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Figure 1. Procedure for selecting significant SNP-probe pairs. The procedure for selecting significant SNP-probe pairs is shown. SNP-probe
pairs with a high likelihood of cross-hybridization and SNP-in-probe effects were excluded to exclude false positive results. The SNPs of the remaining
1,554 SNP-probe pairs were considered as eQTL SNPs.

doi:10.1371/journal.pone.0054967.g001
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Figure 2, Functional types of the eQTL SNPs. The percentage of SNP types is shown for ¢is- and trans- eQTL SNPs.
doi:10.1371/journal.pone.0054967.g002
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Since several of the probes targeted the same gene, the total
number of genes identified was 107. As shown in Figure 2, the
majority of the eQYTL SNPs were located in intronic (45% and
48% for cis- and trans-eQTL SNPs, respectively) or intergenic
(33% and 40% for cis- and trans-eQTL SNPs, respectively) regions.

Table S2 shows the names and properties of the 107 genes
whose expression levels in whole blood were affected by SNPs.
The SNPs affecting expression levels of the same gene were
primarily in high LD with each other. Furthermore, investigation
of combined Chinese and Japanese (CHB+JPT) panels from the
1000 Genomes Pilot 1 SNP data set and the HapMap release 22
data set showed a greater number of SNPs in high LD (r*>0.8)
with the eQTL SNPs identified in the current study. Since the high
intermarker correlations cause difficulties in determining which
SNP is responsible for the regulation of gene expression, we
defined the eQTL region of a gene as the genomic range in which
the SNPs in LD (r*>0.8) with the eQTL SNPs of the gene are
located. LD was determined by SNAP [20] using the population
panel CHB+JPT from the 1000 Genomes Pilot 1 SNP data set and
the HapMap release 22 data set.

Locational Relationships between the eQTL and the Gene

Regarding the locational relationships between the eQTL and
the gene, 102 of the eQTLs were cis-acting (within 1 Mb upstream
or downstream of the gene), and 5 were #rans-acting, of which 4
were located on a different chromosome from the gene that they
influenced. When the genome was divided into 3 segments (i.e.,
upstream, intragenic, and downstream), 69 cis-acting eQTL
regions covered multiple segments that included the intragenic
segments, 13 were confined to upstream segments, 7 were
confined to downstream segments, and 13 were confined to
intragenic segments.

Comparison of Results with Previously Reported Whole

Blood eQTLs

We compared our results with those of the study by Fehrmann
et al. [21], which performed a genome-wide eQTL analysis on
289,044 SNPs in whole blood expression data of 1,469 unrelated
individuals from the United Kingdom and the Netherlands. The
genotyping platform which they used (Illumina HumanHap300
platform) included only 24% of the 534,404 SNPs analyzed in the
current study and 15% of the 1,153 eQTL SNPs identified in the
current study. Therefore, 85% of the eQTL SNPs identified in the
current study had not been identified by Fehrmann et al. [21],
because they were not included in the Iumina HumanHap300
platform. On the other hand, 84% of the eQTL SNPs identified in
the current study which were included in the Ilumina Human-
Hap300 platform had also been identified as eQTL SNPs in their
study. The high replication rate supports the robustness of our
findings.

Influence on Expression Levels in Lymphoblastoid Cell
Lines

Next, we examined whether the eQTL SNPs affecting the
expression levels in whole blood also influence expression levels in
lymphoblastoid cell lines. We selected representative SNPs in
eQTL regions and examined their effects on the expression of the
corresponding gene in lymphoblastoid cell lines. The SNPs that
showed the strongest correlation with the expression levels in
whole blood for each eQTL region were selected for examination
of the possible effects on expression levels in lymphoblastoid cell
lines. If there were any additional eQTL SNPs in the same region
that were not in LD with the selected SNP (r2<0.1), then one of
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the SNPs with the strongest correlation with the expression levels
in whole blood was also selected. In the eQTL regions for MICA,
MICB, HLA-DRB5, HLA-DQBI, and HLA-DQA?Z, 2 representative
SNPs, which were not in significant LD with each other (r<0.1),
were selected. For other genes, the eQTL SNPs in the same eQTL
region were in LD with each other (*>0.1); therefore, 1
representative SNP was selected for each region. If the genotype
data of the selected SNP were not available in the HapMap data,
the SNP within the same eQTL region having the next strongest
correlation with the expression levels in whole blood was selected.

Genotype and expression levels in lymphoblastoid cell lines
were retrieved from public data for 45 Japanese individuals for 88
(86 cis and 2 frans) of the 112 representative SNPs. The average
number of individuals with applicable data for genotype and the
expression levels of lymphoblastoid cell lines in the 88 retrieved
SNP-gene pairs was 43.8. The Pearson’s correlation coefficients
between the eQTL SNPs and the expression levels of the
corresponding genes in lymphoblastoid cell lines were calculated
and have been shown in Table S3. A positive correlation
coefficient indicates that the SNP has a similar effect on expression
levels in whole blood and lymphoblastoid cell lines. Of the 86 cis-
eQTL SNPs, 34 showed a significantly positive correlation,
whereas 13 showed a significantly negative correlation with the
expression levels of lymphoblastoid cell lines (FDR-corrected,
P<0.05). None of the trans-eQTL SNPs identified in the current
study significantly affected expression levels in lymphoblastoid cell
lines.

Functional Properties of the eQTL SNPs

We examined whether the regulatory effects of eQTL SNPs
were caused by mutations in transcription factor-binding sites
(TFBSs), splicing-affecting sites, or microRNA (miRNA)-binding
sites. The proportion of SNPs in LD (r*>0.8) with a SNP
predicted to be located on such sites was compared between the 37
eQTL SNPs affecting expression levels in both whole blood and
lymphoblastoid cell lines; 49 eQTL SNPs affecting only whole
blood expression levels; and 5,681 non-eQTL SNPs located within
100 kB of the 107 genes that were regulated by the eQTL SNPs
identified in the current study. A web-based tool (FuncPred;
http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.htm) was used to
predict the functional properties of the SNPs. As shown in Table 1,
eQTL SNPs were more likely to be in LD with SNPs located on
TFBSs, splicing-affecting sites, and miRINA-binding sites.

Cis-only Analysis

The small-effect eQTL SNPs are likely to have remained
undetected in the present study due to the strict correction
procedures for multiple testing. In order to reduce the number of
unreported ¢is-eQTL SNPs, we also performed c¢is-only analysis by
examining only SNPs 1 Mb upstreamm or downstream of the
targeted gene. A total of 955,370 SNP-probe pairs were examined,
and those with an average Pearson’s correlation (7) of the 3 sample
groups corresponding to P<5.23x107° (i.e., Bonferroni-corrected
P<0.05) were considered significant. As shown in Table S4, the
cis-only analysis resulted in 3,883 SNP-probe pairs consisting of
3,161 SNPs and 347 probes.

The Influence of Depressive Disorder on Gene Expression
Regulation

In order to investigate whether depressive disorder was a major
confounding factor for gene expression regulation, we calculated
the Spearman’s correlation coefficients separately in depressed and
non-depressed subjects. All the 1,554 SNP-probe pairs identified
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SNPs Affecting Expression Levels in Whole Blood

Table 1. Percentage of SNPs that are in linkage disequilibrium (r*>>0.8) with a SNP predicted to be located on TFBS, splicing-

eQTL SNPs affecting expression levels in only whole blood (49 SNPs)

as eQTL in the present study achieved high correlations for both
depressed and non-depressed subjects (average Spearman’s
correlation of the 3 sample groups p>0.4, FDR-corrected
P<0.01 in non-depressed subjects and P>0.5, FDR-corrected
P<0.005 in depressed subjects for all 1,554 SNP-probe pairs).

Discussion

To our knowledge, this is the first genome-wide ¢QTL study in
Asian subjects that examined the association of SNPs with
expression levels in whole blood. The genome-wide investigation
uncovered 1,153 SNPs affecting gene expression levels in human
whole blood. Although the number of eQTL regions identified in
the current study was relatively small, the likelihood of false
positives is low because of the strict correction procedures for
multiple testing and exclusion of SNPs with potential cross-
hybridization or SNP-in-probe effects.

Since SNPs in strong LD with a SNP directly responsible for
regulating gene expression levels are also correlated with gene
expression levels, it is difficult to determine which SNP is the
causative one. We assumed that the genetic regulatory locus would
be included in the eQTL region, defined as the genomic range in
which the SNPs in LD (r*>0.8) with the eQTL SNPs identified in
our study are found. Although the numerous SNPs in LD with
each other hindered the identification of the responsible SNP, the
locations of the eQTL regions indicated that eQTLs are widely
distributed both upstream and downstream of the gene, as well as
within the gene.

The current study showed that several of the SNPs affecting the
expression levels of a gene in whole blood also influenced the
expression levels of the same gene in lymphoblastoid cell lines. A
recent study by Powell et al. [22] has shown that the genetic
control mechanisms of gene expression in whole blood and
Iymphoblastoid cell lines are largely independent. Despite the
evidence of low genetic correlation of regulatory variation
averaged across the genome, our results suggest that a subset of
eQTLs commonly affect expression levels in whole blood and
lymphoblastoid cell lines. Conversely, our findings suggest that
some of the whole blood eQQTL SNPs do not regulate expression
levels in lymphoblastoid cell lines. This is in line with a previous
study that reported that 69-80% of the identified regulatory
variants operated in a cell type-specific manner [9]. Compared to
SNPs affecting only expression levels in whole blood, higher,
although not statistically significant, proportion of SNPs affecting
expression levels in both whole blood and lymphoblastoid cell lines
were in LD with SNPs located on TFBSs and miRNA-binding
sites. The finding suggests that these functional properties affect
expression levels across multiple cell types.

Intriguingly, 13 of the 88 eQTL SNPs in whole blood were
observed to have opposite effects on expression levels in whole

PLOS ONE | www.plosone.org

TFBS Splicing

miRNA binding site

58.8% * 43.1%* 29.4% T

The following abbreviations are used: TFBS, transcription factor binding site; miRNA, micro RNA; LCL, lymphoblastoid cell line.
fp<0.01,

¥P<0.001: Significantly higher compared to non-eQTL SNPs (3 test).
doi:10.1371/journal.pone.0054967.t001

blood and lymphoblastoid cell lines. Dimas et al. [9] compared
gene expression variation in fibroblasts, lymphoblastoid cell lines,
and T cells and reported that the same directional effect in each
cell type was observed for eQTLs shared between multiple cell
types. However, 2 recently published studies reported that some
e¢QTL SNPs have opposite allelic effects on gene expression in the
liver, adipose tissue, skeletal muscle [10], or in B cells and
monocytes [11]. Our findings also suggest the possibility that some
SNPs may exert opposite effects on gene expression in different
cell types. However, an alternative explanation may be that the
eQTL SNPs identified may function to alter the splicing of the
mRNA. Since the gene expression microarray platform used in the
previous eQTL study examining LCL expression levels in
Japanese subjects was different from ours, the different probes
may have detected different splicing variants, resulting in
seemingly opposite allelic effects. A comparison using the same
platform would be necessary to uncover cell-specific effects on
expression levels.

The strength of the current study is that a relatively
homogeneous Japanese population was used, which may have
minimized the effects of differential genetic backgrounds. The
major limitation of the current study is that the conservative
corrections for multiple testing may have missed a large
proportions of eQTL SNPs. Increasing power allows better
detection of weaker and more distantly located cis-regulatory
elements [23]. Greater than 82% of the significant eQTT-probe
pairs identified in the current study had P<3.1x107'%, which far
exceeded the predetermined significance level (P<3.1x107'3).
Our findings should not be generalized to more weakly associated
eQTLs since they may have different regulatory mechanisms.
Another limitation is that approximately half of the samples were
collected from patients with a depressive disorder. However,
analyzing healthy and depressive subjects separately also resulted
in achieving high correlations (FDR-corrected P<<0.01) for all the
1,554 SNP-probe pairs identified in the current study. Therefore,
it is unlikely that depressive disorder has a major impact on gene
expression regulation of the identified eQTL SNPs. Further
investigation on the influence of depressive symptoms on gene
expression levels is underway using a larger sample size.

In summary, we have presented the results on genome-wide
investigations of SNPs affecting the expression levels in whole
blood. Both c¢is-acting and #rans-acting eQTL. SNPs were identified
for a total of 107 genes. The eQTL regions were widely distributed
upstream, downstream, and within the gene sequence. The
findings of this study are valuable if gene expression levels in
whole blood are used as biomarkers for disease conditions. Gene
expression levels and their connection with disease-associated
SNPs may lead to a better understanding of genetic predisposition
to disease and may be used to predict disease susceptibility.
Further studies are required to clarify how SNPs function in
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affecting the expression levels in whole blood as well as in other
tissues.

Supporting Information

Table S1 Significant SNP-probe pairs. The SNP-probe
pair selection procedure generated 1,554 significant pairs,
consisted of 1,153 SNPs, defined as eQTL SNPs, and 185 probes.
(XLSX)

Table 82 Genes whose expression levels in whole blood
are affected by SNPs. The names and properties of the 107
genes whose expression levels in whole blood were affected by
SNPs are shown.

(XLSX)

Table 83 The Pearsom’s correlation coefficients be-
tween the eQTL SNPs and the expression levels of the
corresponding gemes in lymphoblastoid cell limes. A
positive correlation coefficient indicates that the SNP has a similar

effect on expression levels in whole blood and lymphoblastoid cell
lines. Of the 86 cis-eQTL SNPs, 34 showed a significantly positive
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Objective: Visceral fat obesity is located upstream of metabolic syndrome and atherosclerotic diseases.
Accumulating evidences indicate that several immunocytes including macrophages infiltrate into adipose
tissue and induce chronic low-grade inflammation. We recently analyzed the association between vis-
ceral fat adiposity and the gene expression profile in peripheral blood cells in human subjects and dem-

Key\ﬂ{ords-' onstrated the close relationship of visceral fat adiposity and disturbance of circadian rhythm in
Obesgyl_ peripheral blood cells. In a series of studies, we herein investigated the association of visceral fat adipos-
Metabolic syndrome ity and mRNA levels relating to inflammatory genes in peripheral blood cells.

Inflammation R . . .

$100 family Approach and Results: Microarray analysis was performed in peripheral blood cells from 28 obese sub-

jects. Reverse transcription-polymerase chain reaction (RT-PCR) was conducted by using blood cells from
57 obese subjects. Obesity was defined as body mass index (BMI) greater than 25 kg/m? according to the
Japanese criteria. Gene expression profile analysis was carried out with Agilent whole human genome
4 x 44 K oligo-DNA microarray. Gene ontology (GO) analysis showed that 14 genes were significantly
associated with visceral fat adiposity among 239 genes relating to inflammation. Among 14 genes,
RT-PCR demonstrated that S100A8, S100A9, and S100A12 positively correlated with visceral fat adiposity
in 57 subjects. Stepwise multiple regression analysis showed that S100A8 and S100A12 mRNA levels
were closely associated with HOMA-IR and S100A9 mRNA was significantly related to adiponectin and
CRP.

Conclusions: Peripheral blood mRNA levels of S100 family were closely associated with insulin resistance
and inflammation.

Insulin resistance

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Obesity, especially visceral fat-accumulated obesity, is closely
associated with the development of atherosclerotic diseases and
is strongly linked to metabolic syndrome [1]. Molecular mecha-
nism for metabolic syndrome has been investigated but it has
not been fully understood at present. Increasing evidences indicate
that several immunocytes including macrophages infiltrate into
adipose tissue and induce chronic low-grade inflammation, which
develops into insulin resistance and metabolic syndrome [2].

* Corresponding author. Fax: +81 6 6879 3739.
E-mail address: norikazu_maeda@endmet.med.osaka-u.ac.jp (N. Maeda).

0006-291X/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.bbrc.2013.02.096

Moreover, these immune cells interact with adipocytes through
free fatty acids and adipocytokines, generating a vicious metabolic
cycle that accelerates the development of metabolic syndrome and
atherosclerosis [3,4].

These pathologies in obese fat tissue suggest that gene expres-
sion profile in peripheral blood cells may reflect the visceral fat
condition. Recently, we examined and analyzed the association be-
tween visceral fat adiposity and the gene expression profile in
peripheral blood cells to search novel surrogate markers relating
to visceral fat adiposity and to establish novel diagnostic tools
for metabolic syndrome [5]. Interestingly, genes relating to circa-
dian rhythm were significantly correlated with visceral fat adipos-
ity, suggesting that visceral fat adiposity links to disturbance of
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circadian rhythm. In a series of studies for the impact of visceral
fat adiposity on the gene expression profile in peripheral blood
cells, we here analyzed the association of visceral fat adiposity
and expression levels of inflammatory genes in peripheral blood
cells.

2. Methods
2.1. Study population and clinical examinations

All subjects were inpatients of the Division of Endocrinology &
Metabolism, Osaka University Hospital, Osaka, Japan. Written in-
formed consent was obtained from each subject after explaining
the purpose and potential complications of the study. The study
protocol was approved by the human ethics committee of Osaka
University and the study was registered with the University hospi-
tal Medical Information Network (Number: UMIN 000001663).
Subjects and clinical examinations were described previously.
Patients with type 1 diabetes mellitus, autoimmune diseases,
malignant diseases, and infectious diseases were excluded from
the study. Patients treated with statin and/or thiazolidinediones
were also excluded. The estimated visceral fat area (eVFA) was
measured by abdominal bioelectrical impedance analysis (BIA),
as reported previously [6,7]. The homeostasis model-assessment
of insulin resistance (HOMA-IR) was calculated by the equation:
HOMA-IR = fasting insulin (pU/mL) x fasting glucose (mg/dL)/405.

2.2. Microarray analysis

Blood samples were collected into PaxGene Blood RNA tubes
(PreAnalytiX/QIAGEN Inc., Valencia, CA) at 7:30 am. Total RNA
was extracted by using PaxGene Blood RNA Kit (PreAnalytiX/QIAGEN)
according to the protocol supplied by the manufacturer. After RNAs
were qualified by the Agilent 2100 Bioanalyzer, total RNA was con-
verted to cDNA, amplified, and labeled with Cy3-labeled CTP using
the Quick Amp Labeling kit (Agilent Technologies, Santa Clara, CA).
The amplified RNA and dye incorporation were quantified using a
ND-1000 Spectrophotometer (Nano Drop Technologies, Wilming-
ton, DE) and hybridized to Agilent whole human genome
4 x 44 K oligo-DNA microarray (Agilent Technologies, Santa Clara,
CA). After hybridization, the arrays were washed consecutively by
using Gene Expression Wash Pack (Agilent Technologies). Fluores-
cence images of the hybridized arrays were generated using the
Agilent DNA Microarray Scanner, and the intensities were ex-
tracted with Agilent Feature Extraction software ver.10.7.3.1. The
raw microarray data are deposited in the National Center for
Biotechnology Information Gene Expression Omnibus (GEO Series
GSE28038).

2.3. Real-time RT-PCR

First-strand cDNA was synthesized from 180 ng of total RNA
using Thermoscript RT (Invitrogen, Carlsbad, CA) and oligo dT
primer. Real-time quantitative PCR amplification was performed
with the LightCycler 1.5 (Roche Diagnostics, Tokyo, Japan) using
LightCycler-FastStart DNA Master SYBR Green I (Roche Diagnostics,
Tokyo, Japan). The final result for each sample was normalized to
the respective GAPDH (glyceraldedyde-3-phosphate dehydroge-
nase) value. The primer sets used were: S100A8, 5-CATGCCGTCTA-
CAGGGATGA-3' and 5'-GACGTCTGCACCCTTTITCC-3'; S100A9,
5'-GGGAATTCAAAGAGCTGGTG-3' and 5-CACTGTGATCTTGGCC-
ACTG-3'; S100A12, 5-GCTCCACATTCCTGTGCATTGAGG-3' and
5'-CCCTCATTGAGGACATTGCTGGG-3'; GAPDH, 5'-AAGGGCATCC-
TGGGCTACA-3' and 5'-GAGGAGTGGGTGTCGCTGTTG-3'.
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2.4. Microarray data analyses

The raw microarray intensities were processed by the percentile
shift method (75th percentile) using the GeneSpring GX11 (Agilent
Technologies) so as to normalize the range of expression intensities
for inter-microarray. Only those genes whose expression data were
available in more than 50% of hybridizations were included for fur-
ther analyses. The normalized data were exported from the Gene-
Spring GX software. The correlation between peripheral blood gene
expression levels and Log-eVFA levels was examined by Pearson’s
correlation under the R environment (http://cran.at.r-project.org).
Gene Ontology (GO) information was retrieved from the annota-
tions in GeneSpring GX11.

2.5. Clinical data analysis

Geometric mean values were used for C-reactive protein (CRP)
due to the skewed distribution of the data. Non-normally distrib-
uted variables were log-transformed before analysis. The Spearman
rank correlation coefficients for the study population as a whole
were analyzed for Log-eVFA levels and other clinical variables. P
values less than 0.05 denoted the presence of significant difference.
Pearson’s correlation coefficient was used to examine the relation-
ship between S100A8, S100A9 and S100A12 and metabolic param-
eters. Stepwise multiple regression analysis was conducted to
identify those parameters that significantly contributed to
S100A8, S100A9 and S100A12, and parameter with F value > 4.0
were subsequently entered into the regression analysis as indepen-
dent variables. All calculations were performed using the JMP soft-
ware (JMP 9.0; SAS Institute Inc., Cary, NC). Data are expressed as
mean * SD.

3. Results
3.1. Characteristics of the subjects

The clinical characteristics of the participating subjects are
listed in our previous report [5]. Briefly, the mean BMI, eVFA, and
HOMA-IR of 57 patients were 30.6 kg/m? 168.8 cm?, and 3.0,
respectively. The proportion of patients with diabetes mellitus,
dyslipidemia, and hypertension was 73%, 75%, and 58%, respec-
tively. These clinical characteristics indicate that present study
population is typical obesity with multiple complications.

3.2. Analysis of gene expression profiles

Microarray analysis was performed by using peripheral blood
RNA samples from 28 subjects (BMI 31.9%6.0kg/m?, VFA
199.4 + 89.4 cm?). The target probes were selected under the con-
dition that significant signals were detected in more than 14 cases
and finally 27,969 genes were extracted for gene expression anal-
ysis. To examine the correlation of visceral fat adiposity and
peripheral blood mRNA expression levels relating to inflammation,
genes classified as inflammation by gene ontology were extracted
from among genes associated with visceral fat adiposity. Table 1
lists the significant genes related to inflammation (G0O:0006954).
Significant association was observed in 14 genes among 239 genes
(5.9%) relating to inflammation. Nuclear factor related to kappaB
binding protein (NFRKB), which belongs to family of eukaryotic
transcription factors that control the expression of a large number
of genes regulating inflammation and immunity, was most
strongly correlated with eVFA (P = 0.0018). Interestingly, 3 genes,
S100A12, S100A8, and S100A9, which belong to S100 protein fam-
ily, emerged as significantly correlated genes with eVFA,
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Table 1

Genes relating to inflammation (GO:0006954).
Gene symbol Gene name Correlation P value
NFRKB Nuclear factor related to kappaB binding protein —0.563 0.0018
S100A12 $100 calcium binding protein A12 0.538 0.0031
ADORA3 Adenosine A3 receptor -0.536 0.0033
IL15 Interleukin 15 0.524 0.0042
S100A8 5100 calcium binding protein A8 0.468 0.0120
cCL21 Chemekine (C-C motif) ligand 21 0.463 0.0131
S100A9 5100 calcium binding protein A9 0.439 0.0194
BMP6 Bone morphogenetic protein 6 -0.430 0.0224
PROK2 Prokineticin 2 0.428 0.0230
CCR3 Chemokine (C-C motif) receptor 3 -0412 0.0293
CCR7 Chemokine (C-C motif) receptor 7 -0.411 0.0296
PXK PX domain containing serine/threonine kinase 0.406 0.0320
LY96 Lymphocyte antigen 96 0.384 0.0434
TLR5 Toll-like receptor 5 0.374 0.0497

RT-PCR was next performed in 57 subjects to revalue the asso-
ciation of eVFA and S100A8, S100A9, and S100A12 in peripheral
blood cells. As shown in Fig. 1, S100A8, S100A9 and S100A12
mRNA levels significantly and positively correlated with eVFA
(S100A8, P=0.018, R=031; S100A9, P=0.047, R=0.26;
S100A12; P=0.0013, R=0.41).

3.3. Association between S100 protein family and clinical parameters

Tables 2-4 lists the correlation coefficients for the relationship
between S100A8, S100A9, and S100A12 and various clinical
parameters, respectively. In age, sex-adjusted simple correlation
analysis, ST00A8 mRNA level correlated positively with log-eVFA,
HOMA-IR, WBC, neurotrophilis, and CRP, while its mRNA level cor-
related negatively with log-adiponectin (Table 2). ST00A9 mRNA
level correlated positively with WBC, neurotrophilis, and CRP,
whereas its mRNA level correlated negatively with HDL-C and
log-adiponectin (Table 3). S100A12 mRNA level correlated posi-
tively with BMI, WC, log-VFA, HOMA-IR, and CRP, while its mRNA
level correlated negatively with log-adiponectin (Table 4). Finally,
stepwise multiple regression analysis was performed. HOMA-IR
was identified as significant determinants of S100A8 (F=5.10)
and S100A12 (F = 6.84) (Table 2 and 4). Log-adiponectin (F = 6.23)
and CRP (F = 11.0) were significant determinants of ST00A9 (Table
3).

4. Discussion

In the present study, we show that peripheral blood S100-
relating genes were strongly associated with CRP, adiponectin,
and HOMA-IR in obese subjects.

Our group for the first time demonstrated that S1T00AS8 is highly
expressed in obese adipose tissues and adipose S100A8 is

A

10 4

significantly reduced by peroxisome proliferator-activated recep-
tor-y (PPARY) agonist, indicating that ST00AS is one of adipocyto-
kines [8]. Furthermore, we recently showed that circulating level of
calprotectin (S100A8/A9 complex) is positively correlated with vis-
ceral fat area [9] and is associated with low ultrasonographic low
carotid plaque density [10]. Several groups have also showed the
clinical significance of calprotectin and suggested that calprotectin
is a novel biomarker of cardiovascular events {11-13]. Calprotectin
is also higher in obese subjects than in non-obese subjects and is
decreased by weight reduction [14,15]. Calprotectin promotes
ROS generation via NADPH oxidase activation [16], binds to
toll-like receptor 4 (TLR4) [17], and associates with the receptor
for advanced glycation end-products (RAGE) [18], suggesting that
calprotectin accelerates vital signaling pathways involved in the
pathogenesis of atherosclerosis. Plasma S100A12 concentration is
increased in type 2 diabetes and cardiovascular diseases [19-21].
Interestingly, the overexpression of human S100A12 induced arte-
rial calcification in mice [22], suggesting that S100A12 is associ-
ated with the development of atherosclerosis. Collectively,
S100A8, S100A9, and S100A12 may take part in the development
of atherosclerosis and type 2 diabetes, because of their pro-inflam-
matory properties.

However, little is known in the association between peripheral
blood mRNA expression levels of S100 family and inflammatory
diseases in human. In patients with Kawasaki disease, leukocyte
mRNA levels of S100A8, S100A9, and S100A12 were increased at
acute phase compared to stable phase [23]. ST00A12 mRNA level
in peripheral blood mononuclear cells (PBMCs) was higher in
non-diabetic subjects with pre-mature coronary artery disease
than in the subjects with multiple coronary risk factors [24]. In
present study, mRNA expression levels of peripheral blood
S100A8, S100A9, and S100A12 were significantly correlated with
visceral fat area, although its mechanism remains uncertain.
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Fig. 1. Correlation of visceral fat area and peripheral blood mRNA levels of S100 family. Total RNAs from peripheral blood cells of 57 subjects were subjected to RT-PCR.

S100A8, P=0.018, R=0.31; S100A9, P=0.047, R =0.26; S100A12; P=0.0013, R=0.41.
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Table 2
Correlation between peripheral blood ST00A8 mRNA and clinical parameters.
Clinical parameters Univariate (non-adjusted) Univariate (age, sex-adjusted) Multivariate
R P value R P value P value F value
Age -0.57 <0.0001 - -
Sex 0.19 0.16 - -
BMI 031 0.02 0.20 0.10
Waist circumference (WC) 0.25 0.06 0.20 0.10
Log-eVFA 0.30 0.02 0.27 0.02 0.54 0.37
Systolic blood pressure -0.08 0.54 -0.09 0.44
Diastolic blood pressure 0.20 0.14 -0.13 0.32
Fasting glucose 0.05 0.69 0.03 0.82
Hemoglobin Alc (JDS) 0.22 0.10 0.18 0.11
HOMA-IR 033 0.06 0.29 0.04 0.03 5.10
AST 0.18 0.17 0.15 0.19
ALT 0.29 0.03 0.16 0.18
v-GTP -0.10 0.46 -0.06 0.59
Total cholesterol 0.03 0.81 -0.08 0.52
LDL-C 0.005 0.97 -0.09 0.42
Triglyceride 0.32 0.02 0.19 0.12
HDL-C -0.30 0.02 -0.21 0.08
Creatinine —-0.26 0.06 -0.18 0.22
Log-adiponectin -0.49 0.0001 -0.35 0.004 0.55 0.37
WBC 0.50 <0.0001 0.32 0.01 0.26 1.32
Neutrophilis 045 0.0003 0.32 0.008 - -
Lymphocytes 0.43 0.0005 0.20 0.13
Monocytes 0.36 0.0004 0.21 0.08
Eosinophilis 0.28 0.03 0.18 0.14
Basophilis —-0.08 0.55 -0.18 0.11
CRP 0.39 0.003 0.35 0.001 0.21 1.65
Complication of DM 0.005 097 0.09 0.43
Complication of HT 0.02 0.90 0.15 0.19
Complication of DLP 0.14 0.30 0.02 0.88
Mean IMT -0.18 0.22 0.09 0.50

Data are mean * SD. BMI; body mass index, eVFA; estimated visceral fat area, HOMA-IR; homeostasis model assessment of insulin resistance, LDL-C; low density lipoprotein—
cholesterol, HDL-C; high density lipoprotein-cholesterol, IMT; intima-media thickness.

Table 3
Correlation between peripheral blood S100A9 mRNA and clinical parameters.
Clinical parameters Univariate (non-adjusted) Univariate (age, sex-adjusted) Multivariate
R P value R P value P value F value
Age -0.34 0.009 - -
Sex 0.04 0.75 - -
BMI 0.30 0.02 0.20 0.14
Waist circumference (WC) 0.24 0.07 0.20 0.18
Log-eVFA 0.26 0.05 0.23 0.06
Systolic blood pressure —-0.24 0.08 —0.24 0.07
Diastolic blood pressure -0.05 0.73 -0.27 0.07
Fasting glucose 0.06 0.64 0.05 0.72
Hemoglobin Alc (JDS) 0.24 0.08 0.21 0.10
HOMA-IR 0.33 0.06 0.30 0.07
AST 0.14 0.31 0.11 0.41
ALT 0.18 0.17 0.11 0.42
y-GTP -0.18 0.20 -0.13 0.34
Total cholesterol -0.06 0.67 -0.14 0.29
LDL-C -0.04 0.78 -0.12 0.36
Triglyceride -0.18 0.20 0.14 0.30
HDL-C ~0.32 0.02 -0.29 0.02 0.13 242
Creatinine -0.31 0.02 -0.20 0.23
Log-adiponectin —0.31 0.02 -0.37 0.007 0.02 6.23
WBC 0.40 0.002 037 0.01 042 0.65
Neutrophilis 0.42 0.001 0.42 0.002 - -
Lymphocytes 0.25 0.06 0.08 0.59
Monocytes 0.29 0.03 0.21 0.11
Eosinophilis 0.14 0.30 0.10 0.44
Basophilis -0.07 0.58 -0.17 0.20
CRP 0.42 0.001 0.37 0.003 0.002 11.0
Complication of DM 0.06 0.67 0.12 035
Complication of HT 0.06 0.71 0.07 0.61
Complication of DLP 0.11 0.40 0.03 0.81
Mean IMT -0.19 0.19 -0.01 0.92

Data are mean * SD. BMI; body mass index, eVFA; estimated visceral fat area, HOMA-IR; homeostasis model assessment of insulin resistance, LDL-C; low density lipoprotein-
cholesterol, HDL-C; high density lipoprotein-cholesterol, IMT; intima-media thickness.
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Table 4
Correlation between peripheral blood S100A12 mRNA and clinical parameters.

Clinical parameters Univariate (non-adjusted)

Univariate (age, sex-adjusted) Multivariate

R P value R Pvalue P value Fvalue
Age -0.44 0.0006 - -
Sex 0.13 0.33 - -
BMI 0.38 0.004 0.31 0.02 - -
Waist circumference (WC) 0.38 0.004 0.31 0.005 - -
Log-eVFA 0.40 0.002 0.37 0.002 0.69 0.16
Systolic blood pressure -0.09 0.51 -0.09 045
Diastolic blood pressure 0.02 0.16 -0.05 0.72
Fasting glucose 0.03 0.85 0.005 0.97
Hemoglobin Alc (JDS) 0.20 0.14 0.17 0.17
HOMA-IR 0.56 0.0008 0.52 0.0004 0.01 6.84
AST 0.19 0.16 0.16 0.19
ALT 0.27 0.04 0.17 0.18
v-GTP -0.12 0.39 -0.09 0.57
Total cholesterol -0.07 0.58 -0.16 0.19
LDL-C -0.07 0.62 -0.15 0.23
Triglyceride 0.12 0.36 0.009 0.94
HDL-C -0.21 0.13 -0.13 0.31
Creatinine -0.20 0.15 -0.11 037
Log-adiponectin —0.40 0.002 -0.29 0.03 0.46 0.56
WBC 0.34 0.009 0.19 0.18
Neutrophilis 0.30 0.02 0.19 0.15
Lymphocytes 0.28 0.04 0.07 0.64
Monocytes 0.22 0.11 0.09 0.50
Eosinophilis 0.09 0.51 -0.01 0.94
Basophilis -0.07 0.59 -0.16 0.20
CRP 0.44 0.0006 0.42 0.0005 0.06 3.88
Complication of DM 0.05 0.74 0.12 0.26
Complication of HT 0.02 0.87 0.11 0.36
Complication of DLP 0.04 0.79 0.07 0.63
Mean IMT -0.18 0.21 0.003 0.97

Data are mean * SD. BMI; body mass index, eVFA,; estimated visceral fat area, HOMA-IR; homeostasis model assessment of insulin resistance, LDL-C; low density lipoprotein—

cholesterol, HDL-C; high density lipoprotein-cholesterol, IMT; intima-media thickness.

Visceral fat accumulation causes dysregulation of adipocytokines
and results in chronic low-grade inflammation in a whole body.
There is a possibility that visceral fat-mediated inflammatory sig-
nal affects on peripheral blood cells and induces mRNA expressions
of $100 family.

As shown in Table 2-4, HOMA-IR was directly associated with
S100A8 (F=5.10) and S100A12 (F=6.84). Adiponectin (F=6.23)
and CRP (F = 11.0) were significant determinants of ST00A9. These
results suggest that S100A8, S100A9 and S100A12 in peripheral
blood cells may be closely related to insulin resistance and inflam-
mation in visceral fat accumulation.

The present study has several limitations. All subjects were
inpatients and thus diabetes mellitus, dyslipidemia, and hyper-
tension were common in the study population. These conditions
could influence on the expression levels of various genes in
peripheral blood cells directly or indirectly. In addition, the
study participants were obese Japanese subjects (BMI > 25 kg/
m?) and thus future studies are needed to perform among not
only obese subjects but also non-obese healthy (low VFA)
subjects.
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