pathway enrichment (Fig 2C). We
then correlated the in vitro phenotypes for the molecular
subtypes, and identified a significant correlation between cell
line subtypes with population doubling time and anchorage-
independent cell growth potential (Fig 2D). Epi-A and Epi-B cell
lines had longer population doubling times and decreased
colony-forming ability, which may reflect the less-aggressive
behaviour of clinical tumours. Overall, these cell lines can serve
as good experimental models for each molecular subtype.

Genome-wide shRNA screens identified subtype-specific
growth-promoting genes
Genes essential to each subgroup were investigated via genome-
wide screens using the pooled TRC shRNA library, with the
presumption that tumours within the same subtype would share
molecular mechanisms for their growth (proliferation and/or
survival). The experimental strategy of the screen is shown in
Fig 3A. Briefly, we conducted pooled shRNA screens on 14
ovarian cell lines, representing Epi-A, Mes and Stem-A subtypes,
that differ profoundly in gene expression and clinical properties
(Figs 1A and B) (4 Epi-A: OVCA429, OVCAR-8, OVCA433, PEOL;
5 Mes: ovary1847, HEY, HeyAS8, HeyC2, SKOV-3; and 5 Stem-A:
A2780, CHI1, PA-1, SKOV-4, SKOV-6). These 14 cell lines were
selected based on their high silhouette width (SW) values for the
subtype signature in order to screen with ““more representative”’
cell lines for a given subtype, with a notion of PA-1 as a
teratocarcinoma cell line (Supporting Information Table 11).
Two independent screens were performed to ensure repro-
ducibility. The initial assay was designed to determine
concordance among four experimental replicates of a single
cell line per subtype (OVCA433, HeyAS8 and PA-1 was used to
represent Epi-A, Mes and Stem-A subtypes, respectively).
Spearman correlations confirmed tight correlations among the
quadruplicates in the screen (Spearman rho=0.7528 £ SEM
0.0113, p < 10719). The second screen was performed in 14 cell
lines with the intention to detect differences across subtypes as
well as concordance among different cell lines within a subtype.
Since the screenings detected similarity in subtype-specific
depletions or amplifications of hairpins, we combined both
datasets and further performed RIGER analyses (Luo et al, 2008)
on the compiled data. Supporting Information Fig 124 illustrates
highly distinctive genome-wide patterns in the copy number of
subtype-specific shRNAs that were depleted or amplified. The
effect size was reasonably large (Cohen, 1988; Monk et al, 2012;
Syrjanen & Syrjanen, 2013): the mean effect sizes of depleted
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hairpins were Epi-A=-0.9098; Mes=-0.7681 and Stem-
A=-0.7818, and those of amplified hairpins were Epi-
A=0.8128, Mes=0.8282 and Stem-A=0.7486 (Supporting
Information Fig 12B; Supporting Information Table 12).

The primary aim of the screens was to identify genes that,
when inhibited, would render growth suppression'on a certain
molecular subtype. To this end, we identified depleted shRNAs
targeting 77 genes for Epi-A, 85 genes for Mes, and 88 genes for
Stem-A subtypes (Fig 3B), with high significance in subtype
enrichment (g < 0.005) and Hairpin Score (>0.2). These genes
are potentially involved in growth promotion of the cells in a
given subtype (Supporting Information Table 12). Conversely,
we identified amplified hairpins targeting 43 genes for Epi-A, 72
genes for Mes, and 44 genes for Stem-A (Fig 3B) that may have a
suppressive effect on cell growth of the given subtype under
conventional culture conditions (Supporting Information Table
12). For most of the growth-related functional genes, the
abundance of shRNAs did not show significant correlation to
gene expression, implying that the functional relevance of the
genes was independent of their expression levels. Differences in
experimental design and detection platforms hampered the
integration of the results from this screen with that of another
published screen using the same shRNA library (Supporting
Information Materials and Methods) (Cheung et al, 2011).

Validation of subtype-specific growth promoting genes

To validate the effects of the genes identified from the screens,
we focused on the Stem-A subtype (given its worse clinical
outcome) and targeted individual genes with siRNA (Fig 3C).
We chose 135 genes depleted in Stem-A subtypes based on a less
stringent g-value cut-off of 0.03 from RIGER analysis (note that a
more stringent ¢-value was used in Fig 3B; Supporting
Information Table 13). The validation of these 135 genes was
performed in a process that consisted of four steps (Fig 3C; with
more details available in ““Materials and Methods”) in order to
identify siRNAs that inhibited growth on Stem-A cells but had a
minimal effect on other cells. Stem-A-specific essential genes
were identified as positive hits based on the following
comparisons using Student t-tests: (1) comparison between
the growth inhibitory effect of silencing the gene of interest with
that of the siRNA negative controls in the Stem-A cells; and (2)
comparison between the effect on Stem-A cells with that on the
references for the subtype (non-Stem-A cells) (Fig 3C). Relying
on criteria of >20% growth suppression in PA-1 with p < 0.001
in a Student’s t-test comparing control with the gene of interest
and >20% growth suppression in PA-1 as compared with the
reference cell line, 28 genes were found in the first step of
validation to be selective for PA-1 cell growth (Supporting
Information Table 13). In the second step, we examined the
effect of these 28 genes in PA-1, HeyA8 and OVCA433, and
further confirmed the growth suppressive effect of 14 of these
28 genes (Supporting Information Table 13). For the third step,
we switched platforms from “‘siGenome’ to ““On-Target Plus
siRNA” to further validate our observations using different sets
of target sequences in the genes as well as to reduce possible off-
target effects. After this step, five genes (TUBGCP4, NATIO,
GTF3C1, BLOCIS1 and LRRCS59) were validated as PA-1-relevant
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Figure 3. Subtype-specific functional relevance genes.
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Schematic showing identification of functionally relevant genes for cell growth in a subtype-specific manner.

Gene centred and normalized heatmap, compiled from two independent screens, shows hairpins selectively depleted or amplified in each subtype. The
quadruplicates of three cell lines (OVCA433; Epi-A, HeyA8; Mes and PA-1; Stem-A) were assayed in the initial screen, while the second screen used one
experimental replicate of 14 different cell lines (4 Epi-A: OVCA429, OVCAR-8, OVCA433, PEOL; 5 Mes: ovary1847, HEY, HeyA8, HeyC2, SKOV-3 and 5 Stem-A:
A2780, CH1, PA-1, SKOV-4, SKOV-6). Using reads with a perfect match to the reference sequences (Sigma-Aldrich), the copy number of each hairpin was
counted and normalized against the total number of reads in a sample and then rendered to RIGER analysis to find phenotype-specific, functionally relevant
genes (Luo et al, 2008). Top panel. Subtype-specific depleted hairpins in Epi-A, followed by Mes and Stem-A subtypes. Each row represents ShRNA hairpin copy
number and is sorted according to the hairpin score identified in RIGER (Luo et al, 2008). Only hairpin scores >0.2 and genes significantly enriched in a subtype
(g < 0.005) are shown. Bottom panel. Subtype-specific amplified hairpins arranged as in the top panel. Red = higher; green =lower copy number counts.
Schematic of siRNA experiments validating the identified Stem-A-specific growth-promoting genes. This analysis led to the identification of two functionally
relevant genes specific to Stem-A: TUBGCP4 and NAT10.

Validation of subtype-selective effect of the genes on cell growth by siRNAs. Upper panel. Timeline of assay performed for the siRNA reverse-transfection
experiment. Lower panel. Effect of gene knockdown on cell growth (bar plots) as a percentage ratio of growth suppression, normalized against the negative
controls. Error bar indicates the SEM of three independent experiments. Stem-A-selective growth suppression effect is shown for the inhibition of the
five validated PA-1 (Stem-A)-specific growth-promoting genes in OVCA433, HeyA8 and PA-1, respectively. Green = OVCA433 (Epi-A); red = HeyA8 (Mes);
blue =PA-1 (Stem-A).

Effect of silencing PA-1 (Stem-A)-selective genes on cell growth in other ovarian cancer cell lines. The five PA-1-selective genes were silenced individually by
SiRNA in non-Stem-A (OVCA433, OVCA429, PEO1, HeyAB, ovary1847, SKOV-3 and HEY) and Stem-A (PA-1, CH1, A2780 and OVCAR-3) cell lines in three
independent experiments, and examined for their effect on cell growth relative to the negative control. Averaged percentages of growth suppression in each
group are shown as a box plot and were statistically evaluated using Mann-Whitney U-test with GraphPad Prism. Bottom, middle and top lines of each box
represent the 25th percentile, median and 75th percentile, respectively, and whiskers extend to the most extreme values of the group. Inhibition with
SiTUBGCP4 or siNAT10 significantly suppressed cell growth of Stem-A cell lines as compared to non-Stem-A cell lines. Grey = non-Stem-A cell lines;
blue = Stem-A cell lines. Abbreviations: Epi-A, epithelial-A; Mes, mesenchymal; Stem-A, stem-like-A.
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genes (Fig 3D). Importantly, PA-1 cells showed increased
cleavage of Caspase-3 and PARP after treatment with
siTUBGCP4, siNATIO0, siGTF3C1 or siLRRCSY9, indicating
activation of apoptosis in these cells (Supporting Information
Fig 13C). Finally, as the fourth step of the validation process, the
experiments were conducted with use of additional non-Stem-A
(Mes: ovary1847, SKOV-3 and HEY; Epi-A: OVCA429 and PEO1)
and Stem-A (CH1, A2780 and OVCAR-3) cell lines to ensure its
reproducibility and to exclude any possible impact of PA-1 cells
being derived from a different cell-of-origin (teratocarcinoma),
even though it had the highest SW of the Stem-A cell lines.
TUBGCP4 or NATI10 siRNA treatment reproducibly resulted in a
statistically significant reduction in cell growth for the Stem-A
cell lines, while cell growth for non-Stem-A cell lines was not
affected (Fig 3F). These multiple stages of rigorous validation
confirmed the dependence of Stem-A cell lines on TUBGCP4
and NATI0 in cell growth and ensured that this effect was not
limited to PA-1 cells. Silencing of the other three genes (GTF3CI,
BLOCISI and LRRCS9), albeit not statistically significant, also
exhibited a tendency toward differential toxicity in Stem-A
cells (Fig 3E). These observations demonstrate that subtype
classification based on gene expression is indeed mirrored by
patterns of functional genetic determinants of cell viability.
Moreover, the validated genes can provide us with an insight
into the molecular mechanisms of Stem-A tumour growth.

Microtubules as potent targets in Stem-A subtype

TUBGCP4 is a component of y-tubulin ring complex, which is
critical for nucleation of tubulin complexes in the cell (Fava et al,
1999; Moritz et al, 1995, 1998). NAT10 is reported as a possible
acetyl transferase of a-tubulin that may be involved in the
stabilization of microtubules (Hubbert et al, 2002; Shen et al,
2009). The selective effect of siTUBGCP4 or siNAT10 on Stem-A
cell lines (Fig 3E) may suggest that the Stem-A cell lines are more
susceptible to mitotic inhibition than other subtype cell lines.
An examination of the expression data of clinical tumours and
cell lines revealed higher activity in the enrichment score of
microtubule/tubulin-related pathways for Stem-A than that for
non-Stem-A subgroups (p=6.6 x107% and p=2.1x107° by
Mann-Whitney U-test, respectively; Fig 4A; Supporting Infor-
mation Table 16) (Verhaak et al, 2010). In addition, TUBGCP4
knockdown resulted in a down-regulation of the Microtubule
gene set in the transcriptome across Epi-A, Mes and Stem-A cell
lines (Supporting Information Fig 13B; Supporting Information
Table 14; Supporting Information Text).

These findings prompted us to examine the in vitro sensitivity
of Stem-A cells to microtubule-targeted drugs such as paclitaxel,
vincristine and vinorelbine using a panel of ovarian cancer cell
lines (12 non-Stem-A: OVCA433, OVCA429, OVCAR-8, PEOI,
OVCA432, OVCA420, HeyA8, HEY, HeyC2, SKOV-3, ovary1847
and DOV 13; 6 Stem-A: PA-1, CH1, A2780, OVCAR-3, SKOV-4
and SKOV-6). A growth inhibitory concentration of 50% (GI50;
drug concentration for 50% growth inhibitory effects on cells)
was measured for each cell line in at least three independent
experiments. The Stem-A cell lines were found to be more
sensitive to inhibitors of tubulin polymerization, vincristine
and vinorelbine (Lobert et al, 1996), than non-Stem-A cell
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lines (Fig 4B). In contrast, paclitaxel, a drug that stabilizes
microtubules (Manfredi & Horwitz, 1984), resulted in no
significant distinction between the two subgroups (Fig 4B).
Moreover, 48-h vincristine treatment caused apoptosis in Stem-
A cell lines at 1.2 nM (Fig 4C), whereas minimal or no apoptosis
was observed in non-Stem-A cell lines, even at 10nM
concentrations (Fig 4C). Taken together, these findings provide
evidence that drugs targeting tubulin polymerization can be
useful in treating patients with Stem-A EOC with poor clinical
outcomes.

DISCUSSION

Using a large collection of EOC samples, we identified five
molecular subtypes (Epi-A, Epi-B, Mes, Stem-A and Stem-B) that
exhibited distinct clinicopathological characteristics and rates of
overall survival. Of these, Epi-B and Stem-A subtypes were
found to be independent prognostic factors. We established a
prediction model for these subtypes and validated this model on
an independent dataset. For the first time, using a genome-wide
shRNA screen, we found that subtype-matched cell lines have
distinct vulnerabilities. In particular, the poor-prognosis Stem-A
subtype exhibited elevated microtubule activity and was
sensitive to several microtubule polymerization inhibitor drugs,
such as vincristine and vinorelbine. These results offer possible
therapeutic strategies to target specific subtypes of EOC.

Multiple clinicopathological parameters are linked with
prognosis in EOC patients, such as age at diagnosis, peritoneal
dissemination, metastasis to distant organs/lymph nodes, and
response to platinum-based standard chemotherapy (Gilks &
Prat, 2009). Here, we add transcriptional subtype as an
additional prediction parameter. Although a correlation
between the Mes subtype and patient prognosis was detected
with a log-rank test, it was masked in the multivariate Cox
analysis; this suggests that the Mes subtype may be confounded
in the analysis because it is significantly enriched in tumours ata
more advanced stage. Nevertheless, since Stem-A and Epi-B
subtypes were detected as significant independent prognostic
factors in both the univariate and multivariate analyses, this
demonstrates the clinical importance of our classification
scheme. Of note, a previous study of 489 samples could not
correlate their molecular classification with patient overall
survival, although a more recent study correlated two TCGA
subtypes with relapse-free survival using the same cohort (The
Cancer Genome Atlas Research Network, 2011; Verhaak et al,
2013). This is perhaps derived from a bias internal to the cohort,
and suggests the need for a substantial number of samples,
which is provided by combining multiple datasets, as presented
here.

Genomic profiling aimed at dissecting the complexity of
cancer could provide further opportunities for the identification
of relevant molecular targets. However, a major challenge is to
identify cell lines that reflect the relevant underlying tumour
biology (Chin et al, 2011). Expression studies of cultured
breast cancer cell lines have shown that in vitro cells retain
subtype characteristics corresponding to those of their in vivo

© 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

32



10

Research Article
A subtyping scheme for epithelial ovarian cancer

www.embomolmed.org

0.8+ T p=BExi0Y Paclitaxel
. sensitive 4 10
¥
v
0.8+ — 22% —E
Ovarian R R e i
@ Clinical Tumors g N
- £
8 04 G w
5]
b=
@ nt .
£ o v Nor-Stem-A StemeA
=
2
& FrTmTT——— ' p=2.1x106
iy Q‘j 5 Vincristine
@ Eeer it Sensa!ivef 1n* LE— 1 pROLU08 Sensmvef 108
g) 054 i S s
. Freothusa® ey N ¥ ,
R : Cell Lines = g P e
0.4 i D [ts] P
. [ » [C -
1075
-
o v t + 1 T i ‘ 507 .
Mon-Stem-A StameA Man-StameA StemeA Neon-Stem-A StameA
Non-Stem-A QVCA433 OVCA4RS PEQT HayAB ovary 1847 SKOV-3
AW, KD 9 08 12 25 ¢ 2 ) Wi (M)
ARP
ro-Caspase-3
leaved Caspase-3
Beta-actin

OVCARZ
O 0812 285 5 18 506 12 25 8 10 Vin (b}
PARP
Pro-Caspase-3

Figure 4. Susceptibility of Stem-A cells to microtubule assembly inhibitors.
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A. Estimated microtubule activity in non-Stem-A and Stem-A subgroups of ovarian cancer. Microtubule activity in 1142 core samples of ovarian clinical tumours

=

(Top panel) and in 129 core samples of ovarian cell lines (Bottom panel) was estimated based on the average single sample gene set enrichment analysis (ss-
GSEA) enrichment score of 19 microtubule-related gene sets (Supporting Information Table 16) acquired from GSEA databases (Supporting Information Table
6). Differences in microtubule activity between non-Stem-A and Stem-A subgroups were statistically evaluated with Mann-Whitney U-test in Graphpad Prism.
Grey = non-Stem-A subgroup; blue = Stem-A subgroup.

Specificity of drug sensitivity in ovarian cancer cell lines. A panel of 18 ovarian cancer cell lines was classified into non-Stem-A (OVCA433, OVCA429, OVCAR-8,
PEO1, OVCA432, OVCA420, HeyA8, HEY, HeyC2, SKOV-3, ovary1847 and DOV 13) or Stem-A (PA-1, CH1, A2780, OVCAR-3, SKOV-4 and SKOV-6) groups and
analysed for their sensitivity to paclitaxel (Top panel), vincristine (Left bottom panel) and vinorelbine (Right bottom panel). GI50 values were calculated with
the results from cell proliferation assays for each cell type in three independent experiments, and the mean GI50s are shown as dot plots. A non-parametric
Mann-Whitney U-test in Graphpad Prism was used to evaluate the resuits statistically. A higher value along the y-axis indicates increased sensitivity to the
drugs. Colour as for (A).

. Detection of apoptotic activity upon vincristine treatment. Six non-Stem-A (Upper panel) and four Stem-A (Lower panel) cell lines were subjected to increasing

concentrations of vincristine (0 to 10 nM) for 48 h. The presence of apoptotic activity was determined by immunoblotting for cleaved PARP and Caspase-3, as
indicated by arrows. Abbreviations: Stem-A, stem-like-A.

counterparts. Hence, matching breast cancer cell lines by
expression data could represent in vivo tumours (Gatza et al,
2010; Neve et al, 2006; Perou et al, 2000). Whilst we
acknowledge that cell lines may be divergent from their
ancestral tumour and not wholly representative of the full
diversity of ovarian cancer, we believe our classification
represents a foundation for further development, particularly
since ovarian cell lines can be assigned to unique ovarian
tumour subtypes and are not derived from any random scheme.
This concept is supported by the similarities in the expression
and pathway activation between the cell lines and tumours of a
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given subtype, and could be further supported by shared cell
functions, such as anchorage-independent cell growth and
population doubling time. The availability of representative cell
lines would facilitate the quest for functionally relevant targets
and bring us a step forward in developing therapeutics that
could be matched with the characteristics of individual patients.

Loss-of-function studies using pooled shRNA libraries have
identified essential genes in specific human cancer cell lines in
the context of synthetic lethality (Barbie et al, 2009; Luo et al,
2008; Scholl et al, 2009) and lineage-specificity (Cheung et al,
2011). Extending this concept, we utilized the pooled shRNA
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