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explosion and implicit assumptions. Both include the com-
plete information about reactions (C1) and contingencies (C2).
This data structure is also well suited for visualisation in entity
relationship diagrams or extended contact maps, and the
rxncon software tool supports export to the entity relationship
format (Chylek et al, 2011; Le Novere et al, 2011). We also
provide export to the reaction graph/activity flow diagram and
the process description, though neither of these can fully and
accurately represent the network as discussed below. Never-
theless, they all provide their unique advantages and can be
automatically generated with the rxncon tool and the
information in the reaction and contingency lists.

The contingency matrix integrates the information in the
reaction and contingency lists (Figure 1E). The matrix is
spanned by the reactions and their corresponding states (C1)
and populated by the contingencies of reactions on states (C2).
Each row corresponds to one elemental reaction and each
column corresponds to one elemental state. The symbol in
each reaction-state intersection specifies how. that specific
reaction depends on that specific state. Together, one row
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contains the complete set of rules a reaction follows, and
hence describes how it works in every specific state. This is
related to a dependency matrix (Yang et al, 2010), although
the entries in the contingency matrix are more detailed
and unambiguous. In the example (Figure 1E), the first row
shows that (a) the binding of Shol to-Stell cannot occur if
either of the components is already part of such a dimer
(column 1), (b) that we do not know whether the prior binding
of Shol to Pbs2 (column 2) or phosphorylation of Stell
(column 3) effects the Shol-Stell binding and (c) that the
other states appearing in the row are irrelevant for this specific
binding reaction~as they do not describe properties of Shol or
Stell. The primary advantages of the contingency matrix are
that it (1) allows a comprehensive documentation/visualisa-
tion of all reactions and dependencies within the network, (2)
that it does so without requiring assumptions, (3) that it
explicitly defines unknowns and hence gaps inour knowledge
and (4) that the matrix constitutes a template from which
mathematical ‘models can be derived automatically (see
below).

Table I Thirteen reaction ijfpés were used to map the MAP kinase network

. Modifier

Reaction Category Category Subclass  Subclass ) o1 Reaction Reaction name

type ID boundary - typeID
P+ 1 Covalent modification 1.1 (De)Phosphorylation P 1.1:1  Phosphorylation
P- 1 Covalent modification 1.1 (De)Phosphorylation P 1.1.2°  Dephosphorylation
AP 1 Covalent modification 1.1 (De)Phosphorylation P 1.1.3  Autophosphorylation
PT 1 Covalent modification 1.1 (De)Phosphorylation P 1.1.4  Phosphotransfer
GEF 1 Covalent modification® 1.2 GTP/GDP hydrolysis/ P 1 2 1 Guanine Nucleotide

TR o exchange : i Exchange
GAP 1 Covalent modification® 1.2 GTP/GDP hydrolyszs/ P 1.2 2 : Pase Actwaaon
S exchange : ) L

Ub+ 1 Covalent modification 1.3 (De)Ublqumnanon -~ Ub g ,1.3‘1 , Ublqmtmatlon
CuT 1 Covalent modification 1.4 Proteolytic processmg Truncated 14 Proteolytic cleaveage
ppi 2 Association: 2.1 ppi N/A 2.1.1'©  Protein-protein interaction
ipi 2 Association 2.1 pr 2.1.2  Intra-protein interaction
i 2 Association 2.2 i N/A 22 Interaction (non-proteins)
BIND 2 Association 2.3 BIND N/A 2.3, - Bindingto DNA
DEG 3 Synthesis/degradation 3.3 DEG N/A 3.3 Degradation

The table indicates reaction typé and ci:assiﬁcation. Additional details are provided in the ‘Reaction Definition’ sheet of Supplememérjr Tables S1 and S2.
“For convenience, the G-protein cycle is approximated as a covalent modification by addition/removal of phosphate to/from a basic, GDP-bound form.

Flgure1 Schematic representation of the:data structure: (A) The input data are the reaction and contingency lists, which contains the ‘what-aspects’ and ‘when-
aspects’ of the reaction network, respectively. The rxncon software uses these lists to create a range of visualisations as well as computanonal models. These
conversions require no additional information and are fully automated. (B) A simplified version of the Sho1 branch of the Hog pathway-in'S. cerevisiae will be used to
illustrate the data structure. This ‘biologist's graph’ shows the activating phosphorylation cascade (arrows) from Ste20 to Hot1. Scaffolding and membrane recruitment by
Shof facilitates the first two phosphorylation events (grey lines). (C) The (simplified) reaction list defines the elemental reactions between pairs of components. It includes
the two components (cofumns | and: I}, reaction type (column II; ‘ppi’ = protein-protein interaction, ‘P + ' = phosphorylation; see Table | for complete list of reactions),
reaction (column IV, a concatenation of the components and the reaction type) and resultant state (column V; protein dimers or phosphorylated states). Note that each
elemental state only defines a single aspect of each component's specific state. (D) The (simplified) contingency list defines the relationship between states and
reactions. It contains the affected reaction (Target, column ), the mﬂuencmg state (Effector, column Ili), and the effect this particular state has on that reaction
(contingency, column Il): (E) The reaction and contingency information is summarised in the contingency matrix. The matrix is defined by elemental reactions (rows) and
states (columns). The cells define-how (if) each reaction (row) is affected by each state {column); that is, the reactions’ contingencies on different states. Note that only
direct contingencies are considered; reaction/state intersections which do not share components are blacked out. The grey fields (X)) are automatic as statés are binary
and hence a reaction cannot occur it the state is already true. The green fields (1K +) are imported from the contingency list, and all other open fields are defined as
unknown effect (“?’). This information can also be visualised in a number of graphical forms: The reaction graph (F) displays network topology with either components or
their domains as functional units. The regulatory graph (G) combines the reaction and contingency information to display the causal relationship between the reactions in
the network and provides a complete graphical representation of the knowledge compiled in the contingency matrix. The limited process description (H) displays the
catalytic modifications in the signal-transduction network as state transitions with catalysts but without complex formation (compare Supplementary Figure S1). The
interaction and distance matrices (I) provide a compact description of network topology and allow calculation of distances between nodes. Finally, the reaction and
contingency data can be visualised as an entity relationship diagram (J). These visualisations and the equation system for this system, subsystem or your own favourite
network defined in the same format can be automatically generated using the rxneon software.
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The reaction graph displays a topological, directed reaction
network (Figure 1F). It represents each entity as a single node
and each relationship between a pair of entities as a single
edge. Edges can be non-directional (e.g., protein — protein
interaction), unidirectional (e.g., phosphorylation) or bidirec-
tional (e.g., phosphotransfer). The full reaction graph displays
the domains and residues involved in each reaction. The
protein parts are independent nodes and defined as neigh-
bours (proteins can have domains or residues, domains can
have subdomains or residues, subdomains can have residues).
The inclusion of domain information makes the reaction graph
similar to the (extended) contact maps (Danos, 2007; Chylek
et al, 2011). The reaction graph and contact maps are both
purely topological and do not include any contextual
information, in contrast to the extended contact map which,
for example, may show that binding only occurs to phos-
phorylated residues. We also use a condensed variant that
displays only the central node for each component and
collapses multiple reactions of the same kind between a pair
of components to a single edge, and hence corresponds closely
to the activity flow diagram of SBGN (Supplementary Figure
S1B; Le Novere et al, 2009). The advantages of the reaction
graph are (1) the relative simplicity that makes it useful for
visualisation of even large networks and (2} that it is suited for
visualisation of large-scale data sets within the context of that
network (see below).

The regulatory graph shows how information is conveyed
through the network (Figure 1G). It improves on the reaction
graph by including information on causality between the
reactions in the network (C2 data). The regulatory graph
shows the network’s regulatory structure; that is, which
reactions (via states) actually influence the rate of other
reactions. It is a bipartite graph with the elemental reactions
(red) and elemental states (blue) as nodes. Reaction-to-state
edges simply show which reactions produce or consume
which states. The state-to-reaction edges show which states
(products of upstream reactions) affect the dynamics of which
(downstream) reactions. These state-to-reaction edges corre-
spond to the symbols in the contingency list, i.e., 1", 'K+,
‘K -’ or “x. The regulatory graph can easily be translated into
an influence graph, which can be used for structural analysis
of the network (Kaltenbach et al, 2011). In contrast to the
influence graph or ‘story’ (Danos, 2007), the regulatory graph
strictly separates the effects of reactions (production or
destruction of states) and the modifiers (increase or decrease
in reaction rates) via distinct edge types. Furthermore, only the
(modified) elemental states are displayed and the (the
unmodified) complementary source/target state is implicit.
Hence, like in the ‘stories’, cyclic motifs only appear when
there is a true feedback in the system. This visualises both the
{(possible) sequence of events and the feedbacks clearly.
However, in contrast to the ‘story’, the regulatory graph is
comprehensive and simultaneously visualises all possible
paths or ‘stories’. In this example (Figure 1G), the uppermost
node pair corresponds to the reaction where Shol binds
Stell (Sho_ppi_Stell) and the resulting state Shol-Stell.
The reaction-to-state edge linking these two nodes identifies
Shol-Stell as the product of this binding reaction. Note
that the source states for this reaction are omitted (i.e.,
Shol not bound to Stell and Stell not bound to Shol). The

6 Molecular Systems Biology 2012

state-to-reaction edge from Shol-Stell to Ste20_P + _Stell
shows that the phosphorylation of Stell by Ste20 is enhanced
in the Shol-Stell complex. This reaction in turn produces the
state Stell-{P}, which is required for phosphorylation
of Pbs2 on both Ser514 and Thr518. Hence, the information
flow can be followed throughout the network as all edges
are unidirectional. The main advantages of the regulatory
graph are that it (1) allows a comprehensive documentation/
visualisation of all reactions and contingencies within the
network, (2) that it does so in a very compact format (3)
without forcing non-supported assumptions, (4) that it
can be used for structural analysis of the network and (5)
that it clearly shows the information flow through the
network.

Process descriptions are well established and allow visuali-
sation of the information flow and mechanistic detail
simultaneously (Kitano et al, 2005). They are excellent for
representation of small networks which are completely
known, but lack of data (of the right granularity) invariably
lead to unsupported assumptions. In addition, these diagrams
rapidly become very complex, generally forcing ad hoc
reduction and additional implicit and unsupported assump-
tions. Therefore, process descriptions do not allow a complete
description of the network with the stringency we require.
However, the process description can be clear and easy to read,
and we generate a limited version which excludes complex
formation and hence avoids most of the combinatorial
complexity. The difference is highlighted by the upper three
nodes in the example (Figure 1H), where Ste20 phosphorylates
Stell. In contrast to full process description, the binding of
Stell to Shol, and how this binding would affect the
phosphorylation, is not included (compare Supplementary
Figure S1). The (limited) process description has several
advantages: It (1) is intuitive to read and (2) defines in which
internal state(s) an enzyme is active, its substrate and the exact
target residue, which (3) conveys the information flow through
the pathway, the enzyme-substrate relationships as well as the
gaps in our understanding of these aspects.

The information can also be used to generate interaction
matrices that specify which components react with which
components. These can be rendered at several levels of detail
ranging from a complete interaction matrix including protein
domains and target residues that defines each interaction type,
via condensed interaction matrices with only one row and
column per protein that still contains reaction type informa-
tion (Figure 11, upper matrix}, to numerical matrices that only
include information on connection and directionality. We used
the latter to calculate the distances within the network to
generate a distance matrix (Figure 11, lower matrix).

Finally, the rxncon tool provides export to entity relationship
diagrams (Figure 1J). Like the regulatory graph, the entity
relationship diagram displays reactions and contingencies
separately and hence largely avoids the combinatorial com-
plexity. The entity relationship diagram has the advantage of
concentrating all information on a given protein around a
central node, which works especially well for simple regula-
tory circuits. This emphasises the role of each component
within the network, in contrast to the regulatory graph which
emphasises the information flow through the network. The
entity relationship diagram is generated automatically by the

© 2012 EMBO and Macmillan Publishers Limited
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rxncon software and visualised via Biographer (Biographer).
In the same way, the rxncon software can be used to generate
the contingency matrix, the reaction graphs, the regulatory
graph, and, via BioNetGen (Blinov et al, 2004), the SBML file
that constitute the basis for the process description. These
generations are fully automated and hence the framework
addresses the issue of (ii) automatic network visualisation
without further assumptions and—in the case of the con-
tingency - matrix and regulatory graph—without any
simplifications. ‘

Generation of mathematical models

The contingency matrix is a template for automatic generation
of mathematical models. Each elemental reaction corresponds
to a basic (context-free) rule in a rule- or agent-based model
(Table I1), or, in other words, a set of rules that share a reaction
centre (Chylek et al, 2011). All contextual constrains on an
elemental reaction is defined in a single row in the contingency
matrix, and this' row defines the elemental  reaction’s
implementation in the rule-based format. The basic rule
suffices if there are no known modifiers of a particular
elemental reaction (i.e., only ‘0* and ‘¥ apart from the
intersection with its own state(s) (which is always ‘x’ for a
product state and ‘! for a source state)). Every other
contingency splits the expression in two rules; one when that
elemental state is true and one when it is false. The number of
rules needed only increases with the number of quantitative
modifiers (‘*K+’ and ‘K =) as the qualitative modifiers sets
the rate constant to zero in either the ‘true’ (for ‘x’) or false
(for "} case (see Supplementary information for details). The
expansion to rules is fully defined in our data format and the
rxncon software tool automatically generates the input file for
the computational tool BioNetGen (Blinov et al, 2004). This
file can be used for rule-based modelling, network-free
simulation and creation of SBML files. The translation to and
from the rule-based format is unambiguous in both directions,
and we illustrate this with translation of a rule-based model of
the pheromone response” pathway (yeastpheromonemodel.
org).  This" model contains lumped reactions which we
translate to combinations of elemental reactions, resulting in
a different equation structure but the same functionality given
appropriate choice of rate constants- (Supplementary Table
$3). Furthermore, we cannot distinguish different identical

Table II Implementation of elemental Teactions in the rule-based format
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proteins in, for example, homodimers, and can therefore not
define strict trans-reactions within such dimers. Apart from
these issues, we can reproduce the same model with only
cosmetic/nomenclature differences (see Supplementary
information for details). Hence, the framework addresses the
issue of (iii) automatic model generation from the database of
biological information.

Mapping the MAP kinase network

As a benchmark, we have used the presented framework and
an extensive literature search to create a comprehensive map
for the yeast MAP kinase network (Supplementary Table S1).
Reactions have been defined with  specific residues and
domains whenever experimental support was sufficient. The
degree of experimental evidence has been evaluated manually
and individually for each entry, and references to primary
research papers supporting each interaction have been
included in the reaction and contingency lists (column
‘PubMedlIdentifier(s)’). We have used mechanistic' data on
reactions (C1) and a combination of mechanistic and genetic
data on contingencies (C2) between reactions and reactants’
states from primary research literature. The mapping is based
solely on primary research papers and de facto shown data to
ensure a high-quality network reconstruction. We chose to
exclude almost all genetic data as indirect effects cannot be
ruled out even in well-performed genetic screens. Finally, we
decided not to include spatial data, as we found information
especially on regulation of (re}localisation too sparse. To the
best of our knowledge, we have eliminated all questionable
information from the compiled data set, and convincing
reactions lacking solid mechanistic evidence have been
included but clearly and distinctly labelled.

The MAP kinase network contains 84 components, 181
elementary states and 222 elementary reactions, correspond-
ing to many hundreds of thousands of specific states. This
network is large enough to be a ‘severe challenge to the
established visualisation and analysis methods. We did in fact
fail to generate the complete state space and terminated the
BioNetGen expansion after the first three iterations which
generated 207, 1524 and 372 097 specific states, respectively.
We use-a range of graphical formats to visualise different
aspects of this highly complex network. First, we display the
network topology in the reaction graphs (Figure 2). These

Elemental reaction

BioNetGen rule implementation

Interactions (“ppi”, <"’ or “bind”’) A(B) +B(A)<—>A(B!1).B(A!1) , ki, kr
Intra-protein interactions (ipi) A(ALLA2) <—>A(All1,A2!11) ki
Phosphorylations (P+) : A+ B(Psite~U) —=> A - B(Psite™P) kf
Autophosphorylations (AP) A(Psite~U) —> A(Psite~P) kf
Phosphotransfers (PT) A(Psite™P) + B(Psite~U) <—> A(Psite~U) + B{Psite~P) kf, kr
Dephosphorylations (P—) A -+ B(Psite™P) —> A -+ B(Psite~U) kf
Nucleotide exchanges (GEF) A+B(GnP~U) ~>A-+B(GnP~P) kf
Nuclease activations (GAP) A+B(GnP~P) —>A+B(GnP~U) kf
Ubiquitination (Ub+) A+ B(UBsite~U) —> A+ B(UBsite~UB) kf
Proteolytic cleavages (CUT) A+ B(Domain~U) —> A + B(Domain ~truncated) kf
Degradations (DEG) - A+B->A ki

The table displays how the different elemental reactions in Table I are translated to the rule-based format. See Supplementary information for additional details.

© 2012 EMBO and Macmillan Publishers Limited
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figures show that the number of characterised phosphoryla-
tion reactions vastly outnumbers that of characterised
dephosphorylation reactions (68 to 16; Figure 2A), and that
several well-established processes are only supported by
genetic data (including the entire MAP kinase cascade below

CEEEE
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Pkcl; Figure 2B, dashed lines). The reaction graph also
allows comparison between the established pathway archi-
tecture and the unbiased global protein — protein interaction
studies and synthetic lethal networks (Figure 3A and B,
respectively).

Protein
Domain
Subdomain
Residue
Small molecule
DNA motif
Submotif
ppif/BIND
P+

GEF
P-/GAP
PT
DIG/CUT

Ub+

Genetic
evidence

|_See Table 1 for reactions |

© 2012 EMBO and Macmillan Publishers Limited
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In the contingency matrix (Figure 4), we visualise the
combined knowledge we have about the MAP kinase system
(C1 and C2). The core matrix (red block of rows and blue block
of columns) describe all the elemental reactions, elemental
states and the {possible) contingencies of reaction on states.
The black fields here show when there is no overlap between
the components in the reactions and those defined in the
states. Therefore, the matrix will always be sparsely popu-
lated. However, we also see that most of the remaining fields
are grey; that is, effect not known (‘7). This means that our
knowledge of reactions (C1; which defines rows and columns)
is much stronger than our knowledge of the causality between
thesereactions (C2; the cells). We only have data on a minority
of all possible contingencies, and these gaps are explicitly
shown in the contingency matrix. It should also be noted that
not all effects can be ascribed to single elemental states. We
have added an outer layer of Boolean states (purple rows and
columns) ‘to account for these cases. The Boolean states
describe complex mechanisms such as scaffolding and can'in
principle correspond to the specific states of, for example,
process descriptions. However, they are only added when
needed to describe empirical results. Note that only a small
fraction of the states are Boolean, which reflects the low
abundance of empirical data on the combinatorial effect of
elemental states (i.e.; specific states). Therefore, we believe it
to be better to use mapping strategies which do not require
such data. Finally, the matrix contains a layer of inputs and
outputs (grey; columns and rows, respectively). These
constitute the system’s interface with the outside.

The regulatory graph (Figure S} displays the information in
the contingency matrix graphically, by showing how reactions
produce or consume states, and how states influence
reactions. This graph contains the full C1 and C2 information,
and would fall apart without either. In fact, the isolated
reaction-state pairs that fall outside the graph do so because
they have no known incoming or outgoing contingencies. The
graph shows that the MAP kinase metwork is rather well
connected, as most reactions are indeed linked in a single
graph by contingencies. However, there are relatively few
input and output points; many reactions do not have known
regulators and many states do not have defined regulatory
effects. Only reaction-state pairs that appear between the
system’s input and output would be able to transmit
information. This “means either that all other pairs are
irrelevant for the dynamics of the signal-transduction process,
or that we are lacking information about their role in this
process. In fact, such lose ends might be excellent candidates
for targeted empirical analysis. One example would be Msb2’s
binding to Cdc42, which is reported to be important for the

A framework for mapping, visualisation and automatic model creation
C-F Tiger etai

pseudohyphal differentiation pathway; raising the question of
whether this binding is regulated in response to the stimuli that
activate this part of the MAP kinase network. Another point
that stands out is the almost complete lack of (documented)
information exchange between pathways. The exception is the
Sho branch of the Hog pathway, which is closely intertwined
with the mating pathway, as both are activated by the shared
MAP kinase kinase kinase Stell and parts of the cell polarity
machinery. ;

We have also generated a network map in the established
process description format, but without complex formations
(Figure 6). This decision eliminated most of the combinatorial
explosion and the need for implicit assumptions. However,
there is still uncertainty in the specific phosphorylation state of
the active state of certain catalysts, such as Ssk2, Stell and
Ste7. Likewise, we do not know if phosphorylation order is an
issue for proteins with multiple phosphorylation sites. In
contrast to the regulatory graph (Figure 5), the process
description becomes more complicated the more unknowns
we have and Figure 6 is simplified (compare Supplementary
Figure S2). However, the limited process description in Figure 6
clearly shows the catalyst-target relationships, and reinforces
the impression that very few of the known phosphorylation
reactions are balanced by known dephosphorylation
reactions..

Finally, we automatically generated a mathematical descrip-
tion of the entire network as a proof of principle. The rxncon
software used the contingency matrix to generate the input file
for BioNetGen (Blinov et al, 2004). The corresponding
network is too large to create but could be simulated with
the network-free simulator NFSim (Sneddon et al, 2011).
Further analysis of this system falls outside the scope of this
paper, but the input file to BioNetGen and/or NFSim with
trivial parameters is included as a supplement. -Hence, a
complete mathematical model can be automatically generated
from the reaction and contingency data, and to our knowledge
this is the first framework that integrates network definition at
the granularity of empirical data with automatic visualisation
and automatic model creation. .

Discussion

It is clear that the complexity of signal-transduction networks
is one of the major challenges in systems biology, impeding
our ability to visualise, simulate and ultimately understand
these networks. This issue has been widely recognised and
substantial efforts have been committed to improve and
standardise our tools for visualisation and meodelling of

Figure 2 The reaction graph compactly displays the topology of the S. cerevisiae MAP kinase network. (A) The reaction graph of the MAPK network displays the
components as nodes and the reactions as edges. Each component is defined by a central major node and peripheral minor nodes indicating domains, subdomains and
specific residues (blue). When interacting domains and target residues are known, reactions are displayed as edges between these minor nodes. In contrast, the
condensed reaction graph (B) displays each component as a single node, and each type of reaction between two nodes as a single edge. Nodes are either proteins
{circles), small molecules (diamonds) or DNA (square). Edge colours indicate reaction type (co-substrates and co-products): Grey; protein—protein interaction (N/A), red;
phosphorylation { — ATP, -+ ADP), orange; guanine nucleotide exchange ( — GTP, -+ GDP), blue; dephosphorylation or GTPase activation ( + P;), gold; ubiquitination
{ — ubiquitin, — ATP, + ADP, + Py), black; phosphotransfer or proteolytic cleavage (N/A). The domain layout in'(A) prioritises readability and domain organisation does
not reflect linear sequence or protein structure. Arrowheads indicate directionality for unidirectional or reciprocal catalytic modifications. Reactions for which we found no
direct evidence but which are supported by convincing genetic data has been included as dashed lines. Note the much higher frequency of reported phosphorylation
reactions as compared with dephosphorylation reactions; in total the network includes 68 phosphorylation reactions but only 16 dephosphorylation reactions (A).

© 2012 EMBO and Macmillan Publishers Limited
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cellular networks (Hucka et al, 2003; Le Novere et al, 2009). for definition, visualisation and mathematical modelling of
These standardisation efforts are essential for data exchange large networks. The arguably most important problems are the
and reusability, but many of the existing tools are unsuitable combinatorial complexity, the granularity difference between

10 Molecular Systems Biology 2012 © 2012 EMBO and Macmillan Publishers Limited
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empirical and theoretical data, and the lack of exchange
formats between different theoretical descriptions. Here, we
haveintroduced a new framework for network definition at the
same granularity as most empirical data. This format was
already available for C1 (reaction) information, as our list of
elemental reactions uses the same format as high-throughput
data (PSICQUIC). We describe contextual information at the
same granularity in our contingency list (C2), which not only
allows an intuitive and accurate translation of empirical data
but also largely avoids the combinatorial complexity. Contrary
to state transition based descriptions but like the related rule-
based format, the reaction and contingency based description
becomes smaller the less knowledge we have as only known
reactions and contingencies are considered. This format also
provides for highly detailed referencing as each elemental
reaction and contingency can and should be tied to empirical
evidence (i.e., research paper(s)). Furthermore, we show that
this format is stringent and unambiguously define both rule-
based models and graphical formats, such as the activity flow
diagram {condensed reaction graph), entity relationship
diagram and process description formats of SBGN. Our
framework also supports two new visualisation formats that
we introduce here and that can display our complete knowl-
edge database (the complete reaction and contingency lists).
Finally, our framework provides a very high reusability and
extendibility, as the underlying network definition—in list
format—is very easy to-extend, merge and reuse in other
context, which is not the case for most graphically or
mathematically defined systems. Of course, this level of
definition still leaves the issues of parameter estimation and
graphical layout, but these would typically need to be repeated
even when merging graphical and mathematical network
definitions. Hence, we advocate a more fundamental level of
network definition than graphical or mathematical formalism.
We envisage this or a similar framework as a standard to
greatly facilitate model/network construction, exchange and
reusability.

We have applied this method to map out the MAP kinase
network of S. cerevisiaze. This network was chosen as a
benchmark since it is both well characterised and representa-
tive for signal transduction in general. It consists of three clear
subgraphs, which have traditionally been considered more or
less insulated pathways; the High Osmolarity Glycerol (Hog)
pathway, the Protein Kinase C (PKC) pathway and the MATing
(MAT) pathway, which almost completely overlaps with the
PseudoHyphal Differentiation (PHD) pathway. These path-
ways have also been mapped or documented in several other
efforts. KEGG presents a combined map of the traditional MAP
kinase pathways in a format similar to its metabolic pathways
(Kanehisa et al, 2006, 2010). However, the stringent edge
definitions used for the metabolic networks have been
abandoned and this is a ‘biologist’s graph’ The picture is
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similar with the maps of yeast MAP kinase pathways at
Science STKE (e.g., Thorner et al, 2005). For example, these
maps display Stell with four upstream regulators, but it is
unclear how they regulate Stell and how their contributions
combine (e.g., AND or OR?). Therefore, these network maps
may provide an excellent introduction to the networks
by-providing a components list and a rough idea of the
components’ roles in the network, but they neither define
reactions (C1) nor contingencies (C2) unambiguously. On
the opposite end, we have the recently published process
description of the cell cycle and its surrounding signalling
network (Kaizu et al, 2010). This contains explicit definition
of both C1 and C2 information. However, the tremendous
number of specific states in such a network forces
simplifications, which not only leads to a loss of knowledge,
but also mixes up known contingencies (C2) with arbitrary
assumptions made to simplify the network. One example in
this particular case would be the separation of the upstream
activation of Stell and its downstream effect on the Hog and
Mating pathways. The output of this module is defined by the
context of its activation, and this information is lost due to
these arguably necessary simplifications. In addition, the
granularity difference between the highly specific map states
and the underlying biological data makes the mapping
ambiguous, leading to further unsupported assumptions.
Despite these shortcomings, the process description is useful
for visualisation of certain network properties due to the
explicit representation of highly detailed knowledge such as
target residues. However, we stress that neither of these
established and widely used methods are sufficient to
accurately capture the entire signal-transduction network.
Instead, we introduce the contingency matrix and the bipartite
regulatory graph as alternative methods, which are able to
fully capture the entire knowledge database without simplifi-
cations or assumptions. Together with the established meth-
ods, these visualisations provide an unprecedented view on
the chosen benchmark system, and we trust that this
completely referenced and comprehensive map of the MAP
kinase signalling network in S. cerevisiae will be a useful
reference material for the research community.

These results have direct bearing on the many efforts to
create large data repositories. Pure reaction (C1) data, such as
protein — protein interaction networks, can be retrieved using
the standardised Molecular Interaction Query Language
(MIQL; which our reaction list is designed to be compatible
with) and PSICQUIC (PSICQUIC). PSICQUIC accesses, for
example, ChEMBL (Overington, 2009), BioGrid (Breitkreutz
et al, 2010), IntAct (Aranda et al, 2010), DIP (Xenarios et al,
2002), MatrixDB (Chautard et al, 2009) and Reactome (Croft
et al, 2010). Several of these databases have additional
information including contingency (C2) information and a
standardised (non-graphical) format for definition and

Figure 3 The condensed reaction graph is an excellent tool for visualisation of high-throughput data. (A) Physical interactions within the MAPK network. The giobal
protein—protein interaction network was retrieved from Biogrid (Stark et a/, 2006), filtered for physical interactions excluding two hybrid, and visualised on the condensed
reaction graph (Figure 2A). Purple edges indicate protein-protein interactions and their thicknessindicates the number of times they were picked up, ranging from a
single time (dashed line) to 19 times. Nodes that appear faded have no interactions with any other component in the MAPK network reported in this data set. Note that
the nodes that do not correspond to single ORFs would be excluded automatically {(e.g., the SCF complex, DNA, lipids). The smaller, boxed network display the
corresponding two-hybrid interaction network., (B) Genetic interactions within the MAPK network. Synthetic lethal interactions were retrieved from Biogrid and visualised
as per (A). Also quantitative data, such as mutant phenotypes and gene expression levels, can be directly visualised on the network.
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Figure 4 The contingency matrix provides a complete description of the network or network module. The core contingency matrix is spanned by the elemental
reactions (rows, in red) and the elemental states (columns, in blue). The additional blocks are derived from the contingency list and contain the formation rules (rows) and
effects (columns) of Boclean states (both purple) as well as the output of (rows) and input to (columns) the network (both grey). The cells in the matrix define how each
reaction (row) depends on each state (column). The effects range from being absolutely required ('), via positive effector (K + ), no effect (‘0') and negative effector
{*K=") to absolutely inhibitory (‘x'), or it can be unknown or undefined (?"). Each Boolean state is defined by a single operator {AND’ or ‘OR’) for the elemental states, other
Booleans and/or inputs that defines it. The contingency matrix displayed here contains the complete MAPK network. Note that the contingency matrix is sparsely
populated. This is both because most combinations of reactions and states lack overlap in components (black squares) and because we have very limited knowledge of
the possible contingencies (grey squares). Overall, the information on what reactions can occur is much more abundant than on how they are regulated.

retrieval would further improve the usefulness of these
resources and facilitate further analysis of the stored informa-
tion. The framework we propose here provides such a format
with the key advantage of including export to mathematical

12 Molecular Systems Biology 2012

models. Since mathematical modelling is the most central and
natural step to bring the knowledge in these databases into a
useful form, where quantitative systems properties can most
exhaustively be analysed, the introduction of such an export is
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Figure 5 The regulatory graph visualise the causality between reactions and reveals the regulatory structure of the network. This bipartite graph illustrates the
relationships between the reactions (red nodes) and states (blue nodes) within the network. Edges from reactions to states define how states are produced (blue) or
consumed (purple), and each such edge corresponds to a single elemental reaction. Edges from states to reactions define how states regulate other reactions, and each
such edge correspond to a single contingency (Green; absolute requirement ('!') or positive effector ('K +), red; negative effector ('K-') or absolutely inhibitory (‘x')).
Booleans are used when the effect on a reaction cannot be attributed to single elemental states (white diamonds (OR) or triangles (AND) connected to the states/
Booleans/inputs that define them with black lines). Inputs are displayed in grey and connected to the elemental reaction(s) they influence. Likewise, outputs are displayed
in grey and connected to the states they are influenced by. Signals can be followed through the network from external cues (grey; top) to transcriptional response (grey;
bottom) as all edges are directional. Reactions without input are not (known to be) regulated and would therefore be expected to have constant rates; likewise states
without output have no (defined) impact on the system. We have alsc included likely but undocumented requirements for enzyme—substrate bindings before catalysis as
dashed lines. The regulatory graph is the only graphical representation using the complete information in the contingency matrix, and hence the only complete and
completely graphical visualisation of the network. It is also the most potent visualisation to evaluate the degree of knowledge about the network. For example,

visualisation of high-throughput data would result in disconnected reaction—state pairs only, due to the lack of regulatory information (no C2 data).

an important step forward. This framework is still not as
flexible as direct model definition but it provides distinct
advantages. Formulating models directly using classical state
transition reactions is either subjective or very cumbersome in
practice due to the combinatorial explosion, and state
transition based models for the networks of the size we
consider here are too large to be simulated. The closest related
modelling framework is rule-based modelling, in which
models can be formulated without these combinatorial
explosion problems, and it is also to a rule-based format that
we export our models. However, the classical rule-based
modelling frameworks lack all the database properties of our
framework, such as the contingency matrix and its export to
various novel visualisation formats. In short, one could
therefore say that our framework combines the best of existing
knowledge databases with new visualisation tools and rule-
based modelling.

In conclusion, we present a method to document and
visualise signal-transduction networks that improves on
previous strategies in the following respects; (I) it allows
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concise mapping at the same granularity as biological data,
hence pre-empting the need for implicit, unsupported assump-
tions, (II) it allows referencing of each elemental reaction and
contingency separately and handles unknowns explicitly, (III)
the network can be visualised without any simplifications or
assumptions that increase the uncertainty, (IV) the visualisa-
tions can be automatically generated from the data files, (V)
the network definition is a template from which a mathema-
tical model can be automatically generated (VI) and exported
to SBML and (VII) the supplied template and rxncon tool
makes the method immediately useful for anyone with an
interest in signal transduction. Hence, our framework bridge
three critical levels of signal-transduction network analysis;
definition, visualisation and mathematical modelling, as well
as empirical data and theoretical analysis.

Materials and methods

The MAP kinase network map is based on the papers listed below. The
specific reference(s) are listed for each reaction and contingency
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