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Figure 1. Schematic representation of the microenvironment and niches of stem cells and their regulation by the following factors: (a) soluble
factors, such as growth factors or cytokines, nutrients, and bioactive molecules; (b) cell—cell interactions; (c) cell-biomaterial interactions.
Biological, physical, and chemical properties of biomaterials also regulate stem cell fate.

preimplantation embryos have the potential to differentiate into
any cell type derived from the three germ layers—the ectoderm
(epidermal tissues and nerves), mesoderm (muscle, bone, and
blood), and endoderm (liver, pancreas, gastrointestinal tract,
and lungs)." The basis of pluripotency lies in conserved
regulatory networks composed of numerous transcription
factors and multiple signaling cascades. Together, these
regulatory networks maintain human ESCs (hESCs) in a
pluripotent and undifferentiated state, and alterations in the
stoichiometry of these signals promote differentiation. hESCs
have been shown to generate multipotent stem and progenitor
cells in vitro and are capable of differentiating into a limited
number of cell fates, and thus they have great potential for use
in transplantation of cells and tissues into patients.2

Although hESCs are promising donor sources for cell
transplantation therapies,’ they face immune rejection after
transplantation. Furthermore, ethical issues regarding human
embryos hinder their widespread usage. These concerns can be
circumvented if pluripotent stem cells can be derived directly
from patients’ own somatic cells.’ Recently, pluripotent stem
cells similar to ESCs, known as induced pluripotent stem cells
(iPSC's), were derived from adult somatic cells by inducing a
“forced” expression of certain pluripotent (stem cell) genes“—6
such as Oct3/4, Sox2, (c-myc), and kif-4, or certain miRNAs’
or proteins (piPS).8 iPSC's are believed to be similar to ESCs in
many respects, including the expression of certain stem cell
genes and proteins, chromatin methylation patterns, doubling
time, embryoid body formation, teratoma formation, viable
chimera formation, pluripotency, and differentiability.

The pluripotent nature of iPSC's opens many avenues for
potential stem cell-based regenerative therapies and for
development of drug-discovery platforms.”'® The nearest-
term therapeutic uses of iPSC's may exist in the transplantation
of differentiated nerve cells or f-cells for treatment of
Parkinson’s Disease and diabetes, respectively, which arise
from disorders of single cell types. However, there are several
barriers to the clinical application of iPSC's, such as the use of

viral vectors, cultivation using xeno-derived materials [e.g,
mouse embryonic fibroblasts (MEFs)], and the extremely low
efficiency of iPSC generation.'!

Stem cells have also been isolated from a variety of somatic
tissues, including hematopoietic stem cells (HSCs) derived
from umbilical cord blood and mesenchymal stem cells
(MSCs) derived from bone marrow, umbilical cord blood,
umbilical cord, dental pulp, and tissues such as fat. There have
been no reports to date of MSCs or fetal stem cells
differentiating into tumors, unlike ESCs and iPSC's. Con-
sequently, HSCs, MSCs, and fetal stem cells are the most
promising sources of cells for tissue engineering and cell
therapies. Currently, MSCs are thought to be the most widely
available autologous source of stem cells for practical and
clinical applications. Fetal stem cells derived from amniotic fluid
are pluripotent cells capable of differentiating into multiple
lineages, including cell types of the three embryonic germ
layers. Bone marrow MSCs, adipose-derived stem cells
(ADSCs), and amniotic fluid stem cells may be more suitable
sources of stem cells in regenerative medicine and tissue
engineering than ESCs and iPSC's because of ethical concerns
regarding their use and concerns about xenogenic contami-
nation arising from the use of mouse embryonic fibroblasts
(MEFs) as a feeder layer for ESC and iPSC culture.'!

Stem cell characteristics, such as proper differentiation and
maintenance of pluripotency, are regulated not only by the
stem cells themselves but also by the microenvironment.
Therefore, mimicking stem cell microenvironments and niches
using biopolymers will facilitate the production of large
numbers of stem cells and specifically differentiated cells
needed for in vitro regenerative medicine. Several factors in the
microenvironment and niches of stem cells influence their fate:
(i) soluble factors, such as growth factors or cytokines,
nutrients, and bioactive molecules; (ii) cell—cell interactions;
(iii) cell-biomacromolecule (or biomaterial) interactions; and
(iv) physical factors, such as the rigidity of the environment
(Figure 1). Some excellent review articles addressing the
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engineering of stem cell microenvironments and niches usin
o . ) 112
natural and synthetic biopolymers are listed in Table 1.

Table 1. Key Review and Articles Dealing with Biopolymers
for Culture and Differentiation of Stem and Progenitor Cells

Cref
author contents (year)

Leeand hydrogels for tissue engineering 12
Mooney (2001)

Little et al. biomaterials for neural stem cell 13
microenvironments (2008)

Higuchi et al. polymeric materials for ex vivo expansion of 16
HSCs (2009)

Mei et al. combinatorial development of biomaterials for 17
clonal growth of human pluripotent stem cells ~ (2010)

Melkoumian et synthetic peptide-acrylate surfaces for long-term 18
al. self-renewal of hESCs (2010)

G. J. Delcroix et adult cell therapy for brain neuronal damages 22
al. and the role of tissue engineering (2010)

Higuchi et al. biomaterials for the feeder-free culture of hESCs 11
and human iPSC's (2011)

Balakrishnam biopolymer-based hydrogels for cartilage tissue 14
and Banerjee engineering (2011)

Kim et al. design of artificial extracellular matrices for 15
tissue engineering (2011)

Engler et al. matrix elasticity directs stem cell lineage 19
(2006)

Gilbert et al. substrate elasticity regulates skeletal muscle 20
stem cell self-renewal (2010)

Huebsch et al.  harnessing traction-mediated manipulation of 21
the cell/matrix interface to control stem-cell (2010)

fate

These articles focus on biopolymers employed for maintenance
of pluripotency of hESCs, iPSC's, or hematopoietic stem cells
(HSCs),'*™"® and for specific differentiation lineages such as
chondrocytes (cartilage), muscle cells, and neural cells, 1420
There have been no review articles specifically describing
extracellular matrix (ECM) scaffolds (ECM in 3D) or ECM-
immobilized dish coatings (ECM in 2D) that guide stem cell
fates and differentiation. Therefore, this review focuses on the
chemical, physical, and biological characteristics of natural
biopolymers, especially ECM proteins, which are the major
functional biopolymers, and deals with the ability of these
biopolymers to guide differentiation of MSCs into osteogenic,
chondrogenic, adipogenic, cardiomyogenic, and neural cell
lineages.

2. CELL SOURCES AND ANALYSIS OF
-DIFFERENTIATION LINEAGES OF MSCS

2.1. Cell Sources

Human MSCs (hMSCs), including fetal stem cells, are one of
the most widely available autologous sources of stem cells for
clinical aspzplications. hMSCs can be obtained from bone
marrow,”>** adipose tissue,”>*° dental pulp,”’ and urine,*®
among other sources. Fetal stem cells can be obtained from
amniotic fluid,* ™! umbilical cord,**~>* menstrual blood,*>*
umbilical cord blood,”***” and placenta***® hMSCs derived
from bone marrow and fat are primarily used for biomaterials
research on stem cell culture and differentiation because bone
marrow MSCs and ADSCs are easily accessible and can be
obtained in large quantities. Bone marrow MSCs (BMSCs) are
now commercially available from several companies. Stem cell
research is facilitated with these stem cell sources because it is
not necessary to obtain permission from ethics committees of
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the Institutional Review Board (IRB) for use of commercially
available MSCs. Otherwise, informed consent from donors and
permission from the IRB must be obtained.

2.2. Analysis of Differentiation Lineages

MSCs are multipotent stem cells that can be differentiated into
various mesodermal lineages, including osteoblasts, chondro-
cytes (cartilages), adipocytes, myocytes, and cardiomyo-
cytes."”*%* MSCs are also reported to be able to differentiate
into ectodermal lineages (e.g, neuron, oligodendrocyte,
astrocyte, neural stem cells, and dopamine-secreting
cells)”*™* and endodermal lineages (hepatocytes and f-
cells),*~ although with lower probability than mesoderm
lineages. Table 2 summarizes methods for characterizing
specific differentiated cells from MSCs, 3440485187

MSCs differentiate into an osteogenic phenotype in vitro
when supplements such as ascorbic acid, f-glycerophosphate,
dexamethasone, and/or bone morphogenic protein 2 (BMP-2)
are added to the culture medium. Figure 2 shows the expression
of several genes and proteins, as well as mineral deposition, by
MSCs upon osteogenic differentiation. Runt-related tran-
scription factor 2 (Runx2, also known as Cbfal, Pebp2cA,
and AML3) is a master regulator of osteogenic gene expression
and osteoblast differentiation, and it is an early marker of
osteogenesis.”* " Runx2 activity is stimulated by mitogen-
activated protein kinase (MAPK) signaling and is negatively
regulated by thrombin-like enzyme 2 (TLE2). Alkaline
phosphatase (ALP) activity is an early osteogenic marker, and
osteopontin and osteocalcin are late osteogenic markers.*®
Mineral deposition is generated in the late stage of osteogenic
differentiation and is detected by Alizarin Red staining (calcium
deposition) and von Kossa staining (calcium phosphate
deposition).*”%>

MSCs commit to a chondrogenic phenotype when supplied
with transforming growth factor-#1 (TGE-f1). Chondrogenic
differentiation of MSCs is typically determined by immunos-
taining for specific proteins, such as collagen type II and Sox9,
dye labeling of glycosamino glycans, and evaluation of
expression of chondrogenic proteins or transcription factors
(such as collagen type II and type X, cartilage oligomeric
protein, aggrecan, and Sox9) (Table 2).63’64’67’70’91 Sulfated
glycosaminoglycans (sGAG's) are visualized by staining with
Alcian blue.”’ Accumulation of sulfated proteoglycans are also
visualized by Safranin O staining.””

Only a few groups have investigated adipogenic differ-
entiation of MSCs cultured on natural and artificial
biomaterials®>*>7® 775 because adipose tissue is in less
demand in clinical usage than osteoblasts and cartilage cells.
Adipogenic differentiation is also analyzed by immunostaining
for specific proteins (vimentin), dye staining of oil droplets, and
measuring expression of transcription factors or other marker
proteins, such as peroxisome proliferator-activated receptory
[PPARy] and adipocyte Protein 2 (aP—Z).SS’GI’éz' 77592 ap.), s
a carrier protein for fatty acids that is primarily expressed in
adipocytes.” Preadipocytes and mature adipocytes contain
multiple or single lipids in cell bodies, respectively. Therefore,
Oil Red O or Nile red staining of preadipocytes and mature
adipocytes is frequently used for the detection of lipids.

Neural differentiation of MSCs is primarily analyzed by
observing characteristic morphologies of neurons, astrocytes,
oligodendrocytes, and microglia. Neuronal progenitor cells and
early-stage neurons are also identified by Soxl, Sox2, and
CD133 gene expression and by nestin and /-tubulin-I1I

dx.doi.org/10.1021/cr3000169 | Chem. Rev. 2012, 112, 45074540
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Table 2. Characterization of Differentiation of MSCs into Specific Lineages [Osteoblasts and Chondrocyte (Cartilages)]

- differentiation lin-

eage

1. Osteoblast

2. Chondrocytes

3. Adipocytes

4. Neural cells

S. Cardiomyo-
cytes

6. Smooth muscle
cells

7. Epidermis

8. Hepatocyte

characterization

morphology

protein level (immu-
nostaining)

surface marker anal-
ysis and immunos-
taining

enzyme activity

gene level

dye staining
mineral deposition

protein level (immu-
nostaining)

glycosaminoglycan
assay

dimethylmethylene
blue (DMMB)

assay
hydroxyproline assay
gene level

dye staining

morphology
protein level
enzyme activity
gene level
staining
morphology
protein level

gene level
morphology

protein level

gene level

electrocardiogram

protein level

gene level
protein level
gene level

morphology

specification
spread shape tends to differentiate into osteoblasts, bonelike nodule formation

collagen I, osteocalcin, osteonectin

osteopontin, bisphosphonate [2-(2-pyridinyl)ethylidene-BP] (PEBP), alkaline phosphatase (ALP)

alkaline phosphatase

runt-related transcription factor 2 [Runx2 or core binding protein A-1 (CBFA-1)], osterix (OSX), osteocalcin (OCN), osteopontin (OPN), bone sialoprotein (BSP), alkaline
phosphatase, integrin-binding sialoprotein (IBSP), bone y-carboxyglutamate protein (BGLAP)

Alizarin Red staining (calcium)
von Kossa staining (calcium phosphate)

collagen type II (Col II), collagen type X (Col X), aggrecan (AGN), Sox-9, chondroitin-4-sulfate, chondroitin-6-sulfate, sulphated glycosaminoglycans
glycosaminoglycan content

proteoglycan (PG) content

collagen content

collagen 1I, collagen IX (Col IX), collagen X, collagen XI (Col XI), aggrecan, Sox S, Sox 6, Sox 9, cartilage oligomeric protein (COMP), xylosyltransferase I (XT-1), a-4-N-
acetylhexosaminyltransferase (EXTL2), f-1,4-N-acetylgalactosaminyltransferase (GalNAcT), glucuronyl CS epimerase (GIcACSE)

Safanin O staining (proteoglycan), Alcian blue staining (proteoglycan), EVG-staining, Masson’s trichrome staining

round shape cells tends to differentiated into adipocytes
vimentin, adipocyte lipid-binding protein (ALBP)
glycerol-3-phosphate dehydrogenase activity

PPARy, aP-2

Oil red O and Nile red staining for lipid droplet
neuronal-like cells having long neurites

nestin, neuron-specific class III f-tubulin (TuJ1), galactosylceramidase (GalC), glial fibrillary acidic protein (GFAP), S-tubulin-III, microtubule-associated protein 2 (MAP2), 04,
tyrosine hydroxylase (TH), neurofibromatosis (NFM), neurone-specific enolase (NSE)

nestin, Musashi 1, neuron-specific class III f-tubulin (TuJ1), glial fibrillary acidic protein, microtubule-associated protein 2, Soxl, Sox2, CD133, tyrosine hydroxylase,
neurofibromatosis, Nurrl, dopamine transporter (DAT), dihydropyrimidinase-related protein 2 (DRP-2), purine-sensitive aminopeptidase (PSA)
contractile cells

cardiac troponin T (cTnT), desmin, myosin light chain (MLC), myosin heavy chain (MHC)

Nkx2.5, GATA-4, MYH-6, TNNT2, TBX-$, myosin light chain (Mlc2a, MLC-2 V), tropomyosin, cTnl, ANP, desmin, myosin heavy chain (a-MHC, f-MHC), cardiac troponin T,
Isl-1, and Mef2c

electrocardiogram
a-smooth muscle actin (ASMA), hl-calponin (CALP), SM2

a-smooth muscle actin, hl-calponin, caldesmon, Smemb, SM22a, SM1, SM2
keratin 10 (early marker), filaggrin (intermediate marker), involucrin (late marker)
keratin 10 (early marker), filaggrin (intermediate marker), involucrin (late marker)
oval cell morphology, small round cell morphology

ref (exam-

ple)

5355

56, 57

34, 58

34, 58—61

62
57, 60

56, 57, 63
—68

69

65

63, 64, 67,
70-73

34, 62, 64,
67, 70,
72

53, 54
53, 74
75
61
62
76
76--81

11, 61, 76,
81, 82

81
11

83

83
84
84
46
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TETT S o m oo immunostaining. Mature neurons express neuron-speciﬁc class
SR S Vel — - . . . .
B2 GB GBS oo. 9 III B-tubulin (Tujl), microtubule-associated protein 2 (MAP2),
5 ‘;‘.’:g A gg o sIegl ¢ neuron-specific enolase (NSE), and purine-sensitive amino-
1 i peptidase (PSA). Oligodendrocytes express galactosylcerami-
“ég ¢ dase (GalC) and O4. Dopaminergic neurons express tyrosine
ﬁ% I hydroxylase (TH), neurofibromatosis (NFM), and dopamine
BT S . .
£E i transporter (DAT). Nerve cells are electrically excitable cells
3 53 that transmit information by electrical and chemical signaling.
LR Therefore, electrical and action potentials in nerve cells can be
Z5 §& monitored using electrodes.
T 2F
=& 8%
L s’ [al=]
§8 g3 3. PREPARATION OF CULTURE MATRIX
ce 78
§T 2% Biomimetic stem cell cultures can be categorized as two-
§g Bk dimensional (2D) or three-dimensional (3D). 2D culture is
533 é% useful for basic research to investigate the fundamental
154 . 1
g2 8 interactions between cells and immobilized nanosegments on
g: §T<§ dishes, but 3D culture of stem cells in biomaterials is essential
::S,g =8 for clinical applications. Figure 3 shows some examples of
B & g% biomaterial designs for carrying stem cells, as well as direct
o i injection of biomaterials without cells. The injection of
£ 3 - . .
28 LB hydrogels or scaffolds containing stem cells is categorized as
20 78 3D cultures. Cell sheets prepared on a surface-grafting polymer
=g S . o .
gds 33 having low critical solution temperature (LCST), such as
2.8 hal-¥ . N . )
8% 3 poly(N-lsoplop}gf!‘agcsrylamlde) (poly(NIPAM)), can be prepared
[ :ss g 5 on 2D dishes.”™ Recently, patch sheets of immobilized

t 25 23 antibodies or ligands targeting specific stem cells, which recruit

‘5::(23 ge the stem cells from the patient’s body, are reported to be

s 348 = s - . .. 40

5. o¢ 5o effective in gathering autologous stem cells at sites of injury.

& RS - . )

& %—’é‘ =7 The following sections describe methods for (a) surface
8¢, EE immobilization of ECM proteins and ECM-mimicking peptides
ég =R on 2D culture dishes and (b) preparing hydrogels or scaffolds
g0 £° containing ECM proteins and ECM-mimicking peptides for 3D
& g g P g peptides tor

—~~ <

§$ %g‘ culture of stem cells.

a2 2 e .

TE% ﬁ & 3.1. ECM Immobilization on 2D Dishes

=% b

=23y E& . Typically, 2D cell culture dishes are coated with ECM proteins

23 8 & or ECM-mimicking peptides. Tables 3 and 4 show examples of

A g ) o .

£ & Ea & the ECM proteins and ECM-mimicking peptides used to coat

: ~ 8 . . - . .

23 9 © go culture dishes and their binding sites on stem

= § K g 2 cells. 1618535871, 8391,96-118 Collagen types 1, I1, and IV, gelatin,

o 2 o0 .. .. P . . .

i% PN 5 laminin, laminin-1, laminin-S, vitronectin, and fibronectin are

8 g - : : : ,71,83,91, 96—98,100—

zE 8% 5 typically used as coating materials,5%718391, 96-98,100-102 p oy

.. | =) N

% 5 :"’; . < o 2 mimicking peptides (e.g, RGD, DGEA, YIGSR, IKVAV, KRSR,

ESE i 2 P15, and GFOGER) are commonly used as coating or grafting

e a2 (%) A - 1. .

““;E(’g g %% §F = materials,'®'&5397103 718 covalent binding is preferable for

?;:m:;j REX 43 g g g long-term effects in culture, but noncovalent coating is the

i 8 =Y S .= = . . . . - .1

g ?S Es8 -85 282 3 simplest method for the preparation of dishes with immobilized

g8 g2 g 58 My ] . o . .

‘28285 8§25, = ECM proteins or ECM-mimicking peptides. Figure 4

8€8 2EEE 5 o5 &2 . : .

j% =5 f},é 273 = s 8 E © summarizes typical surface reactions for the covalent

338 g5 B sz 2 . e e : . ;

g8 B2 EF2T ¢ immobilization of ECM proteins and peptides on dishes.

E a8 & 2 3 . . 1. . .

5 3 i B & Proteins and ECM-mimicking peptides should be used in
aqueous solution, as they are unstable biomolecules. Reactions

g gL between amino groups and between amino groups and

g 5 % f R carboxylic acids can be used to bind ECM proteins and

e g ¢35 8 1 . . . .

g5 7 g &< R ECM-mimicking peptides to pla§t1c dishes. These .plast'lc

ERE: & £ 558278 surfaces should therefore have amino groups, carboxylic acid

§ ©s zﬁ,;o § 3 N ﬁiﬁ‘/ s groups, or hydroxyl groups to bind and immobilize ECM

& < > . . .

g proteins or peptides. For dishes made of polyesters, such as
- 3

S £ oly(e-caprolactone) (PCL), poly(glycolic acid) (PGA), poly-
s = poly p ; POLy\gly! » poty
° Sa (lactic acid) (PLA), or poly(lactic acid-co-glycolic acid)
2 £5 (PLGA), treatment with a diamine, such as hexamethylene
Sg, é ' diamine, generates amino groups on the surface by an
=5 aminolysis reaction. Then, ECM proteins and ECM-mimicking
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Figure 2. Osteogenic differentiation of MSCs, gene expression, and mineral deposition at early and late stages.

Injection of scaffold
ontaining stem cells

Scaffold injection |
Synthetic polymer
ECM proteins
Natural polymer
Ceramic /
Metal hybrid

g

Direct stem cell injection

Patch-immobilized
specific antibody or
ligand-targeting stem,
cells

Hydrogel-entrapped
stem cells

Figure 3. Some examples of biomaterial designs with and without stem cells for the injection of biomaterials in clinical applications: (a) injection of
scaffold containing stem cells, (b) injection of scaffold without cells, (c) direct stem cell injection, (d) injection of cell sheets, (e) injection of patch-
immobilized specific antibody or ligand-targeting stem cells, and (f) injection of hydrogel-entrapped stem cells.

peptides can be covalently immobilized using hexamethylene
diisocyanate (HMDIC), 1,6-dimethyl suberimidate dihydro-
chloride (DMS),""* or NHS/EDC reagent,"® where NHS is N-
hydroxysuccinimide and EDC is N-(3-dimethylaminopropyl)-
N'-ethylcarbodiimide (Figure 4). EDC is a water-soluble
carbodiimide that is generally used in the 4.0~6.0 pH range.
Therefore, it is possible to immobilize ECM proteins and
ECM-mimicking peptides in aqueous solution using NHS/
EDC reagents. The covalent bondin§ between amino groups
can be reacted with aqueous DMS."'

Genipin is generally used to cross-link proteins, such as
collagen and gelatin, and chitosan via amino groups.lzo’121
Genipin can also be used for the immobilization of ECM
proteins and peptides on the surface of culture dishes with
amino groups (Figure 4). NHS/EDC, DMS, and genipin are
the recommended reagents to covalently immobilize ECM
proteins and ECM-mimicking peptides on culture dishes.

4512

3.2. 3D Culture in Hydrogels

Hydrogels are physically or chemically cross-linked polymer
networks that are able to absorb large amounts of water.
Injectable hydrogels containing stem cells can be delivered to
sites of damage in patients with minimal invasiveness, and the
hydrogels ensure that stem cells remain localized to the
damaged sites more effectively than injected cells alone.
Physical cross-linking is performed on ECM proteins with
thermosensitive properties of lower critical solution temper-
ature (LCST) or upper critical solution temperature (UCST),
such as collagen and gelatin. Collagen can be dissolved in
aqueous solutions at low temperature and forms gels at ~37 °C
because of its LCST characteristics, and gelatin can be dissolved
in aqueous solution at high temperatures and forms gels at
room temperature because of its UCST. Therefore, stem cells
can be dissolved in ECM protein solutions and efficiently
entrapped in ECM gels at 20—37 °C. However, most ECM

dx.doi.org/10.1021/cr3000162 | Chem. Rev. 2012, 112, 4507-4540
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Table 3. ECM Immobilized on Dishes for Adhesion,
Differentiation, And Proliferation of Stem Cells and Some
Examples of the Literature

Vst e Bindi;1g s;tye o T
-:oHagen I integrin (VB3 a21) 58,
96
collagen 1 integrin (@1p1) 97
collagen I integrin (@1p1, a2p1, a3p1) 71
collagen II integrin (@11, a2f31, a10/31) 71,
91
collagen IV integrin (22§31, CD44) 98
gelatin 99
fibronectin integrin (@41, aSpl, aVp3, allbf3, aVpe, aVps) S8,
96
laminin integrin (alp1, a2f1, a3p1, abpl, a6f4) 100
laminin-1 integrin (@1p1, a2f81, a6pl, a7p1, a9pl), a- 83,
(laminin dystroglycan, suifade, and heparan sulfate 101
111) proteoglycan
laminin-$ integrin (a21, a3pl, a6fl, abp4) 102
(laminin .
332)
laminin-10/  integrin (@381, a6f1, a6f4) 100
11
vitronectin integrin (@Vf3, aVps) 38,
96

proteins and ECM-derived oligopeptides (ECM peptides) need
other forms of cross-linking to trap stem cells and generate
hydrogels. Typically, photocross-linking and chemical cross-
linking of ECM proteins and ECM peptides are used. There are
several excellent reviews that discuss hydrogel preparation and
reaction in detail.'>** Therefore, this section deals briefly with
the preparation of ECM hydrogels using photocross-linking

Glutaraldehyde
Dishes-NH2 + NH2-ECM Dishes-NH-R- NH-ECM

DMS
Dishes-NH2 + NH2-ECM Dishes-NH-R'- NH-ECM

HMDIC
Dishes-NH2 + NH2-ECM Dishes-N=C(-O)-NH2-Polymer*

Hexamethylene diisocyanate (HMDIC); O=C=N-{CH2)6-N=C=C
Genipin

Dishes-NH2 + NH2-ECM Dishes-genipin-genipin-ECM
Os OCHy
g
£
by oM
EDC,NHS
Dishes-COOH + NH2-ECM Dishes-CONH-ECM

DMS
PolyesterDishes + HMD Dishes-NH2 Bz Dishes-NH-R'- NH-ECM

EDC3 Dishes-CONH-ECM
NHS

{EDC, N-(3-Di taminopropyl)-N'-ethy Jiimide hydi
i DMS; 1,6-Dimethyl suberimidate dihydrochloride, HMDIC; H

ide; NHS, I:I—i(y‘ infrnid §

Figure 4. Surface reactions of covalent immobilization of ECM
proteins and ECM-mimicking peptides on dishes.

and chemical cross-linking with cross-linking agents. The
application of ECM hydrogels containing stem cells is discussed
in section § for specific ECM proteins and ECM peptides.
3.2.1. Photocross-Linking of ECM Proteins and ECM
Peptides. Hydrogels containing stem cells can be easily
prepared by UV irradiation of ECM proteins and ECM—
peptide solutions. These preparations can be used as injectable
hydrogels via photocross-linking. However, it is first necessary
to introduce double bonds into ECM proteins and ECM
peptides for photocross-linking. ECM  proteins and ECM
peptides have —OH, —NH,, and —COOH functional groups.
Double bonds can be introduced into ECM proteins and ECM

Table 4. ECM-Mimicking Peptides Immobilized on Dishes for Adhesion, Differentiation, And Proliferation of Stem Cells

~ ECM-mimicking peptide

‘ DGEA col‘l‘agen I
GTPGPQGIAGQRGVV (P15) collagen I
(RADA),GGDGEA collagen I
(RADA),GGFPGERGVEGPGP collagen I
GFOGER collagen
MNYYSNS collagen IV
RGD collagen I
ELIDVPST (CS-1) fibronectin
FN-40 fibronectin
FN-120 fibronectin
FN-CH296 fibronectin
KGGAVTGRGDSPASS fibronectin
GRGDSPK fibronectin
KNNQKSEPLIGRKKT fibronectin
RGDS fibronectin
PHSRN fibronectin
KYGAASIKVAVSADR laminin
YIGSR laminin
IKVAV laminin
PPFLMLLKGSTR laminin-S (Jlaminin332)
(RADA)4-GGPDSGR laminin
(RADA)4-GGSDPGYIGSR laminin
(RADA)4-GGIKVAV laminin
KGGPQVTRGDVEFTMP vitronectin
KGGNGEPRGDTYRAY bone sialoprotein (BSP)
PEO4-NGEPRGDTYRAY BSP-linker
RGD osteopontin

ECM proteins for mimicking

© binding site of cells ref

integrin (a2f1) 103—105
integrin (a2/1) 103, 106
integrin (a2/51) 116

116
integrin (281) 103, 107, 108

109
integrin (@V/3) 97, 110
integrin (@4f1); VLA-4 16, 111
integrin (@481, VLA-4) 16, 112
integrin (aSp1); VLA-S 16, 112
integrin (41, aSPL) 16, 112
integrin (aSP1); VLA-S 18, 113
integrin (aSf1); VLA-S 18, 113
heparin-binding domain S3

109

109

18, 114

109

115
integrin (a3f1)

116

116

116
integrin (V/S) 18, 117

18, 118

18, 118
integrin (aVf3) 97
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peptides by the reactions of acryloyl chloride,"*> glycidyl

methacrylate,'>'** and 2-aminoethylmethacrylate'>'** (Figure
S). Figure S also shows a schematic for preparation method of

7 ™ { Reaction for the introduction of double bond 3

Acryloyl chloride H

o
\\J el

}

Polymer-OH
or or
Polymer-NH, o hMSCs
g,%o/{\/ Photo polymerization
i or
Glycidyt Chemical

., methaciylate

polymerization

2-aminoethyl methacrylate
Stem cells entrapped in Hydrogel

Figure S. Schematic of the preparation method of hydrogels with
entrapped stem cells by photopolymerization.

hydrogels with entrapped stem cells by photopolymerization.
Aqueous solutions containing stem cells and macromers of
ECM proteins and ECM peptides are irradiated with UV light
to generate hydrogels with entrapped stem cells.

Poly(ethylene glycol)diacrylate (PEODA) is typicallz added
to the reaction solution to generate optimal hydrogels.>'2*712?
Yang et al. prepared PEODA hydrogels incorporating RGD
adhesive peptides and goat BMSCs by photopolymerization.
They found that RGD-conjugated PEODA hydrogels pro-
moted the osteogenic differentiation of BMSCs, and RGD
enhanced differentiation in a dosage-dependent manner, with
the highest concentration (2.5 mM) in the reaction solution
being optimal in their study.'*®

3.2.2. Chemical Cross-Linking of Hydrogels. Hydrogels
of ECM proteins can also be prepared by chemical cross-
linking. Similar to ECM protein immobilization on 2D dishes,
as discussed in section 3.1, NHS/EDC, DMS, HMDIC, and
genipin are typically used as cross-linking agents. Glutaralde-
hyde is not commonly used for the preparation of hydrogels in
tissue engineering because it is relatively toxic to stem cells.
DMS, HMDIC, and genipin allow cross-linking between amino
groups, whereas NHS/EDC leads to cross-linking between
carboxylic acids and amino groups in ECM proteins.

Chang et al. compared gelatin hydrogels cross-linked with
genipin and gelatin hydrogels cross-linked with glutaralde-
hyde.'*® They found that the degree of inflammatory reaction
in wounds treated with the genipin-cross-linked gelatin was
significantly less severe than those covered with the
glutaraldehyde-cross-linked gelatin in vivo."*® In addition, the
healing rates of wounds treated with the genipin-cross-linked
gelatin were notably faster than those with glutaraldehyde-
cross-linked hydrogels.120

3.3. 3D Culture in Scaffolds

Scaffolds seeded with stem cells can support 3D tissue
formation artificially. It is optimal for scaffolds (a) to allow
cell attachment and migration, (b) to allow diffusion of
nutrients, growth factors, and waste secreted by cells, and (c) to
have mechanical properties similar to the natural tissue. Most of
the scaffolds have high porosity (>80%) and large pore size
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(200—800 pm), which allow diffusion of nutrients, growth
factors, and waste, but these properties also lead to weak
mechanical properties. Biodegradability of scaffolds is often
required because scaffolds should be absorbed by the
surrounding tissues without the necessity of surgical removal.
It is preferable that the degradation rate of scaffolds should be
matched to the speed of tissue formation. The degradation
speed of scaffolds can be regulated by the degree of cross-
linking. Scaffolds prepared from ECM proteins and ECM
peptides are desirable because of their biodegradable character-
istics. ECM proteins used for the preparation of scaffolds are
typically collagen type I, collagen type I, gelatin, fibronectin,
laminin, and vitronectin. ECM proteins can be used as (a)
coating materials, (b) blending materials, and (c) main
materials of scaffolds.

3.3.1. Preparation of Scaffolds. There are several
methods used to prepare scaffolds for tissue engineering and
3D culture of stem cells, including (a) freeze-drying, (b) salt
leaching, (c) porogen leaching, (d) use of nonwoven fabric or
mesh, (e) nanotopography, and (f) electrospinning. In the
freeze-drying method, ECM proteins are dissolved in a buffer
solution. The ECM solution is frozen at —20 or —80 °C and
then lyophilized in a freeze-dryer before being washed and
stored (Figure 6). If necessary, the scaffolds are also cross-
linked.
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Figure 6. Typical preparation method of porous scaffolds by freeze-
drying (2) and salt leaching (b).

The salt-leaching method is as follows. Biopolymers and/or
ECM proteins are dissolved in a solvent. Salt, typically NaCl, is
sieved to generate a uniform distribution of size using filtration
through mesh and added into the solution. The solvent of the
solution is vaporized under vacuum to generate dry scaffolds.
Salt is then leached from the scaffolds by immersion in water
after drying the scaffolds (Figure 6). The porogen-leaching
method is a similar method to the salt-leaching method, but
other uniformly sized particles, such as polymeric particles, are
used instead of salt.

3.4. 3D Culture in Nanofibers

Peptide amphiphiles (PAs), which have a hydrophilic domain
and a hydrophobic domain, are known to spontaneously
generate self-assembled nanofibers above critical micelle
concentrations.'*1%*® MSC differentiation on self-assembled
nanofibers using ECM peptides is discussed in section 5.8.1.
A typical method to create nanofibers is electrospinning.
Electrospun scaffolds can support cell adhesion and growth and
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promote differentiation of stem cells."®' Nanofibers can be
generated from a spinning nozzle when high voltage is applied
between the spinning nozzle and a flat metal collector. Typical
electrospinning products are flat and highly interconnected
scaffolds with a nonwoven fabric sheetlike morphology. These
characteristics hinder cell infiltration and growth throughout
the scaffolds. Blakeney et al. have developed a three-
dimensional cotton ball-like electrospun scaffold that consists
of low-density, uncompressed nanofibers.”*’ A grounded
spherical dish and an array of needle-like probes were used
instead of a traditional flat-plate collector to create a cotton
ball-like scaffold. Scanning electron microscopy showed that the
cotton ball-like scaffold consisted of electrospun nanofibers
with a similar diameter, but with larger pores and less dense
structures than traditional electrospun scaffolds."*! The cotton-
ball like scaffolds prepared from ECM proteins by electro-
spinning will be interesting for use as scaffolds for guiding
specific lineages of stem cell differentiation.

4. PHYSICAL PROPERTIES OF BIOPOLYMERS
(BIOMATERIALS) GUIDE STEM CELL
DIFFERENTIATION FATE (LINEAGE)

The interactions between MSCs and ECM proteins are
classified as physical, chemical, and biological. It has recently
been recognized that stem cell differentiation is directed by
physical properties of culture materials as well as by
biochemical responses to growth factors and ECM pro-
teins.”*?%13% Cells in bone, muscle, liver, and brain tissues
reside in different environments that have diverse physical
properties.133 The matrix stiffness for differentiated cells is
known to influence focal-adhesion structure and the
cytoskelet011.l34‘l39 Engler et al. reported that soft materials,
with similar stiffness to the brain, tend to differentiate MSCs
into neurogenic cells, whereas stiffer materials that mimic
muscle guide MSCs into myogenic cells and rigid materials
similar to collagenous bone induce osteogenic differentiation
(Figure 7)."” However, this work was performed on a 2D
surface of hydrogels coated with collagen. The effect of stiffness
in 3D culture may produce different results than in 2D culture.

Gilbert et al. also reported that the elasticity of culture
materials regulates self-renewal of skeletal muscle stem cells.*®
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Figure 7. Physical properties decide the fate of stem cell cultured on
biomaterials with different elasticity. Modified with permission from
ref 19. Copyright 2006 Elsevier Inc.
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Muscle stem cells (MuSC's) exhibit robust regenerative
capacity in vivo, but this capacity is rapidly lost in culture.
They showed that the elasticity of culture materials was a
potent regulator of MuSC fate. MuSC's cultured on soft
hydrogel substrates that mimicked the elasticity of muscle (12
kPa) self-renew in vitro and contributed extensively to muscle
regeneration when transplanted into mice, unlike MuSC's
grown on rigid plastic dishes (~106 kPa), as shown by
histology and bioluminescence imaging. These studies provide
evidence that propagation of adult muscle stem cells is possible
by recapitulating physiological tissue rigidity.zo This finding
may contribute to future cell-based therapies for muscle-

wasting diseases.
The effect of physical interactions between MSCs and culture

materials on stem cell fate
19,20,61,133,140—

articles.

is discussed

in several
154 .
5% Some landmark findings are summar-

ized in Table S, and some examples of physical effects on

differentiation of MSCs cultured on ECM proteins are reviewed

here.

Table 5. Some Articles Discussing Physical Effect of

Substrates on Differentiation of MSCs Cultured on the

Substrates
ref
authors contents (year)
J. R Mauney et mechanical stimulation promotes osteogenic dif- 140
al. ferentiation of hBMSCs (2004)
J. S. Park et al. differential effects of equiaxial and uniaxial strain 141
on MSCs (2004)
V. E. Meyers et microgravity disrupts collagen 1/ integrin signaling 142
al. during osteogenic differentiation of hMSCs (2004)
V. I Sikavitsas et flow perfusion enhances the calcified matrix 143
al. deposition of marrow stromal cells in scaffolds (2005)
H. Hosseinkhani  perfusion culture enhances osteogenic differentia- 144
et al. tion of MSCs (2005)
A.J. Engler et al. matrix elasticity directs stem cell lineage specifica- 19
tion (2006)
R. D. Sumana- osteogenic differentiation of hMSCs in collagen 145
singhe et al. matrices: effect of uniaxial cyclic tensile strain (2006)
D. F. Ward et al. mechanical strain promotes osteogenic differ- 61
entiation of hMSCs (2007)
E.K F.Yim et  nanostructures inducing differentiation of hMSCs 154
al. into neurinal lihneage (2007)
B. Lanfer et al. growth and differentiation of MSCs on aligned 146
collagen matrices (2009)
Q. Li et al. ECM with the rigidity of adipose tissue helps 147
adipocytes maintain insulin responsiveness (2009)
M. Zscharnack et low O, expansion improves subsequent chondro- 148
al. genesis of BMSCs in hydrogel (2009)
C. H. Huang et interactive effects of mechanical stretching and 149
al. ECM proteins on initiating osteogenic differ- (2009)
entiation of hMSCs
P. M. Gilbert et substrate elasticity regulates skeletal muscle stem 20
al. cell self-renewal in culture (2010)
G. C. Reilly and  intrinsic ECM properties regulate stem cell differ- 150
A. . Engler entiation (mechanobiology) (2010)
J- M. Kemppai-  differential effects of designed scaffold permeability 151
nen and S. J. on chondrogenesis by BMSCs (2010)
Hollister
E.K F.Yim et  nanotopography-induced changes in focal adhe- 152
al. sions, cytoskeletal organization, and mechanical (2010)
properties of hMSCs
J. Tang et al. regulation of stem cell differentiation by cell—cell 153
contact on micropatterned material surfaces (2010)
P. A Janmey and mechanisms of mechanical signaling in develop- 133
R. T. Miller ment and disease (2011)
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4.1. Mechanical Stretching Effect of Culture
Surface-Coated with ECM Proteins

Mechanical strain and ECM proteins play important roles in
“the osteogenic differentiation of hMSCs. 4014514 Geveral
studies have shown that mechanical strain can promote
osteogenic or other lineage differentiation in cells cultured on
ECM proteins even in the absence of osteogenic supplements
in the culture medium 5>1*5%

Park et al. reported that mechanical strain regulated the
expression of vascular smooth muscle cell (SMC) markers in
MSCs (Figure 8)."*' Cyclic equiaxial strain downregulated
smooth muscle (SM) a-actin and SM-22a in MSCs on
collagen- or elastin-coated membranes after one day and
decreased the level of a-actin in stress fibers. In contrast, cyclic
uniaxial strain transiently increased the expression of SM a-
actin and SM-22a after one day, which subsequently returned
to basal levels after the cells aligned in the direction
perpendicular to the strain.'*' In addition, uniaxial but not
equiaxial strain induced a transient increase in collagen type I
expression. DNA microarray experiments showed that uniaxial
strain increased SMC markers and regulated the expression of
matrix molecules without significantly changing the expression
of differentiation markers (e.g, ALP and collagen type II) in
other cell types.'*! Their results suggest that uniaxial strain,
which better mimics the type of mechanical strain experienced
by SMCs, could promote MSC differentiation into SMCs if cell
orientation is controlled."*

Ward et al. showed that application of a 3—5% tensile strain
to a collagen type I substrate stimulated osteogenesis in
attached hMSCs through gene focusing via a MAPK signaling
pa’chway.é1 They found that mechanical strain led to an increase
in the expression of osteogenic marker genes while
simultaneously reducing expression of marker genes from
three alternate lineages (chondrogenic, adipogenic, and neuro-
genic).61 Mechanical strain also increased matrix mineralization
(a hallmark of osteogenic differentiation) and activation of
extracellular signal-related kinase 1/2 (ERK).%' These results
demonstrated that mechanical strain enhanced collagen type I-
induced gene focusing and osteogenic differentiation in hMSCs
through the ERK/MAPK signaling pathway.*"
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Figure 8. Schematic model of the apparatus that can apply equiaxial
(2) and uniaxial (b) strain to MSCs. Modified with permission from
ref 141. Copyright 2004 Wiley Periodicals.

Huang et al. investigated the combined effects of ECM
proteins and mechanical factors (cyclic stretching) in driving
hMSCs toward osteogenic differentiation.'** hMSCs cultured
in regular medium were grown on substrates coated with
various ECM proteins (collagen type 1, vitronectin, fibronectin,
and laminin) and subjected to cyclic mechanical stretching.**’
All of the ECM proteins tested supported hMSC differentiation
into osteogenic phenotypes in the absence of osteogenic
supplements.”* Cyclic mechanical stretching activated the
phosphorylation of focal adhesion kinase (FAK), induced
upregulation of the transcription and phosphorylation of
Runx?2, and subsequently increased ALP activity and mineral-
ized matrix deposition."* Fibronectin and laminin exhibited
greater effects of supporting stretching-induced osteogenic
differentiation than did collagen type I and vitronectin.'* It
was suggested that the ability of ECM proteins and mechanical
stretching to regulate osteogenesis in hMSCs may be exploited
in bone tissue engineerin% by appropriate matrix design and by
mechanical stimulation.'*

4.2. Low Oxygen Expansion Promotes Differentiation of
MS5Cs

Several groups have reported the effects of low oxygen tension
on the differentiation of MSCs, especially in chondrogenic
differentiation of MSCs cultured on ECM substrates."*>'%®
Zscharnack et al. investigated the effect of low oxygen tension
(5%) during the expansion of ovine MSCs on colony-forming
unit-fibroblast (CFU-F) formation and chondrogenesis in pellet
culture and in collagen type I hydrogels."** MSCs expanded in
5% O, showed a 2-fold higher CFU-F potential, and
chondrogenic differentiation was enhanced in both pellet
culture and collagen type I hydrogels. It was demonstrated
that physiologically low oxygen tension during monolayer
expansion of ovine MSCs was advantageous to improving
cartilage tissue engineering in a sheep model."**

4.3. Other Physical Effect Affecting Differentiation of M5Cs

There are several other physical effects that promote differ-
entiation of MSCs on ECM protein surfaces. (i) Perfusion
culture promotes osteogenic differentiation of MSCs cultured
on ECM protein surface.'**'** (ii) Microgravity disrupts
collagen type I/integrin signaling during osteoblastic differ-
entiation of hMSCs.*** (iii) The mechanical properties of ECM
proteins guide specific lineage differentiation of
MSCs 147155156157 (iv) The topography of ECM proteins
promotes differentiation of MSCs cultured on aligned or
patterned substrates,” 146151154158

5. MSC CULTURE ON ECM PROTEINS AND NATURAL
BIOPOLYMERS

The ECM is the extracellular component of animal tissues that
provides structural support for the cells, in addition to
stimulating various important biological functions. ECM
proteins are able to dictate whether cells will proliferate or
undergo growth arrest, migrate or remain stationary, and thrive
or undergo apoptotic death.">® Therefore, the ECM proteins
are an important factor in reproducing the biological niches of
cells in vitro, which guides MSCs to differentiate into different
lineages such as osteoblasts, chondrocytes, adipocytes,
cardiomyocytes, neural cells, hepatocytes, and f-cells. The
differentiation of MSCs in culture systems depends on the
components, structure (morphology), origin, and quantity of
ECM proteins that are used. Because ECM proteins are used as
scaffolds for the organization of cells in tissues, ECM proteins
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