There are reports that evaluating fraction of joints by
ultrasonography is a good way to predict future joint damage
[11-12]. One study reported that 5 of the 28 joints with MTP2
and MTP5 joints, namely, wrist, MCP2, MCP3, PIP2, and PIP3
joints, are enough for ultrasonography evaluation [12]. Their data
seems to be consistent with our results as they selected at least two
joints from three different groups into which the 28-joint
symptoms were classified. As ultrasonography usually surpasses
physical examination in terms of the sensitivity to detect synovitis,
it is interesting to analyze whether the assessments of synovitis
using ultrasonography show the same pattern of synovitis over the
28 joints in RA.

Our results indicate that RA does not develop synovitis in the 28
joints with the same frequency and that the affected rate of each
joint greatly varies from joint to joint. These different distributions
of joint synovitis would lead to different distribution of joint
destruction. Based on our results, the 28 joints can be categorized
into three groups, and it is possible that some fractions of the 28
joints are less informative to assess disease activity than others. It
would be interesting to develop a novel simplified joint core set,
and analyze the correlation between joint damage and activity
score based on this. It would be also interesting to characterize
each of RA subsets in more detail.

Materials and Methods

Ethics Statement

Written informed consent to enroll in the database described
below was obtained from most of the patients, but for some
patients the information regarding the construction of this
database was disclosed instead of obtaining written informed
consent. Participants who were informed regarding the construc-
tion of the database (instead of obtaining written informed
consent) were allowed to withdraw from the study if desired.

All data were de-identified and analyzed anonymously. This
study was designed in accordance with the Helsinki Declaration.
This study including the consent procedure was approved by the
ethics committee of Kyoto University Graduate School and
Faculty of Medicine.

The KURAMA database

The KURAMA (Kyoto University Rheumatoid Arthritis
Management Alliance) database was established in 2011 at Kyoto
University to store detailed clinical information and specimens
from patients with arthritis and arthropathy. The alliance is
composed of rheumatic disease-associated departments in Kyoto
University Hospital as well as its allied, integrating previous
database and specimen collections in each department and allied.
A template for electronic clinical charts developed at Kyoto
University Hospital in 2004 to evaluate joint involvements in RA
patients was used to obtain joint assessments. Rheumatologists
evaluated swelling and tenderness of the 28 joints in patients with
RA on each visit and filled in the template. The synovitis
information of the 28 joints and data for C-reactive protein and
erythrocyte sedimentation rate were extracted from electronic
clinical charts [15] and stored in the KURAMA database.

Patients and data of joint assessment

A total of 17,311 joint assessments from 1,314 patients with RA
from 2005 to 2011 were obtained in a retrospective manner from
the KURAMA database. All of the patients fulfilled ACR revised
criteria for RA in 1987 [10] or ACR and EULAR classification
criteria for RA in 2010 [16-17].
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Analysis of affected frequencies in the 28 joints

RA patients were subdivided depending on whether their data
were available in 2011 or not, and the affected frequency in each
of the 28 joints was calculated. We compared the order of the
affected frequency in the 28 joints between the two patient sets
with Spearman’s rank-sum coefficient. We separately analyzed the
affected rates of joints for swelling and tenderness. When multiple
joint assessments in different visits were available in the same
patient with RA, we randomly selected one of the assessments as
representative in the patient. We compared frequencies between
tenderness and swellings for the 28 joints with Spearman’s rank-
sum coefficient.

Clustering of patients with RA

Clustering analyses were performed by Ward method, using
randomly-selected 5,383 evaluations of the 28 joints from 1,314
patients with RA. These evaluations did not contain more than six
assessments from each patient to avoid excess influence of
particular patients. Affected rates were calculated for the three
groups of joints (namely PIP joints, MGP joints and large and wrist
joints) in this clustering analysis. For example, when a patient
showed tenderness and swelling for all PIP joints, the affected rate
of PIP joints in the patient is 2. When a patient showed tenderness
for four MCP joints, the affected rate of MCP joints is 0.4.

RA patients were regarded as belonging to a particular group
when more than 60% of evaluations belonging to the same
patients with four or five evaluations were classified into the same

group.

Analysis between RA subgroups and joint destruction

Joint destruction of hand joints in 246 patients with RA was
evaluated by modified Sharp score by a trained rheumatologist
who was not informed of the patients’ characteristics (KM). Joint
destruction rates were defined for the three groups of joints as a
sum of scores divided by the full score in the joints group. For
example, when a patient shows 50 as a sum of scores in the large
and wrist group, the patient’s joint destruction rate for the group is
0.463 (50/108).

Correlation of the 28 joints and statistical analysis

Correlations of joint symptoms among the 28 joints were
estimated separately for tenderness and swelling. We randomly
obtained one assessment of the 28 joints in each patient as a
representative of the patient’s joint assessments for maximization
of the power. Kappa coeflicient was used to analyze coincidence of
joint symptoms in each pair of the 28 joints. Eigen vectors
obtained in principal component analysis were used to analyze the
deviation of joint symptoms. We resampled joint assessments for
each patient and created four other sets of joint assessments. The
same correlation analyses were performed using the four
resampled assessments to confirm the correlation shown in the
first assessment set. Right dominance of the synovitis and joint
destruction was analyzed by binomial test. Dominant destruction
of joints was evaluated by paired-t test. Statistical analysis was
performed by R software or SPSS (verl8).

Supporting Information

Figure §1 Distribution of joint evaluation counts and
patients across different years. A) Distribution of number of
RA patients according to numbers of 28-joint assessments. B)
Distribution of number of patients with RA whose joint assessment
data were available from 2005 to 2011 in the KURAMA database.

(TTE)
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Figure $2 Good correlations between joint involvement
rates in different sets of RA patiemts. Rates of joint
involvement for A) swelling and B) tenderness were compared
between the two different sets of RA patients. X and Y axes
represent rates in the first set of RA patients in 2011 and those in
the second set in 2005 to 2010, respectively.

(TTE)

Figure $3 Three groups of joints regardless of different
sets of RA patients. Analysis using one of four resampled
assessments in one of the two sets of RA patients is shown as a
representative. The 1% and gnd components of eigen vectors of the
joint symptoms are plotted, using principal component analysis of
the 28 joint involvement for tenderness (A) and swelling (C) or
using that of the 20 joint involvement other than large and wrist
joints for tenderness (B) and swelling (D). Green: large and wrist
joints. Red: MCP joints. Blue: PIP joints.

(TIF)

Figure $4 Three groups of joints regardless of different
evaluators. Analysis using one of five resampled assessments by
one of the two groups of medical doctors is shown as a
representative. The 1% and 2°¢ components of eigen vectors of
the joint symptoms are plotted, using principal component analysis
of the 28 joint involvement for tenderness (A) and swelling (C) or
using that of the 20 joint involvement other than large and wrist
joints for tenderness (B) and swelling (D). Green: large and wrist
joints. Red: MCP joints. Blue: PIP joints.

(TIF)

Figure S5 Dominant destruction of large and wrist
joints in the sixth subgroup of patiemts with RA. Box
plots indicating the joint destruction rates in the three joint groups
in subjects belonging to the sixth subgroup.

(TTF)
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease charac-
terized by chronic inflammation of the synovial lining of the joint
[1]. If left untreated, outcome varies from self-limited disease in a
small proportion of RA patients to severe disease resulting in
profound structural damage, excess morbidity and disability, and
early mortality [2]. In the last twenty years, disease activity has
been controlled in many patients by treatment with disease-
modifying anti-rheumatic drugs (DMARD:s), such as methotrex-
ate, and the more recently developed biologic DMARDs that
block inflammatory cytokines such as tumor necrosis factor-alpha
(TNFa) [3]. Unfortunately, these medications are not effective in
all RA patients, with up to one-third of patients failing to respond
to any single DMARD [1-3]. Moreover, the biological mecha-
nisms underlying treatment failure are unknown, which limits the
development of clinical biomarkers to guide DMARD therapy or
the development of new drugs to target refractory cases.

There are two classes of anti-TNF therapy: the TNF receptor
fusion protein (etanercept), which acts as a soluble receptor to bind
circulating cytokine and prevent TNF from binding to its cell
surface receptor, and monoclonal antibodies that bind TNF
(adalimumab, infliximab, certolizumab, and golimumab). There
are undoubtedly shared mechanisms between the two drug classes
(e.g., downstream signaling factors), as illustrated by similar effects
on the change in inflammatory cytokines, complement activation,
lymphocyte trafficking, and apoptosis [4,5,6]. Similarly, there are
likely to be different biological factors that influence response:
infliximab and adalimumab are approved for treatment of Crohn’s
disease; infliximab and adalimumab bind to transmembrane TNF
on the surface of activated immune cells, whereas etanercept only
binds soluble TNF [7]; and etanercept also binds a related
molecule, lymphotoxin alpha (LTA), whereas infliximab/adali-
mumab do not [8].

Pharmacogenetics of response to anti-TNF therapy in RA
remains in its early stages, with no single variant reaching an
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unambiguous level of statistical significance. Candidate gene
studies suggest associations of TNFa or TINF receptor alleles,
RA risk alleles or other SNPs with response to anti-TNF therapy
[9,10,11]. Two GWAS in small sample sets (largest was 566
patients) have been performed, which identified loci with
suggestive evidence for association [12,13]. Therefore, GWAS of
large sample sizes may yet uncover genetic factors associated with
response to anti-TNF therapy in RA, and larger cohorts enable
separate analyses of the different types of anti-TNF drugs.

Here we report a GWAS of 2,706 samples with anti-TNF
treatment response data collected from an international collabo-
ration, including previously published GWAS data [12,13]. Our
primary outcome measure was the change in disease activity score
based on a joint count in 28 joints (DAS28) from baseline to 3-12
months after initiating anti-TNF therapy. Our secondary outcome
measure was European League Against Rheumatism (EULAR)
responder status [14,15], where patients are classified as EULAR
good responders, moderate responders or non-responders based
on follow up DAS28 after treatment and overall change in DAS28.
We found a highly significant association for a variant that we also
show is also a strong expression quantitative trait locus (€QTL) for
the CD84 gene. Our findings suggest that CD84 genotype and/or
expression may prove to be a biomarker for etanercept response in
RA patients.

Results

Genome-wide association study

Clinical and GWAS data were compiled for 2,706 individuals of
European ancestry from 13 collections as part of an international
collaboration. Table 1 shows sample sizes, phenotypes and clinical
variables for the four collections that were the units of analysis
(additional details are shown in Table S1). Disease activity score
based on a 28-joint count (DAS28) were collected at baseline and
at one time point after anti-TNT therapy administration (mean 3.7
months, range 3-12 months). We defined our primary phenotype
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as a change in DAS28 (ADAS) from baseline (so that greater
ADAS corresponded with better response to therapy; overall mean
and standard deviation of 2.1%1.3), adjusted for baseline DAS. A
secondary phenotype was used based on European League Against
Rheumatism (EULAR) response criteria. EULAR ‘good response’
was defined as ending DAS<(3.2 and ADAS>1.2; ‘non-response’

Table 1. Samples and clinical data.

GWAS on Response to Anti-TNF Therapy in RA

was defined as ADAS <0.6 or ADAS=<1.2, and ending DAS
>5.1; and ‘moderate response’ is in between [15]. We limited our
secondary analysis to a dichotomous outcome, EULAR good
responders (n = 998 for all patients treated with anti-TNF therapy)
versus EULAR non-responders (n = 655), excluding the moderate
category based on the hypothesis that a more extreme phenotype
of response would yield improved discrimination.

Clinical variables were examined for association with pheno-
type, and therefore possible confounding in genetic association
tests. In multivariate models (Table S2), only baseline DAS was
strongly associated with the ADAS phenotype. As previously
shown [11], age and gender showed univariate associations that
were attenuated in the multivariate analysis. Accordingly, we used
only baseline DAS as a clinical covariate, as this allowed us to
maximize sample size given clinical variable missing data in some
cohorts.

We performed quality control (QC) filtering and data processing
of GWAS data for each of eleven genotyping batches. Genotyping
array platforms are described in the Methods. HapMap?2
imputation allowed us to test for association at >2 M SNPs with
imputation quality scores >0.5. Genotype data were merged
across several genotype batches to create four collections for
genome-wide association testing. We performed linear regression
association tests using baseline DAS and three principal compo-
nents as covariates, and performed inverse-variance weighted
meta-analysis to combine results across the four collections.
Quantile-quantile plots with genomic control Agc values are
shown in Figure S1. We found no evidence of systematic inflation
of association test results, and no evidence of deflation for imputed
versus genotyped SNPs. As a final filter, we excluded SNPs that

Collection (analysis batch): REF

Drug subsets

1
Genotype platform mixed

(SD)

Age, yr; m

£

e

ADAS, mean (SD) 1.9 (1.6)

Study design Alj##*

BRAGGSS

415 268

Moderate responder 243 258

Affy 500K

Gender, female % 75.6 773

MTX co-therapy, % 65.6 85.6

Observational

DREAM ReAct Total

211 0 894

359 131 991

u550K +650K llumina OmniExpress

76.0 50.0

2.2 (1.3)

Observational Observational

*8 patients had no TNF drug information.

doi:10.1371/journal.pgen.1003394.t001
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*¥38 patients had only EULAR response {good, moderate or none) clinical data.
#*ABCoN, GENRA are prospective cohorts, BeSt, eRA and TEAR are randomized controlled trial (RCT), and rest of REF group are observational cohorts.
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showed strong evidence of heterogeneity across collections
(Cochran’s Q P<<0.001).

We first analyzed all samples together (n = 2,706), regardless of
drug type. We found no clear evidence of association with treatment
response measured by ADAS (Figure 1A). Similar results were
obtained using the binary phenotype of EULAR responder versus
EULAR non-responder status (Figures S1 and $2).

We next separately analyzed patients treated with either
etanercept (n=733), infliximab (Mm=894) or adalimumab
(n=1,071) (Figure 1B-1D), under the hypothesis that different
genetic loci affect response to the different drugs based on their
mechanism of action or other biochemical properties. GWAS
results are publicly available for all SNPs tested at the Plenge
laboratory and RICOPILI Web sites (see URLs). GWAS results
for all SNPs achieving P<10"° from any analysis are detailed in
the Table S3.

A. All patients
8 hac=1.001
=
B
[o)]
o
]
Chromosome
C. Infliximab
8 - rec=1.014
e oN.=884 .
c
Nz’
2
o
L
]

Chromosome

~log1o(p)

—log1o(p)

GWAS on Response to Anti-TNF Therapy in RA

For etanercept-treated RA patients, a locus on chromosome
1¢23  achieved near-genome-wide significance (rs6427528,
Prera =8x1078) (Figure 1B, Figure 2A, and Figure 3), but not
in the infliximab or adalimumab subsets (P>0.05) (Figure S3).
SNPs in linkage disequilibrium (LD) showed consistent association
results (rs1503860, P=1x10"7, r*=1 with rs6427528 in Hap-
Map; three perfect-LD clusters of SNPs exemplified by rs3737792,
1510908787 and rs11265432 respectively; P<5x107°% r?=0.83,
0.63 and 0.59 with rs6427528, respectively). No single collection
was responsible for the signal of association, as the effect size was
consistent across all collections (Figure S4). The top SNP
rs6427528 was genotyped in the ReAct dataset (Ilumina Omni
Express genotyping chip), and was well imputed across all other
datasets (imputation quality score INFO =0.94, which is an
estimate of genotype accuracy; the range of INFO scores is 0-1,
where | indicates high confidence). All of these SNPs had minor

B. Etanercept

8 ~ Aee=0.997

- 8 e v wo®~ewo sy pyoersey
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Figure 1. GWAS results for the ADAS phenotype. Shown are strengths of association (—Log10 P-value) for each SNP versus position along
chromosomes 1 to 22. A) All samples (n=2,706). B) Etanercept-treated patients (n=733). C) Infliximab-treated patients (n=894). D) Adalimumab-

treated patients (n=1,071).
doi:10.1371/journal.pgen.1003394.g001
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Figure 2. Association results and SNP annotations in the 7¢23 CD84 locus. A) Regional association plots with ADAS (top panel) and with
CD84 expression (bottom panel), showing strengths of association (—Log10 P-value) versus position (Kb) along chromosome 1. B) Schematic of CD84
gene structure (RefSeq gene model, box exons connected by diagonal lines, arrow indicates direction of transcription) with strong enhancer
chromatin states (orange rectangles) and SNPs in high LD (r2>0.8) with rs6427528 (vertical ticks). SNPs in enhancers are labeled below. C)
Annotations of strong-enhancer rs6427528 proxy SNPs; listed are SNP rs-ID (major and minor alleles), conservation score, cell line with DNAse
footprint if present, and transcription factor binding sites altered. 1- Genomic evolutionary rate profiling (GERP) conservation score, where a score >2
indicates conservation across mammals. 2- DNase footprint data are compiled from publicly available experiments by HaploReg. 3- Position weight
matrix logos show transcription factor consensus binding sites with nucleotide bases proportional to binding importance. SNP position is boxed.
Note that the rs10797077 AIRE_2 and the rs6427528 SREBP_4 motifs are on the minus strand (base complements correspond to SNP alleles), with the
SREBP motif shown upside down to align with the rs6427528 KROX motif on the positive strand. Data are from HaploReg.

doi:10.1371/journal.pgen.1003394.g002

allele frequencies ranging from 7-10%. The SNP explains 2.6%
variance in response to etanercept treatment.

For patients treated with infliximab, we observed a suggestive
result on chromosome 10p14 (rs12570744, P=2x10""). No highly
significant or suggestive results were observed for the ADAS
phenotype in patients treated with adalimumab (Pyrra>107).

Qualitatively similar results were attained in the analysis of our
secondary phenotype, EULAR good responder vs non-responder
status (Figures S1 and S2). For SNPs at the 7423 locus, the pattern
of association with responder/non-responder status (etanercept-
treated patients) was consistent with the results for ADAS
(P=6x10"2 for rs6427528 and rs1503860). We also identified
potential novel associations, with suggestive results for infliximab
(rs4336372, chromosome 5¢35, P=8x1077) and adalimumab
(rs940928, chromosome 2¢12, P=2x 1079,

eQTL and sequence analysis of the CD84 gene

For each SNP with P<107° identified by our GWAS (n=6
independent SNPs), we searched for biological evidence to support
a true positive association. We used genome-wide sequence data
from the 1000 Genomes Project to search for putative functional
variants in LD with the index SNP (defined as SNPs predicted to
change protein-sequence or mRINA splicing). We also used
genome-wide expression data to search for an expression
quantitative trait locus (eQTL) in public databases and in
peripheral blood mononuclear cells (PBMCs) in 228 non-RA
patients and in 132 RA patients.

While we did not identify any variants disrupting protein-coding
sequences or mRNA splicing, we did find that the 7¢23 SNP
associated with response to etanercept therapy was a strong eQTL
in PBMCis (Figure 2A and Figure 3). In an analysis of 679 SNPs for
cis-regulated expression of five genes in the region of LD
(SLAMFS6, CD84, SLAMFI, CD48, and SLAMEF7), we found that
1rs6427528-CD84 (and SNPs in LD with it) was the top eQTL of all
results (n=228 subjects; Figure 2A). This SNP was specifically
associated with CD84 expression, and was not an eQTL for other
genes in the region (P>0.36 for the other genes).

We replicated our eQTL finding in 132 RA patients with both
GWAS data and genome-wide expression data. PBMC expression
data were available from RA patients in the Brigham RA
Sequential Study (BRASS) and Autoimmune Biomarkers Collab-
orative Network (ABCoN) collections. We observed a significant
association between rs6427528 genotype and CD84 expression
(linear regression adjusted for cohort P=0.004, rank correlation
P =0.018). The direction of effect was the same as in the PBMC
samples from 228 non-RA patients. A combined analysis of RA
patients and the non-RA patient ¢QTL data (described above)
yielded rank correlation P=3x 107 (n =360 total individuals).

We searched sequence data to determine if rs6427528, or any of
the SNPs in LD with it, were located within conserved, non-coding
motifs that might explain the eQTL data. We used HaploReg [16]
to examine the chromatin context of 16427528 and 26 SNPs in
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LD with it (at r*>0.50). We found that 5 SNPs occur in strong
enhancers inferred from chromatin marks (Figure 2B) [17]. Two of
these 5 SNPs, rs10797077 and rs6427528 (r* = 0.74 to each other),
are predicted to disrupt transcription factor binding sites, and
rs10797077 occurs at a site that shows conservation across
mammalian genomes [18]. Figure 2C shows the DNA sequence
position weight matrices of the transcription factor binding sites
changed by rs10797077 (the minor allele creates a stronger
binding site for the AIRE transcription factor) and rs6427528 (the
minor allele creates a binding site for KROX and SREBP).

Expression of CD84 as a biomarker of disease activity and

treatment response

Because the genetic data demonstrates that the allele associated
with better response is associated with higher CD84 expression,
this suggests that CD84 expression itself may serve as a useful
biomarker of disease activity or treatment response. We tested
both hypotheses using PBMC expression data from the BRASS
and ABCoN collections. First, we tested if CD84 expression is
associated with cross-sectional DAS, adjusting for age, gender and
cohort (Figure 4). We observed a significant inverse association
between CD84 expression and cross-sectional DAS in 210 RA
patients (beta=—0.3, P=0.02, r*=0.02). That is, higher CD84
expression was associated with lower DAS, regardless of treatment.

Second, we tested CD84 for association with our primary
treatment response phenotype, ADAS. The sample size for this
analysis was smaller than for the cross-sectional analysis, as we
required that patients be on anti-TNF therapy and have pre- and
post-treatment DAS. We found that CD84 expression levels
showed a non-significant trend towards an association with ADAS
in 31 etanercept-treated patients (beta = 0.2, r*=0.002, P = 0.46)
and in all 78 ant-TNF-treated patients (beta=0.14, r?=0.004,
P=0.4). The effect is in the same direction one would predict
based on the genetic association at rs6427528: the allele associated
with better response is also associated with higher CD84 expression
(Figure 3), and in 31 RA patients, higher CD84 expression
(regardless of genotype) is associated with a larger ADAS (ie.,
better response; Figure 4).

Replication of genetic data in a small, multi-ethnic cohort

Since most of the samples available to us as part of our
international collaboration were included in our GWAS, few
additional samples were available for replication. In addition, the
remaining samples available to us were from different ethnic
backgrounds. Nonetheless, we sought to replicate the associations
of rs6427528 with ADAS in these additional samples. We
genotyped 139 etanercept-treated patients from a rheumatoid
arthritis registry in Portugal (Reuma.pt) and 151 etanercept-
treated patients from two Japanese collections (IORRA, n =88
patients on etanercept and Kyoto University, n=63 on etaner-
cept). Replication sample sizes, clinical data and results for these
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Figure 3. 7¢g23/CD84 genotype association plots for ADAS and
CD84 gene expression. Shown are ADAS in our GWAS in etanercept-
treated patients (top panel, n=733; n=634 with the GG genotype and
n=99 with the GA or AA genotype) and CD84 expression in our eQTL
results (bottom panel, n=228 non-RA patients; n=178 with the GG
genotype and n=50 with the GA or AA genotype). The rare-allele
homozygous genotype AA was observed four times in our ADAS GWAS
and was pooled with the heterozygous GA genotype for this figure; AA
homozygotes were not observed in the CD84 eQTL data. Association
analyses reported in the text regressed phenotype (ADAS, P=8x10"%,
CD84 expression, P=1x10""") on minor-allele dosage (range 0-2).
doi:10.1371/journal.pgen.1003394.g003

two SNPs are shown in Table S4. Based on the observed effect size
in the GWAS and observed allele frequency in the replication
samples, we had 32% power to replicate this finding in the
Portuguese samples and 17% power to replicate this finding in the
Asian samples at P<<0.05. The same association analysis as for
GWAS was carried out: linear regression assuming an additive
genetic model and using ADAS as phenotype, adjusted for
baseline DAS. Replication results are shown in Figure 5.

While the SNPs fail to replicate in these patient collections at
P<0.05, the direction of effect is the same in the Portuguese and
Kyoto replication samples as in our GWAS. In a combined
analysis limited to subjects of European-ancestry (GWAS data and
Portuguese replication samples), rs6427528 remained highly
suggestive (P=2x107°%. Including the Japanese subjects, the
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Figure 4. (D84 expression level and clinical features. Analyses
are shown in RA patients from the BRASS and ABCoN registries, for
baseline DAS (top panel, n=210; R*=0.02, p =0.02) and ADAS (bottom
panel, n=31; R*=0.001, p=0.46). Best-fit linear regression lines are
shown in black, with shaded regions showing linear regression model
(slope and intercept) 95% confidence intervals. CD84 expression levels
were quantile normalized, and ADAS values were adjusted for age,
gender and baseline DAS.

doi:10.1371/journal.pgen.1003394.g004

overall GWAS+replication combined meta-analysis P-value re-
mained suggestive (P=5x107%).

Discussion

Here we present the largest GWAS to date on anti-TNF
therapy response in 2,706 RA patients. We find a significant
association at the 1¢23/CD84 locus in 733 etanercept treated
patients (P=8x10%), but not in RA patients treated with drugs
that act as a monoclonal antibody to neutralize TNF (infliximab or
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doi:10.1371/journal.pgen.1003394.g005

adalimumab). The allele associated with a larger ADAS (i.e., better
response) was associated with higher CD84 expression in PBMCs
from non-RA patients (P=1x10""") and in RA patients
(P=0.004).

We first conducted a GWAS of both categories of anti-TNF
drugs (the soluble receptor drug, etanercept, and two monoclonal
antibody drugs, infliximab and adalimumab). However, this
analysis revealed no strongly associated SNPs. When we subset
our GWAS by each of the three individual drugs, several SNPs in
the 1¢23 locus were highly significant in etanercept-treated
patients, and SNPs in three other loci (10p15, 5¢35 and 2¢12)
were associated in infliximab or adalimumab subset analyses.
Furthermore, the top SNPs for each analysis (Table S3) showed
little correlation across the three anti-TNF drugs. This simple
observation suggests that genetic control of treatment response
may be different for different drugs. This finding is consistent with
the clinical observation that RA patients who fail one anti-TNF
drug may still respond to a different anti-TINF drug, albeit at lower
rates of response [19]. If confirmed in larger samples and more
comprehensive analyses, then this could have major implications
for how physicians prescribe these drugs.

The most significant finding from our GWAS was a set of equivalent
SNPs in LD with each other from the /23 locus in etanercept-treated
RA patients (Figure 1 and Figure 2A). While the top SNP did not reach
genome-wide significance in predicting treatment response, it did reach
genome-wide significance as an eQTL in PBMCs P=1x10"""
Figure 2A). This finding indicates that the SNP (or another variant in
LD with it) is indeed biologically functional in a human tissue that is
important in the immune response. Two SNPs, rs10797077 and
rs6427528, disrupt transcription factor binding sites, and represent
excellent candidates for the causative allele to explain the effect on
(D84 expression (Figure 2C).
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Our findings suggest that CD84 genotype and/or expression
could be a biomarker for etanercept treatment response among
individuals of European ancestry. The genetic and expression data
predict that CD84 expression should be positively associated with
treatment response (i.e., higher expression is associated with better
response; Figure 3). While we did not observe a significant
association between CD84 levels and ADAS, we did observe a
trend consistent with this prediction (Figure 4). Importantly, we
note that power was extremely limited with the small sample sizes
for which we had CD84 expression as well as drug response data
(n= 31 RA patients treated with etanercept).

The CD84 gene is a compelling candidate for immune response,
belonging to the CD2 subset of the immunoglobulin superfamily.
It has been implicated in T-cell activation and maturation [20].
CD84 localizes to the surface of CD4+ and CD8+ T cells, and acts
as a costimulatory molecule for IFN-gamma secretion [21]. CD84
is also expressed in B-cells, monocytes and platelets. CD84 has not
been previously implicated in genetic studies of RA risk, disease
activity, disease severity, or treatment response.

A limitation of our study is the small sample size available for
replication (n=290 etanercept-treated patients), and the lack of
replication observed for the top CD84 SNP (rs6427528) among
patients of Portuguese and Japanese ancestry. The simplest
explanation is that our original observation in the GWAS data
represents a false positive association. However, the eQTL and
gene expression data argue against this possibility. Explanations
for a false negative finding in our replication collections include: (1)
lack of power, especially if the effect size observed in the GWAS
represents an over-estimate of the true effect size (the Winner’s
Clurse) — we estimate that we had 32% and 17% power (at
P=10.05) to detect an association in the Portuguese and Japanese
sample collections, respectively; (2) clinical heterogeneity, which is
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always a possibility in pharmacogenetic studies, especially those
conducted in different countries; and (3) ethnic differences,
including different patterns of LD between the underlying
causative allele (which is as yet unknown) and marker SNPs
tested in our study. We did observe subtle differences in local
patterns of LD between Asians and Europeans using genetic data
from the 1000 Genomes Project (Figure S5). We note that the
rs6427528 minor allele A has a frequency of ~5-10% in
European and East Asian populations, and ~50% in the African
YRI population (HapMap2 and 1000 Genomes); therefore, it may
be of interest to test African American samples in replication.

What are the options for increasing sample size in pharmaco-
genetic studies, thereby providing an opportunity to replicate our
CD84 genetic and expression findings? While it might seem trivial
to collect more samples through traditional registries, this is
extremely challenging for phenotypes pertaining to treatment
efficacy. To underscore this point, we highlight our study design,
where we organized samples and clinical data from 16 different
collections across 7 different countries in order to obtain the
samples for the current study. Going forward, non-traditional
strategies to collect biospecimens linked with clinical data (e.g.,
online registries, electronic medical records) may be required to
achieve clinical collections of sufficient size to discover pharma-
cogenomic predictors of efficacy.

In conclusion, we conducted the largest GWAS to date for
response to anti-I'NF therapy in RA patients. Our genetic and
expression data suggest that CD84 genetic variants and/or
expression levels could be developed as predictive biomarkers for
etanercept treatment response in RA patients of European
ancestry.

Methods

Samples and clinical data

All patients met 1987 ACR criteria for RA, or were diagnosed
by a board-certified rheumatologist. In addition, patients were
required to have at least moderate disease activity at baseline
(DAS>3.2). All patients gave their informed consent and all
institutional review boards approved of this study. A total of 13
collections from across 5 countries were included in GWAS
[11,12,13,22]: Autoimmune Biomarkers Collaborative Network
(ABCoN) from the U.S. N=79); the Genetics Network Rheu-
matology Amsterdam (GENRA, N =53); the Dutch Behandel-
strategieen voor Rheumatoide Arthritis (BeSt, N =85); the U.K.
Biological in Rheumatoid arthritis Genetics and Genomics Study
Syndicate (BRAGGSS, N = 140); the U.S. Brigham Rheumatoid
Arthritis Sequential Study (BRASS, N =55); the Swedish Epide-
miological Investigation of Rheumatoid Arthritis (EIRA, N = 298);
the Immunex Early Rheumatoid Arthritis study (eRA N =57); the
Swedish Karolinska Institutet study (KI, N =77); the Netherlands
collection from Leiden University Medical Center (LUMC,
N =43); and the U.S. Treatment of Early Aggressive RA (TEAR,
N =109). We refer to these collections as the American College of
Rheumatology Research and Education Foundation (REF)
collection, as funding for GWAS genotyping was provided by
the “Within Our Reach” project. We included additional samples
from BRAGGSS (N=595) [12]; the Dutch Rheumatoid Arthritis
Monitoring registry (DREAM) in the Netherlands, and the
ApotheekZorg (AZ) database (which facilitates the Dutch distri-
bution of adalimumab; N =880) [23,24], together referred to as
DREAM; and the French Research in Active Rheumatoid
Arthritis (ReAct, N=272) [25].

Additional samples were collected for replication of SNPs in the
1¢23 locus. These included the Rheumatic Diseases Portuguese
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Register (Reuma.pt, N=378) from the Portuguese Society of
Rheumatology (SPR), which captures more than 90% of patients
treated with biological therapies and managed in rheumatology
departments across Portugal [26]. Additional replication samples
(N'=374) of East Asian ancestry were included from the IORRA
and Kyoto University Hospital registries, part of the Japanese
Genetics and Allied research in Rheumatic diseases Networking
consortium (GARNET) [27].

Clinical data were collected in each cohort, including disease
activity scores at baseline and at least one time point after
treatment, gender, age, methotrexate use, as well as autoantibody
status (RF or CCP). The composite disease activity scores for 28
joints (DAS28) included laboratory values for erythrocyte
sedimentation rate (ESR) for most samples and C-reactive protein
(CRP) for 191 samples in the REF collection (ABCoN, BRASS
and eRA cohorts). DAS28 values were available at baseline and at
3-12 months after initiating anti-TNF therapy. Our primary
phenotype was defined as ADAS =baseline DAS - end DAS, and
responder status was also determined according to EULAR
criteria for start and end DAS [15]. Clinical variables were
assessed for association with phenotype in multivariate linear or
logistic regression models for both the ADAS and EULAR
responder-status phenotypes. Clinical variables that were signifi-
cant in these analyses were retained as covariates in genetic
association tests, except for methotrexate co-therapy. Including a
covariate for methotrexate co-therapy reduced sample size
substantially due to missing clinical data, so results were compared
for our primary analysis and a secondary analysis with the
covariates (and with reduced sample size) and the results were
verified not to be impacted (not shown).

Genotyping and data processing

A total of eleven genotyping batches were processed separately.
(1) BRASS samples were genotyped using Affymetrix 6.0 chip
[28]; (2) WTCCC samples were genotyped on Affymetrix 500K
chip [12]. All other cohorts were genotyped using Illumina
platform arrays (see Table I). Our American College of
Rheumatology Research Education Fund (REF) collection was
made up of smaller cohorts from throughout North America and
Europe, including BRASS samples. Also included in REF: (3)
ABCoN [13] and (4) EIRA [29] were separately genotyped on the
Tumina 317K genotyping array; (5) eRA on the Illumina 550K
chip; and (6) GENRA, BeSt, BRAGGSS (a subset of N=53
samples), KI and LUMC were genotyped in one batch, and (7)
BRAGGSS IN=87) and TEAR were genotyped in a second
batch, both using Ilumina 660k chips, at the Broad Institute (8-
10). DREAM and AZ samples were genotyped in three batches,
one on 550K chip and two on 660K chips (manuscript in
preparation), and (11) ReAct samples were genotyped on Ilumina
OmniExpress chips. Quality control (QC) filtering was done in
each genotyping batch, including filtering individuals with >5%
missing data, and filtering SNPs with >1% missing data, minor
allele frequency (MAF) <1% and Chi-squared test of Hardy
Weinberg equilibrium Pgpze<107". We then used individual-
pairwise identity-by-state estimates to remove occasional related
and potentially contaminated samples. Data processing and QC
were performed in PLINK [30]. Principal Components Analysis
(PCA) was performed using EIGENSTRAT [31] (default settings)
on the combined dataset using 20,411 SNPs genotyped across all
datasets. Ethnicity outliers including all individuals of non-
European decent were identified and removed, and the first three
eigenvectors were used as covariates in GWAS.

Imputation was conducted on each of eleven datasets separately,
using the IMPUTE vl software [32] and haplotype-phased
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HapMap Phase 2 (release 22) European CEU founders as a
reference panel. Imputation of BRASS and EIRA was previously
reported [28,33], and we followed the same imputation procedures
for the remaining datasets. Imputation yielded posterior genotype
probabilities as well as imputation quality scores at SNPs not
genotyped with a minor allele frequency =1% in HapMap CEU.
We removed imputed SNPs with imputation ‘info’ scores <0.5 or
MAF <1% in any of the datasets.

Expression profile and eQTL data

Gene expression levels were quantified using mRNA derived
from peripheral blood mononuclear cells (PBMCs) using Affyme-
trix Human Genome U133 Plus 2.0, for 255 multiple sclerosis
patients in the Comprehensive Longitudinal Investigation of MS
at the Brigham and Women’s Hospital [34], either untreated
(N=83) or treated with interferon-beta (N =105) or glatiramer
acetate (N =67). The raw intensity values were subject to quality
control based on the recommended pipeline available in the
simpleaffy and affyPLM R Bioconductor packages, and were then
normalized using GCRMA (N =228). The data are available on
the Gene Expression Omnibus website (GSE16214). Expression
levels for 17,390 probes mapping to 9,665 Ensembl transcripts
were adjusted for confounding factors including age, gender, drug
and batch using principle components and Bayesian factor analysis
[35], and used in eQYTL association analyses. Genotype data were
collected on the Affymetrix 550K GeneChip 6.0 platform as a part
of a previously published study [36]. Allelic dosages from imputed
data (HapMap Phase II CEU samples; >2 million SNPs, MACH
imputation quality >0.1 and MAF>=0.05) were used for
association analysis. Cis-eQTLs were identified +/—1 Mb of
transcription start sites (T'SS) in the 7¢23 locus region. Significance
was evaluated by 10,000 permutations per gene, and false
discovery rates were calculated based on cis-eQTL analyses in
the total of 9,665 genes [37].

Additional expression profile data were available for subsets of
samples that were part of two cohorts in our GWAS. Expression
data from patients enrolled in the BRASS registry have been
previously published [38]. Expression data were collected on
Affymetrix Gene Chip U133 Plus 2 microarrays. BRASS patients
had either cross-sectional expression data (n= 132, assayed at the
time the patient was enrolled in BRASS) or pre- and post-
treatment expression data (n=17 samples, 8 treated with
etanercept). Of these, n= 87 patients had expression and GWAS
data. For patients with pre- and post-treatment data, we used the
“baseline” pre-treatment expression data for cross-sectional
analysis. In ABCoN, 65 RA patients (n=23 treated with
etanercept) had both pre- and post-treatment expression data, as
well as ADAS clinical data [39], and n=45 patients had
expression and GWAS data. As with BRASS, we use the
“baseline” pre-treatment expression data for cross-sectional
analysis. For ABCoN expression profile data were collected on
Tlumina Human WG6v3 microarrays and were quantile normal-
ized according to Ilumina recommended protocols. Within both
BRASS and ABCoN, expression data were normalized to the
mean and standard deviation within each collection. For
prospective analyses of expression data and ADAS, we combined
BRASS and ABCoN to include 31 etanercept-treated patients and
78 anti-TNF-treated patients.

Statistical analyses

In our primary GWAS analysis, we tested each SNP for
association with ADAS using linear regression adjusted for
baseline DAS and the first 3 PCA eigenvectors in each collection.
In our secondary GWAS analysis, we modeled SNPs predicting
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EULAR good response versus EULAR non-response using logistic
regression, again adjusting for start-DAS value and the first three
eigenvectors. Association analysis was done using SNPTEST [32]
assuming an additive genetic model. Genomic control Agq values
[40] for genotyped SNPs only and all SNPs were calculated, and
no inflation or deflation was observed in the distributions of
association test results. We then conducted inverse variance-
weighted meta-analysis to combine results across the four datasets,
and conducted Cochran’s Q tests for heterogeneity using the B
coefficients [41]. We further divided samples into 3 subsets
according to drug (etanercept, infliximab or adalimumab). GWAS
analysis for each group followed the same analysis procedure.
Meta-analysis and heterogeneity tests were conducted using SAS.
Expression analyses utilized linear regression or Spearman rank
correlation, also using SAS. We tested for effects of cohort, age,
gender and concurrent methotrexate, and results are shown using
significant covariates as indicated.

Supporting Information

Figure §1 Quantile—quantile (QQ) plots for ADAS and response
analysis, with genomic control Agc values.

(TIF)

Figure 82 GWAS results for the good response versus non-
response phenotype. Shown are strengths of association (—Logl0
P-value) for each SNP versus position along chromosomes 1 to 22.
A) All samples (n = 1,708). B) Etanercept-treated patients (n =472).
Q) Infliximab-treated patients (n=599). D) Adalimumab-treated
patients (n = 636).

(TTF)

Figure 83 Forest plot of replication results for the CD84 SNP
rs6427528, in patients treated with anti-TINF drugs other than
etanercept (infliximab & adalimumab).

(TIF)

Figure 84 Forest plot of CD84 result in patients treated with
etanercept, subset by all collections.

(TTF)

Figure 85 Patterns of linkage disequilibrium (LD) at the CD84
locus in HapMap. Shown patterns of LD for CEU (top panel) and
CHBJPT (bottom panel).
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Table S1 Sample information for each of thirteen clinical
batches.
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Table $2 Clinical multivariate model for the ADAS phenotype.
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Table $3 GWAS results for all SNPs achieving P<107° from
any analysis.
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Table S4 Sample and clinical data summary for replication
samples.
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ABSTRACT

Classification of the individuals’ genotype data is important in various kinds of biomedical
research. There are many sophisticated clustering algorithms, but most of them require
some appropriate similarity measure between objects to be clustered. Hence, accurate inter-
diplotype similarity measures are always required for classification of diplotypes. In this
article, we propose a new accurate inter-diplotype similarity measure that we call the
population model-based distance (PMD), so that we can cluster individuals with dipletype
SNPs data (i.e., unphased-diplotypes) with higher accuracies. For unphased-diplotypes, the
allele sharing distance (ASD) has been the standard to measure the genetic distance between
the diplotypes of individuals. To achieve higher clustering accuracies, our new measure
PMD makes good use of a given appropriate population model which has never been utilized
in the ASD. As the population model, we propose to use an hidden Markov model (HMM)—
based model. We call the PMD based on the model the HHD (HIT HMM-based Distance).
We demonstrate the impact of the HHD on the diplotype classification through compre-
hensive large-scale experiments over the genome-wide 8930 data sets derived from the
HapMap SNPs database. The experiments revealed that the HHD enables significantly more
accurate clustering than the ASD.

Key words: algorithms, statistics, strings, suffix trees.

1. INTRODUCTION

S INGLE NUCLEOTIDE POLYMORPHISMS (SNPs) are the most fundamental genetic polymorphisms in human
genomes (Kim and Misra, 2007), and classification of individuals with the individual SNPs data is very
useful in various kinds of biomedical research, especially in population genetics and genetic epidemiology
(Conrad et al., 2006; Jakobsson et al., 2008). Accurate classification of individual SNPs data will help study
of genotype variations, especially when different genotypes prevail in different populations or subgroups.

There are various sophisticated clustering methods for general data (not limited for clustering SNPs
data), many of which (e.g., Ward’s method [Team RDC, 2007; Ward, 1963; Ward and Hook, 1963],

!'Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto Japan.
Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan,
3Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
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k-Medoid [Kaufman and Rousseuw, 1990], DBSCAN [Ester et al., 1996], and most of the phylogenetic
clustering algorithms such as the famous neighbor joining method [Saitou and Nei, 1987]) require ap-
propriate similarity measures between target objects. Designing accurate similarity measure for the objects
to be clustered is essential for these similarity-based clustering algorithms.

For SNPs data, there have been proposed various clustering algorithms for clustering haplotypes (i.e.,
haplotype-alleles, not diplotypes),1 and various types of similarity measures have been proposed for
haplotype data (Jin et al., 2010; Li and Jiang, 2005; Li et al., 2006).2 But the human genome is diallelic,
and in many cases we observe only the unordered (i.e., unphased) pair of alleles at each locus, instead of
ordered (i.e., phased) allele data, due to the high costs required for deciphering unphased allele data to
accurate phased ones. In this article, we call a phased pair of haplotypes a ‘‘haplotype-diplotype,” and we
call an unphased pair of haplotypes a ‘‘unphased-diplotype.”

Much work has been done on clustering the unphased-diplotype data. They can be categorized into two
types: distance-based methods (Bowcock et al., 1994; Gao and Starmer, 2007) and statistics-based methods
(Falush et al., 2003; Pritchard et al., 2000). The distance-based methods utilize a distance measure between
two objects, while statistics-based methods are based on the statistical behavior of objects. In this article,
we focus on the distance-based clustering methods for unphased-diplotype data. Most previous distance-
based methods utilize a similarity measure called the allele sharing distance (ASD) (Gao and Martin, 2009;
Jakobsson et al., 2008; Mao et al., 2007; Witherspoon et al., 2007) (see Section 2.1.1). The ASD is a simple
and straightforward extension of the Hamming distance, and is the most standard and frequently used
similarity measure between a pair of unphased-diplotypes.

In genetic analysis, it is very important to consider properties of populations that are different among
genetically distinct populations (Beaty et al., 2005; Fallin et al., 2001; Witherspoon et al., 2007). It should
also be true with designing similarity measures for unphased-diplotypes. But the measure ASD does not
utilize any population information in obtaining the similarity values. Thus, in this article, we will first
propose a new similarity measure called the population model-based distance (PMD) for unphased-
diplotypes, which incorporates the population information from an appropriate population model. As the
model, we will propose to use an hidden Markov model (HMM)-based model predicted by a standard
HMM-based phasing software called HIT (Rastas et al., 2005). We call the PMD based on the model the
HHD (the HIT HMM-based distance). We will show the superiority of our new measure HHD over the
previous standard ASD through comprehensive experiments over the genome-wide HapMap data (Inter-
national HapMap Consortium, 2005).

The organization of this article is as follows. In Section 2, we describe previous work on which our
method is based. In Section 3, we describe our new measure. In Section 4, we compare the ASD and the
HHD through comprehensive experiments over large-scale HapMap data sets to evaluate the impact of the
HHD. In Section 5, we conclude.

1.1. Notations and definitions

We assume all SNPs are diallelic. We consider n diplotypes over m SNP loci from the same chro-
mosome. These loci are numbered 1,2, -- -, m in the physical order. A SNP-allele for a SNP locus is an
element in set S={1,0} where 1 and 0 denote the major and minor SNP-alleles, respectively. A
haplotype-allele is a sequence of SNP-alleles and is represented by a sequence in S™ (e.g., 10101 € S°).
A SNP-diplotype for a SNP locus is an unordered pair of SNP-allele in D =8xS(e.g., {0, 1} € D). An
unphased-diplotype is a sequence of SNP-diplotype and is represented by a sequence in
D"(e.g., {1,0} — {0,0} — {1,0} — {1, 1} — {1, 0} € D°). Given unphased-diplotypes, the phasing prob-
lem is to find the most probable corresponding haplotype-allele pairs that could have generated the
unphased-diplotypes. A phased haplotype-allele pair is called a haplotype-diplotype (e.g., {10010,
00111}).

“There are also many algorithms proposed for clustering SNP loci (Yang and Tabus, 2007), instead of individuals,
but we do not deal with these problems in this article.

2Various inter-population distances have also been proposed (Cornuet et al., 1999), but we will not deal with these in
this article.
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Founder1 FIG.1. The HMM model of the HIT. In the HMM, a set
i DY o U o of nodes in a row corresponds to states of one founder (i.e.,

ancestor) haplotype-allele. A set of nodes in a column
corresponds to states of one locus. Each node (except for
the start and end nodes) emits 1 or O with some estimated
probabilities, which correspond to the major and minor
alleles respectively. A path from the start node to the end
node corresponds to a haplotype-allele. The HMM emits a
haplotype-diplotype as an unordered pair of two paths
Yo B from the start node to the end node, randomly based on the
Founder k probabilities estimated for edges. The observers can only
L see the unphased-diplotype that corresponds to the emitted

? .
EachSNP locus. haplotype-diplotype.

2. PREVIOUS WORK

In this section, we describe previous work on which our work is based. In Section 2.1, we describe the
definitions of measures in previous work (e.g., the ASD). In Section 2.2, we describe the HIT algorithm on
which our new distance measure is based. In Section 2.3, we describe a clustering algorithm and an
evaluation method for clustering that we will use in the experiments in Section 4.

2.1. Previous measures for inter-individual genetic distances

2.1.1. Allele sharing distance. The most standard inter-diplotype distance is the ASD (Gao and
Martin, 2009; Jakobsson et al., 2008; Mao et al., 2007; Witherspoon et al., 2007), defined as follows. For
two unphased-diplotypes g, g’ € D™ (i.e., m is the number of SNP loci), the ASD between the diplotypes
g and g is defined as follows:

Dig, €)= 5> d(gltl, ¢ 14D, m
{=1

where g[¢] denotes the ¢-th SNP-diplotype of unphased-diplotype g, and d(g[£],g/[£]) is the number of SNP-
alleles which are not shared between g and g’ at the /-th locus.

2.1.2. Haplotype similarity measure. The most common and simplest measurement for the simi-
larity between DNA sequences, including the haplotype-allele data, is the hamming distance (Cover and
Thomas, 1991; Isaev, 2004; Lesk, 2005; Li and Jiang, 2005; Tzeng et al., 2003). For a haplotype-allele
h € 8™ (where m is the length of h), let h[k] denote the SNP-allele at the k-th locus of h. The hamming
distance between two haplotype-alleles h and ' is defined as

s(h, W)=Y I(h[k], W[K]), @)
k=1 .

where I(a, b) = 0 if a = b and I(a, b) = 1 otherwise. As the hamming distance is length-dependent, we
define the following A(h, h') as a length-independent distance between haplotype-alleles h and h':

A(h, )= %-l—"—). 3)

2.2. HIT algorithm

The Haplotype Inference Technique (HIT) algorithm (Rastas et al., 2005) is an HMM-based algorithm
for phasing unphased-diplotypes. The algorithm utilizes the HMM (Rabiner and Juang, 1986). The HMM
of the HIT is designed to simulate multiple set of ancestors (i.e., founders).? The HMM is trained from a set

3According to Rastas et al. (2005), the optimal number of ancestors is around 7 for most cases. Thus, we also use the
HMM model with 7 ancestors in the experiments in Section 4.
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of unphased-diplotypes in an unsupervised way with the EM algorithm (Durbin et al., 1998). Figure 1
shows the HMM model used in the HIT. The HIT algorithm phases an unphased haplotype-diplotype by
heuristically finding the haplotype-diplotype with the highest emission probability from the HMM.

2.3. Clustering methods

In this section, we describe the clustering method and the method for evaluating the results, which we
will use in Section 4.

2.3.1. Ward’s method. We use Ward’s minimum variance algorithm (Team RDC, 2007; Ward,
1963; Ward and Hook, 1963), which is a widely used hierarchical clustering method, to infer clusters based
on the ASD or the HHD in Section 4.* Given » items I1, L, - - -, I,, a distance matrix {wy;} where wy;
denotes the distance between /; and I;, and some fixed posmve 1nteger k (k < n), the Ward’s method clusters
the n items into k clusters by the followingn — k ~ 1 steps 3 At first the algorithm considers 7 clusters each
of which contains only 1 item, i.e., C; ={{h}, {L}, - --, {L,}}. Then the algorithm reduces the number of
clusters one by one in each step as follows. In the m-th step of the algorithm, two clusters are merged into a
cluster to minimize } cec, | 2o, jec Wi 2/|C|, where C; denotes the set of clusters before the i-th step of the
algorithm. This bottom-up approach is repeated until |Cp,| =

2.3.2. How to evaluate the clustering results. To evaluate the clustering results, we use the
classification error rate (CER) (Gao and Starmer, 2007). The CER is the rate of elements that are assigned
to incorrect clusters in clustering results. To know the assignment is correct or not, we need to know the
labels of each cluster, but Ward’s algorithm does not assign any labels onto the output clusters. In the
experiment, we use the minimum CER among all the possible assignments of the population labels, to
evaluate the clustering results.

3. NEW UNPHASED-DIPLOTYPE DISTANCE MEASURES

In this section, we first propose in Section 3.1 a new measure for the distance between two unphased-
diplotypes, the PMD. The PMD is a general concept of distance measures, and we will give an example of
the PMD which we call the HHD in Section 3.2. In Section 3.3, we discuss the properties of the proposed
measures.

3.1. Population model-based distance

Before defining our new measure called the PMD, we first extend the haplotype similarity measure
described in Section 2.1.2 so that we can deal with the distances between two haplotype-diplotypes instead
of haplotype-alleles, as follows. Let a = {h;, hy} and &' = {h}, h}} be haplotype-diplotypes to be com-
pared, where h;, hy, b, b} € S”. We define the distance between haplotype-diplotypes a and a' as

Ahy, b)) + Ay, b)) A(hl,h'z)+A(h2,h’)}

2 ’ 2 @

H(a,d)= mi {

where A is the haplotype similarity measure defined in Section 2.1.2. But we cannot compute this value for
unphased-diplotypes, as we cannot know the actual haplotype-diplotypes. To enable it, we extend the above
haplotype-diplotype distance H for unphased-diplotypes by utilizing some given population model M as
follows.

For any unphased-diplotype, we can enumerate corresponding haplotype-diplotype candidates.® For
example, there are four haplotype-diplotype candidates for unphased-diplotype {1, 0} — {1, 0} - {1, 0},
ie., {111,000}, {110,001}, {101, 010}, and {011, 011}. For unphased-diplotypes g, g’ € D", let¢; = {h;;,
hp} (1 <i < M)and ¢ = {hj;,hj,} (1 <j < M) be the i-th and the j-th candidate haplotype-diplotypes for

4We used the statistical software, R, to implement this algorithm.
The ASD or the HHD values will be used as w;; in Section 4.
SPhasing is the process of finding the most probable haplotype-diplotype, utilizing some population information.
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4SNP loci

FIG. 2. Haplotype-diplotype examples on which we
can observe difference between the ASD and the PMD.

% % Homologous
8 € chromosomes

g and g', respectively. M and M’ are the numbers of haplotype-diplotype candidates for g and g/,
respectively.

If we were given a population model M, we can compute the probability Prob(c|g, M) that a haplotype-
diplotype candidate ¢ is correct for the unphased-diplotype data g. Let p;=Prob(c;|g, M) and
p{ = Prob(c]|g/, M) be the conditional probabilities of the candidate haplotype-diplotypes c; and ¢; under
the model M Then the PMD ,, between two haplotype-diplotypes g and g is defined as follows

PMDM(g,g)—ZZH(c,,c> g+ g, )

i=1j=

where ¢; = p,/(Ek 1 pr) and g =pi/( Zk \P)- q; and qj are the normahzed predicted conditional
probabilities of the candidate haplotype-diplotypes c¢; and c respectively.” Note that the PMD is the
expected value of the distance between candidate haplotype—dlplotypes H(c;, ¢ ]) under the population
model M.

3.2. HIT HMM-based Distance

To compute the PMD in Section 3.1, we need an appropriate model for the population. In the following,
we propose an example of the PMD that we call the HHD.® To define the HHD, we propose to use the
HMM model used in the HIT algorithm (Rastas et al., 2005) (described in Section 2.2) as the population
model for the PMD as follows.

The HMM defined in the HIT algorithm can be considered as a predicted population model. Thus, we
first train the HMM from all the unphased-diplotype data that are in our hand, and then we define the HHD
as follows. Let M* denote the HMM model obtained with the HIT. Then we define the HHD as

HHD(g, g') = PMD p- (g, g). (6)

Note that the probability of each haplotype-diplotype candidate is computed as the conditional emission
probability of the candidate from the HMM, which can be computed by the forward algorithm (Durbin
et al., 1998) for the HMM.

3.3. Discussions on the PMD

3.3.1. The PMD and the multiple founder hypothesis. In many regions (especially in important
regions) of the human genome, the haplotype-alleles of the majority in populations can be categorized into
a small number of types (Bhatia et al., 2010; Cirulli and Goldstein, 2010), which suggest that only a small
number of founder (or ancestral) haplotype-alleles spread over the population on those regions. This

"Note that Z,A(":l D= EkM=1 P =1 and there is no need to normalize the probabilities if we enumerate all the
candidates. But we need to normalize them in case we ignore the candidates with very small probabilities. When we
compute the HHD (which will be introduced in Section 3.2), we ignore candidates with very small probabilities.

8We also introduce other simpler examples of the PMD in Section 3.3.1.
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TABLE 1. DISTANCES BETWEEN THE INDIVIDUALS IN FIGURE 2

(1) ASD (2) H=PMD p, (3) PMDp,
a b c a b c a b c
a 0 0.25 0.25 a 0 0.25 0.5 a 0 0.301 0.450
b B 0 0.25 b — 0 0.5 b — 0 0.500
c —_ — 0 c — — 0 c — — 0

hypothesis of the existence of (a few but) multiple founder haplotype-alleles is very important and effective
for various kinds of research, for example, the design of the experiments of linkage disequilibrium mapping
(Chung et al., 2008; Gonzalez et al., 1999; Haiman et al., 2003) and the evolutionary history analysis of
populations (Ahmad et al., 2002; Gaudieri et al., 1997).

The PMD well reflects the existence of the founder haplotype-alleles. In the example given in Figure 2,
there are three individuals with haplotype-diplotypes a = {1011, 0110}, b = {1101, 0110}, and ¢ = {1111,
1000}, but we assume that we know only the unphased-haplotypes, i.e., {1, 0} — {1, 0} — {1, 1} — {1, 0},
{1,0} = {1, 1}-{1, 0} — {1,0} and {1, 1} — {1, 0} — {1, 0} — {1, O}, respectively. We can easily see that
the ASD between any two of these three individuals is 0.25 (Table 1(7)), and therefore we cannot cluster
these three individuals based on the ASD.

The distance between two sequences are often measured by the number of point mutations between them
(i.e., we consider two sequences to be very distant to each other if there are many mutations between them).
We can define the number of mutations under the assumption of existence of multiple founder haplotype-
alleles (for details, see the Appendix). Table 2 shows the number under the assumption that there are two
founder haplotype-alleles. According to the table, the clustering result of the three individuals should be the
one in Figure 3, which cannot be obtained with the ASD. Note that the clustered individuals a and b share
the same haplotype-allele, i.e., 0110, which also supports the validity of the clustering result.

Unlike the ASD, the haplotype-diplotype distance H reflects the numbers in Table 2 very well. The H
value between individuals a and b is 0.25, which is the same value as the ASD, but H between a and ¢ and
H between b and c¢ are 0.5 (Table 1(2)), which enable us to cluster the individuals as in Figure 3. It means
the H values are more appropriate than the ASD values under the existence of the founder haplotype-
alleles, at least in this case.

But we cannot compute the real H values unless we know the real haplotype-diplotypes. Instead, we can
estimate them by computing the PMD if we are given some population model. Consider the two population
models given in Table 3, where haplotype frequencies in the population are given.® Under the model M,
we can phase any of the three individuals’ unphased-haplotypes correctly with 100% confidence, and the
resulting PMD 4, values are the same as the H values (Table 1(2)). But we cannot predict unphased-
haplotypes with such high confidence in many cases, as in the case of the population model M, where we
have multiple haplotype-diplotype candidates for each unphased diplotype (see Table 4 and Table 1(3)).

If we cluster the three individuals based on the H = PMD 4, values, we can obtain the same clusters as in
Figure 3. Furthermore, we can still get the same clusters even if we use the PMD ,, values instead. Thus,
we assume that the PMD is more suitable than the ASD under the multiple founder hypothesis, if we are
given an appropriate population model.

3.3.2. Influences of the linkage equilibrium. It is easy to imagine that the linkage equilibrium (LE)
and the linkage disequilibrium (LD) should affect the similarity measures. In fact, the variance of the
distribution of the ASD values among the individuals should converges to some value in @(1/m) where m is
the number of the SNP loci in the region according to the central limit theorem, if the loci are independent
to each other. It means that the variance of the ASD values should be smaller on the regions of LE. The
PMD and its example HHD should also be influenced by the LE/LLD. We compared the influences of the
LE/LD to the ASD and the HHD by checking distances on the LE/LD regions obtained from the HapMap
database (release 24) (International HapMap Consortium, 2005) as follows.

“The population models could be represented by many other methods. For example, we consider HMM-based
models in Section 3.2.
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TABLE 2. NUMBER OF MUATIONS BETWEEN EACH INDIVIDUAL UNDER
THE ASSUMPTION THAT THERE ARE Two FOUNDERS

a b

(9}

a 0 2
— 0

o
< A

c —

See Appendix how we obtain the number of mutaions for each pair of individuals.

We can determine whether a region is near to LE or to LD by counting the number of haplotype tagging
SNPs (htSNPs) (Carlson et al., 2004; Johnson et al., 2001; Ke and Cardon, 2003; Meng et al., 2003; Rinaldo
et al., 2005). The htSNPs are selected so that each SNP in the given region has a correlation larger than a
threshold with at least one of the htSNPs. Thus, the regions with many htSNPs can be considered to be near
the LE, and regions with few htSNPs can be considered to be near the LD.

We divided the set of SNPs in chromosome 1 into 658 blocks, each of which consists of 100 consecutive
SNPs. For each block B, we counted the number 4g of htSNPs obtained by the software Tagger (de Bakker
et al., 2005) with the default settings. We selected 100 blocks with the 100 smallest #p values as the LD
regions and also selected 100 blocks with the 100 largest /5 values as the LE regions.

For each of all these regions, we computed the ASD and the HHD measures among the 270 individuals
in HapMap (which are the same as the 270 individuals used in Section 4), and computed the variances
among the obtained 270 x 269/2 = 36315 distances of the ASD and of the HHD. Table 5 shows the
difference between the variances of the ASD and the HHD measures. According to the P-values in the
table, the HHD reflects the LD/LE effects more than the ASD.

4. APPLICATION TO HAPMAP DATA SETS
4.1. Data sets

In the experiments in Section 4.2, we will use the unphased-diplotype data sets of 22 autosomal chro-
mosomes and X chromosome derived from HapMap release 24 (International HapMap Consortium, 2005).
The data sets consist of unphased-diplotypes of 270 individuals: 90 Yoruba in Ibadan, Nigeria (YRI); 90
Utah residents with ancestry from northern and western Europe (CEU, from the CEPH diversity panel); and
90 Japanese in Tokyo, Japan, and Han Chinese in Beijing, China (CHB + JPT). There are 894,398 SNPs
that are genotyped for all the above 270 individuals, which we used for our experiments. We divided the
SNP set into 8,930 blocks, each of which consists of consecutive 100 SNPs, and we will perform com-
prehensive experiments against each of these blocks in Section 4.2.

4.2. Experimental results

In this section, we demonstrate the impact of incorporating the population information, by comparing the
clustering accuracies by the ASD and that by the HHD on the HapMap data described in Section 4.1.

FIG. 3. Clustering results for individuals in Figure 2
based on the numbers of mutations (Table 2),
H = PMD,, distances (Table 1(2)), or PMD 4, distances
(Table 1(3)). On the other hand, the ASD distances
(Table 1(1)) cannot deduce this result.
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