Shoemaker et al. BMC Genomics 2012, 13:460 Page 11 of 11
http://www.biomedcentral.com/1471-2164/13/460

18. da Huang W, Sherman BT, Lempicki RA: Bioinformatics enrichment tools:
paths toward the comprehensive functional analysis of large gene lists.
Nucleic Acids Res 2009, 37(1):1-13.

19. Medzhitov R: Recognition of microorganisms and activation of the
immune response. Nature 2007, 449(7164):819-826.

20. Aderem A, Ulevitch RJ: TollHike receptors in the induction of the innate
immune response. Nature 2000, 406(6797).782-787.

21, SunL, Liu S, Chen ZJ: SnapShot: pathways of antiviral innate immunity.
Cel 2010, 140(3):436-436. e432.

22, YuWC, Chan RW, Wang J, Travanty EA, Nicholls JM, Peiris JS, Mason RJ,
Chan MC: Viral replication and innate host responses in primary human
alveolar epithelial cells and alveolar macrophages infected with
influenza H5N1 and H1N1 viruses. J Virof 2011, 85(14):6844-6855.

23. Reading PC, Whitney PG, Pickett DL, Tate MD, Brooks AG: Influenza viruses
differ in ability to infect macrophages and to induce a local
inflammatory response following intraperitoneal injection of mice.
Immunol Celf Biol 2010, 88(6):641-650.

24. daHuang W, Sherman BT, Tan Q, Collins JR, Alvord WG, Roayaei J, Stephens
R, Baseler MW, Lane HC, Lempicki RA: The DAVID Gene Functional
Classification Tool: a novel biological module-centric algorithm to
functionally analyze large gene lists. Genome Biol 2007, 8(9)R183.

25, Fukuyama S, Kawaoka Y: The pathogenesis of influenza virus infections:
the contributions of virus and host factors. Curr Opin Immunol 2011,
23(4):481-486.

26. Chang JT: Deriving transcriptional programs and functional processes
from gene expression databases. Bioinformatics 2012, 28(8):1122-1129.

doi:10.1186/1471-2164-13-460

Cite this article as: Shoemaker et al: CTen: a web-based platform for
identifying enriched cell types from heterogeneous microarray data.
BMC Genomics 2012 13:460.

Submit your next manuscript to BioMed Central
and take full advantage of:

® Convenient online submission

® Thorough peer review

* No space constraints or color figure charges

e immediate publication on acceptance

e inclusion in PubRed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at O -
www.biomedcentral.com/submit EdoRfied Central

-417-

Bioinformatics Advance Access published May 10, 2012

Software support for SBGN maps: SBGN-ML and LibSBGN

Martijn P. van Tersel*>*", Alice C. Villéger4’*, Tobias Czauderna’, Sarah E. Boydé, Frank T.
Bergmann’, Augustin Luna®’, Emek Demir'®, Anatoly Sorokin'!, Ugur Dogrusoz'?, Yukiko
Matsuoka'’, Akira Funahashi'®, Mirit I. Aladjem'’, Huaiyu Mi'®, Stuart L. Moodie', Hiroaki Ki-
tano'>'®, Nicolas Le Noveére', and Falk Schreiber™’

'EMBL European Bioinformatics Institute, Hinxton, UK, *Netherlands Consortium for Systems Biology (NCSB), The Neth-
erlands, 3Depau’tment of Bioinformatics - BiGCaT, University of Maastricht, the Netherlands, *School of Computer Science,
Faculty of Engineering and Physical Sciences, University of Manchester, UK, >Leibniz Institute of Plant Genetics and Crop
Plant Research (IPK), Gatersleben, Germany, 8School of Mathematical Sciences, Faculty of Science, Monash University,
Melbourne, Australia, 'Control and Dynamical Systems, California Institute of Technology, Pasadena, CA, USA, $National
Cancer Institute, Bethesda, MD, USA, *Bioinformatics Program, Boston University, Boston, MA, USA, 1OCormputational
Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA, Unstitute of Cell Biophysics RAS, Puschino,
Russia, "?Computer Engineering Dept., Bilkent University, Ankara, Turkey, *The Systems Biology Institute, Tokyo, Japan,
14Dept. of Biosciences and Informatics, Keio University, Japan, 15Dept. of Preventive Medicine, Keck School of Medicine,
University of Southern California, Los Angeles, CA, USA, 1¥0Okinawa Institute of Science and Technology, Okinawa, Japan,

nstitute of Computer Sciences, Faculty of Natural Sciences I1I, University of Halle, Germany

Associate Editor: Dr. Trey Ideker

ABSTRACT

Motivation: LibSBGN is a software library for reading, writing and
manipulating SBGN (Systems Biology Graphical Notation) maps
stored using the recently developed SBGN-ML file format. The li-
brary (available in C++ and Java) makes it easy for developers to
add SBGN support to their tools, whereas the file format facilitates
the exchange of maps between compatible software applications.
The library also supports validation of maps, which simplifies the
task of ensuring compliance with the detailed SBGN specifications.
With this effort we hope to increase the adoption of SBGN in bioin-
formatics tools, ultimately enabling more researchers to visualize
biological knowledge in a precise and unambiguous manner.
Availability & Implementation: Milestone 2 was released in De-
cember 2011. Source code, example files and binaries are freely
available under the terms of either the LGPL v2.1+ or Apache v2.0
open source licenses from http:/libsbgn.sourceforge.net.

Contact: sbgn-libsbgn@lists.sourceforge.net

1 INTRODUCTION

The Systems' Biology Graphical Notation (SBGN, Le Novere et
al., 2009) facilitates the representation and exchange of complex
biological knowledge in a concise and unambiguous manner: as
standardized pathway maps. It has been developed and supported
by a vibrant community of biologists, biochemists, software devel-
opers, bioinformaticians and pathway databases experts.

SBGN is described in detail in the online specifications (see
http://sbgn.org/Documents/Specifications). Here we summarize its

*To whom correspondence should be addressed.

concepts only briefly. SBGN defines three orthogonal visual lan-
guages: Process Description (PD), Entity Relationship (ER) and
Activity Flow (AF). SBGN maps must follow the visual vocabu-
lary, syntax and layout rules of one of these languages. The choice
of language depends on the type of pathway or process being de-
picted and the amount of available information. The PD language,
which originates from Kitano’s Process Diagrams (Kitano et al.,
2005) and the related CellDesigner tool (Funahashi ef al., 2008), is
equivalent to a bipartite graph (with a few exceptions) with one
type of nodes representing pools of biological entities, and a se-
cond type of nodes representing biological processes such as bio-
chemical reactions, transport, binding and degradation. Arcs repre-
sent consumption, production or control, and can only connect
nodes of differing types. The PD language is very suitable for met-
abolic pathways, but struggles to concisely depict the combinatori-
al complexity of certain proteins with many phosphorylation states.
The ER language, on the other hand, is inspired by Kohn’s Molec-
ular Interaction Maps (Kohn et al., 2006), and describes relations
between biomolecules. In ER, two entities can be linked with an
interaction arc. The outcome of an interaction (for example, a pro-
tein complex), is considered an entity in itself, represented by a
black dot, which can engage in further interactions. Thus ER repre-
sents dependencies between interactions, or putting it differently, it
can represent which interaction is necessary for another one to take
place. Interactions are possible between two or more entities,
which makes ER maps roughly equivalent to a hypergraph in
which an arc can connect more than two nodes. ER is more concise
than PD when it comes to representing protein modifications and
protein interactions, although it is less capable when it comes to
presenting biochemical reactions. Finally, the third language in the

© The Author(s) 2012. Published by Oxford University Press.

1

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

~-418-

SBGN family is AF, which represents the activities of biomole-
cules at a higher conceptual level. AF is suitable to represent the
flow of causality between biomolecules even when detailed
knowledge on biological processes is missing.

Efficient integration of the SBGN standard into the research cy-
cle requires adoption by visualization and modeling software. En-
couragingly, a growing number of pathway tools (see
http://sbgn.org/SBGN_Software) offer some form of SBGN com-
patibility. However, current software implementations of SBGN
are often incomplete and sometimes incorrect. This is not surpris-
ing: as SBGN covers a broad spectrum of biological phenomena,
complete and accurate implementation of the full SBGN specifica-
tions represents a complex, error-prone and time-consuming task
for individual tool developers. This development step could be
simplified, and redundant implementation efforts avoided, by accu-
rately translating the full SBGN specifications into a single soft-
ware library, available freely for any tool developer to reuse in
their own project. Moreover, the maps produced by any given tool
usually cannot be reused in another tool, because SBGN only de-
fines how biological information should be visualized, but not how
the maps should be stored electronically. Related community
standards for exchanging pathway knowledge, namely BioPAX
(Demir et al., 2010) and SBML (Hucka ef al., 2003), have proved
insufficient for this role (more on this topic in the discussion sec-
tion). Therefore, we observed a second need, for a dedicated,
standardized SBGN file format.

Following these observations, we started a community effort
with two goals: to encourage the adoption of SBGN by facilitating
its implementation in pathway tools, and to increase interoperabil-
ity between SBGN-compatible software. This has resulted in a file
format called SBGN-ML and a software library called LibSBGN.
Each of these two components will be explained separately in the
next sections.

2 THE SBGN-ML FILE FORMAT

SBGN-ML is a dedicated lightweight XML-based file format de-
scribing the overall geometry of SBGN maps, while also preserv-
ing their underlying biological meaning. SBGN-ML is designed to
fulfill two basic requirements:

1. Easy to draw (as a machine) and read (as a human)

2. Easy to interpret (as a machine)

The first set of requirement deals with the graphical aspect of
SBGN. It means it should be easy to render an SBGN-ML file to
the screen. Therefore, the format stores all necessary information,
such as coordinates, to draw the map faithfully, so that rendering
tools do not have to perform any complex calculations. Incidental-
ly, this implies the layout of the whole SBGN map has to be ex-
pressed explicitly: the size and position of each graphical object
and the path of each arc. Various efforts have shown that generat-
ing a layout for heterogeneous biological pathways is a computa-
tionally hard problem, so a good layout is always worth preserving,
if only from a computational perspective. Besides, the choice of a
specific layout by the author of a map is often driven by concerns
related to aesthetics, readability, or to reinforce ideas of chronolo-
gy or proximity. This information might be lost with automated
layouts. Layout conventions predate SBGN, and are not part of any
standard, but they nonetheless play a large role in making it easier

for other human beings to understand the biological system being
described.

The second requirement encompasses two perpendicular charac-
teristics of SBGN as a language: semantics and syntax. Beyond the
picture itself, the format should capture the biological meaning of
an SBGN map. Therefore, SBGN-ML specifies the nature of
graphical elements (glyphs), following the SBGN terminology
(e.g. macromolecule, process, etc.). For example, we can distin-
guish between a “logic arc” and a “consumption arc” even though
they have the same visual appearance. Supporting tools refer to
this terminology and draw the glyph according to the SBGN speci-
fications. In terms of syntax, SBGN-ML encodes information on
relationships between the various SBGN objects: the glyphs at
both ends of an arc, the components of a complex, the members of
a compartment and the “decorations (such as unit of information,
state variable) belonging to specific glyphs and arcs. This semantic
and syntactic information is essential to a number of automated
tasks, such as map validation, or network analysis (as the topology
of the underlying biological network can be inferred from the vari-
ous relationships encoded by the format).

<sban xalns="hitp;//sbgn.org/Libsbgn/0.2%>]
<map language="process description”> & : : N\
<notes><p xmlns="http://wws. w3.0rg/1999/xhtml"> Extracellular space

1
2
3
4 Glucose import followed by the first step of glycolysis. |
5 </p</notes>
6 Glucose]
7
2

GLUT4

<glyph compartmeniRef="e" 1d="g" class="sumple chemical®>
<label text="Glucose"/>
<bbox y="25" x="55" h="30" w="30"/»

9 </glyph>

10 <glyph comparimentRei="c’ id="j* class="simple chemical™>
11 <label text="Glucose"/> e
12 <bbox y=*155" x="55" h="30" w="30"/> r——

13 </glyph>

17 <port

1 o Efl
18 -alyph compartmentiief dn"k eica =m
20 <label texte AT I

i v
A —
Hexokinase

23 </glypw

24 <glyph compartmentRef~“c" id="m" class="macromolecule">

25 <label text="Hexokinase"/»

26 <bbox y="185" x="B5" h="30" w='70"/>

27 <glyph i te e">

28 <label
<bbox y="1

30 </glyph>

31 </glyph>

M) <arc largel="s" source="g" id="a" class="consumplion">
81 <start y="55" x="70"/>

82 <end y="102" x="70"/>

83 </arc>

ADP

\ J

Fig. 1. An example PD map (right) with the corresponding SBGN-ML code (left).
This example shows the import of glucose followed by the first step of glycolysis. The
colors used have no special meaning in SBGN, here they merely indicate the relation
between each SBGN glyph and its SBGN-ML representation; a process node in or-
ange, a simple chemical (ATP) in green, a production arc in cyan, a catalysis arc in
purple, a compartment in yellow and a state variable in blue.

94 </shgn>

To explain the syntax of SBGN-ML in more detail, consider the
example in Figure 1. The figure shows a PD map describing the
import of glucose by GLUT4, followed by the first step of the
glycolysis. The root element is named “sbgn” (line 1). Below that,
there is a “map” element with an attribute indicating that the PD
language is used. Below the map element, one finds a series of
glyph and arc elements. Each glyph carries a “class™ attribute to
denote the meaning in SBGN terms. In this example, there is a
glyph with class “process” (lines 14-18, in orange). Each glyph
also carries an “id” attribute that can be referred from elsewhere in
the document, thus storing the network topology (in this case

-419-

merely the letter “f” for the sake of brevity). Each glyph must de-
fine a “bbox” or bounding box, which allows the glyph to be
placed at the correct position. Its coordinates denote the smallest
rectangle that completely encompasses the glyph. Consumption
and production arcs connect to process nodes at a so called “port”
just outside the glyph. “Port” elements are part of the network
topology, so they carry identifiers as well (line 16-17). Another
glyph in this example represents the active form of hexokinase
(lines 24-31). It carries a label element, which should be positioned
in the center of the parent glyph, unless otherwise defined. Hexo-
kinase also contains a sub-glyph for a state variable (lines 27-30, in
blue) to indicate that it is the allosterically active form of the en-
zyme. ATP (lines 19-23, in green) is a simple chemical, and uses a
circle as its shape, as opposed to macromolecules that use a round-
ed rectangle shape. Small molecules often occur multiple times in
a map, in which case they must carry a clone marker, a black bot-
tom half. In SBGN-ML this is represented by the “clone” element
(line 21). Cellular compartments are represented by glyphs as well
(line 32-35, in yellow). Entities refer to their surrounding com-
partment using a “compartmentRef” attribute.

Just like glyphs, arcs must define a “class” attribute and an “id”
attribute. See for example the production arc (lines 84-87, in cyan).
Each arc must have a source attribute, referring to the identifier of
a glyph that the arc points from, as well as a target attribute, refer-
ring to the identifier of the glyph that the arc points to. Source and
target may refer to identifiers of either glyphs or ports. Arcs must
also define start and end coordinates. Arcs can optionally include
waypoints for path routing as with the “catalysis” arc (lines 88-92,
in purple). It is not possible to deduce the start and end coordinates
from the source and target glyphs, as there may be some white
space between the end of the arc and the border of the glyph.

Each element can be freely annotated with notes encoded with
valid XHTML elements (lines 3-5). Each SBGN-ML can also be
extended with elements in proprietary namespaces to add addition-
al features (not shown in this example).

3 THE LIBSBGN LIBRARY

A software library called LibSBGN complements the file format. It
consists of two parallel implementations in Java and C++. The
libraries share the same object model, so that algorithms operating
on it can be easily translated to different programming languages.

The primary goal of LibSBGN is to simplify the work for devel-
opers of existing pathway tools. To reach this goal we followed
three design principles. First, we avoided tool-specific implemen-
tation details. Implementation artifacts that are specific for one
bioinformatics tool would impose difficulties for adoption by oth-
ers. We sought input from several tool developers into the
LibSBGN effort early on.

Second, we do not want to force the use of a single rendering
implementation (meaning the software routine that translates from
memory objects to screen or graphic format). Early in the devel-
opment of LibSBGN, it became clear that for most pathway draw-
ing tools, the rendering engine is an integral part that is not easily
replaced by a common library. The typical usage scenario is there-
fore to let LibSBGN handle input and output, but to translate to the
application’s own object model, and display using the application’s
own rendering engine. Enforcing a common rendering library
would hamper adoption of LibSBGN. We instead opted to build a

render comparison pipeline to ensure consistency between various
renderers (this pipeline is described in more detail in section 3.2).
Third, we wish to provide optimal libraries for each develop-
ment environment. For both the C++ and Java versions, code is
automatically generated based on the XML Schema definition
(XSD). The method of generating code from XSD has reduced the
effort needed to keep the Java and C++ versions synchronized
during development. The generated Java code plus helper classes
form a pure Java library. The alternative possibility, to create a
single C++ library and a Java wrapper around that, is not prefera-
ble because it complicates multi-platform installation and testing.
Our experience with a related project, LibSBML (Bornstein et al.,
2008), is that the community has a need for a pure Java library in
spite of existing Java bindings for C++, which has led to the devel-
opment of the pure Java JSBML (Driager ef al., 2011) as an alterna-
tive. Although both LibSBML and JSBML are successful projects,
the maintenance of two similar projects in different languages is
costly in terms of developer time. By generating native libraries for
both environments automatically, we hope to avoid that extra cost.

3.1 Code sample

See Figure 2 for an example of usage of LibSBGN in practice. The
Java library contains convenient helper functions for reading, writ-
ing and validation. In the case of this example the function read-
FromFile from the SbgnUtil class is used. The source package
contains example programs for common operations, and the
LibSBGN wiki includes a developer tutorial (see
http://sourceforge.net/apps/mediawiki/libsbgn/index. php?title=Dev
eloper tutorial) aimed at developers who want to include
LibSBGN into an existing bioinformatics application.

/ our sbgnmi file goes in "f°
File f = new File ('../test-files/adh.sbgn");
/ Now read from "f" and put the result in "sbgn

Sbgn sbgn = ShgnUtil.readFromFile(f};

map ¥s a container for the glyphs amd arcs
Map map = sbun.getMap{l;

/ we can get-a list of glyphs (nedes) in this map with getGlyph(

for {Glyph g : map.getGlyph())
{

print the sbgn class of this glyph
System.out.print (" Glyph with class " + g.getId(});
if there is a label, print if as well
if {g.getLabel{) I= null)
System.out.println (", and label
else
System.out.priniln {", without label”);

" + g.getiabel().getText(})};

// we can get a list of arcs (edges) in this map with getArc
for (Arc a : map.getarc(})
{

/ print the class of this arc

Sys‘tem.out.prinﬂn (" Arc wiﬂ“ class " + a.getClazz{));

Fig. 2. Example of reading a file using the Java version of LibSBGN. Here
an SBGN-ML file named “adh.sbgn” (included in the LibSBGN source
distribution) is read, and some basic information about each glyph in that
file is printed to standard output. The complete program can be found as
ReadExample.java in the LibSBGN source distribution.

-420-

3.2 Rendering comparison

We created dozens of test-cases for each of the three languages of
SBGN, covering all aspects of the syntax. Each test-case consists
of a reference diagram in PNG format and a corresponding SBGN-
ML file. To test our software, all SBGN-ML files are automatically
rendered by the participating programs, currently SBGN-ED
(Czauderna et al, 2010), PathVisio (van Iersel et al, 2008) and
SBML Layout (Deckard ef al, 2006). The resulting images are
viewable side-by-side with the reference map. An example of this
can be found in Figure 3.

This pipeline was of tremendous value during development.
Typically, an observed difference between a given rendering and
the reference diagram could lead to several possible outcomes.
Most commonly, the difference indicated a mistake in the partici-
pating renderer, which had to be fixed by the author of that soft-
ware. A second possibility is that the mistake is due to an ambigui-
ty in the interpretation of SBGN-ML. This could lead to a correc-
tion in the specification or a clarification in the documentation, so
that all involved are in agreement. In several instances, the source
of ambiguity was derived not from SBGN-ML but from the SBGN
specification. This way, LibSBGN has led to feedback on SBGN
itself. A final possibility is that the difference was deemed insignif-
icant. Certain differences in use of color, background shading and
line thickness are not meaningful in terms of biological interpreta-
tion of the SBGN map. An exception here is differences in layout.
As mentioned before, we consider layout valuable to preserve even
though it is not semantically significant. This pipeline is now fully
automated, and runs automatically, whenever new test-cases are
added to the source repository. It can be viewed online at
http://libsbgn.sourceforge.net/render_comparison/. We encourage
developers of software to contact us to add their tool to the gallery.

PanVisio |
BT
b

L e

8

\

T

|
[e [L\ |
Lo

= =

|
|

{
"E;_.__/

(ool

Fig. 3. Rendering comparison. A series of test-cases is rendered by all
supported tools in an automated render comparison pipeline. The rendering
results are compared to the reference map (top-left), in this case an ER
map. A couple of significant differences have been highlighted with red
circles. In the PathVisio case (top-right), arrowheads are drawn where none
are expected. In the SBML Layout example (bottom-right), the wrong
arrowheads are drawn for absolute-inhibition and stimulation arcs. Note
that these are historical images for illustration purposes, and the highlighted
issues have already been fixed.

3.3 Validation

For syntactic validation of SBGN-ML documents, we created an
XML Schema definition (XSD). Unfortunately, XSD is not suffi-
cient to validate the many semantic rules defined in the SBGN
specification. To solve this we also developed higher-level, seman-
tic validation using the Schematron (http://www.schematron.com)
language.

To give a few examples: in PD, a production arc should point
from a process towards an entity pool node. It is not allowed to
draw the arc in the other direction, or to connect two entity pools
directly without an intermediate process (see Figure 4). In ER,
outcome glyphs may be drawn on interaction arcs but not on influ-
ence arcs. If such a rule were violated, the meaning of the map
would be ambiguous or contradictory.

LibSBGN provides functionality for users and developers to val-
idate diagrams against these rules. This validation capability is
built using Schematron language which has been previously used
for Molecular Interaction Map diagram validation (Luna et al.,
2011). Schematron rules are assertion tests written using XPath
syntax. Each rule possesses a role to denote the severity of failure,
a human-readable message, and diagnostic elements to identify the
source of the error or warning. Rules in Schematron can be
grouped in phases; this feature can be used to denote subsets of
rules to be activated during validation. Schematron makes use of
XML stylesheet transformations (XSLT) and the validation pro-
cess occurs in two steps. The first step is the transformation of the
rule sets written in the Schematron language to an XSLT
stylesheet, and the second step is the transformation of an SBGN-
ML file using the XSLT stylesheet from the first step. The product
of this second transformation is a validation report that uses the
Schematron Validation Report Language (SVRL). The usage of
Schematron rule sets allows for validation to be flexibly incorpo-
rated into various environments and using any programming lan-
guage with an XSLT processor. Command-line validation can be
done using XSLT processors such as Saxon
(http://saxon.sourceforge.net/) by performing the two transfor-
mation steps mentioned above. Alternatively, validation can also
be incorporated into automated pipelines using the Ant task for
Schematron (http://code.google.com/p/schematron/), an example
of this is provided in the distributed files. Lastly, validation can be
incorporated into projects by using provided utility Java classes
found in the LibSBGN API. The PathVisio-Validator plugin
(Chandan et al., 2011) is an example of diagram validation using
LibSBGN and Schematron.

There are three rule sets for SBGN-ML, one for each of the
SBGN languages. These rule sets validate syntactic correctness of
SBGN maps. An example validation is shown in Fig. 4, where a
stimulation arc is incorrectly drawn by pointing to an entity pool
node, rather than a process node.

Unfortunately software can have bugs, and if the validation rou-
tine does not report any validity errors, this could indicate that
either the diagram is indeed correct (true negative), or that there is
a bug in the software encoding the rules (false negative). To ensure
correctness of the validation rules themselves, we have created
benchmarks for each of them. For each rule there is a positive test-
case, for which the rule should pass, and a negative one, for which
the rule should fail, similar to the example given in Fig. 4.

-421-

<

Fig. 4. Typical validator benchmark. This particular example tests the
software for rule pd10110: In PD maps, catalysis arcs must point to a pro-
cess node (not to an entity pool node). In the negative test-case on the left,
the enzyme GPI appears to “catalyze” a molecule rather than a reaction.
This is a logical impossibility. The positive test-case on the right shows
correctly how the enzyme GPI catalyzes the reaction from glucose-6P to
fructose-6P. Taken together, these test-cases help to prevent bugs in the
validation software.

3.4

As mentioned earlier, we seek support from a wide community of
tool developers. The following tools are already using LibSBGN:
PathVisio (van Iersel et al, 2008), SBGN-ED (Czauderna et al.,
2010), SBML Layout (Deckard et al, 2006), and VISIBIOweb
(Dilek et al., 2010). We are aware of two other tools with
LibSBGN support in development: Arcadia (Villéger et al., 2010)
and CellDesigner (Funahashi et al., 2008). Desktop applications
using LibSBGN are shown in Figure 5.

Supporting tools

Fig. 5. Screenshots of a number of tools that use LibSBGN. Clockwise,
from the top: CellDesigner, SBGN-ED, VISIBIOweb and PathVisio. These
tools are able to use SBGN-ML for import, export or both. At the time of
writing, for some of these tools a version with SBGN support has not been
officially released, but is expected soon.

4 DISCUSSION

We have set out to fulfill the dual goals of simplifying SBGN sup-
port as well as standardizing electronic exchange of SBGN. The
first goal has been addressed with an open source software library,

which can be used to read, write, manipulate and validate SBGN.
The second goal has been addressed with a file format named
SBGN-ML.

SBGN-ML fills a pragmatic need for a format that can be
mapped directly to concepts from the SBGN specification. We see
the rapid adoption of SBGN-ML by a number of tools as proof of
the pragmatic need for it.

A potential criticism of SBGN-ML is the addition of yet another
file format to the repertoire of file formats in systems biology.
Different approaches have been explored for electronically repre-
senting SBGN: from graphical file formats such as SVG, or graph
representation stored as GraphML files, to additional information
on top of an existing model, such as the Systems Biology Markup
Language (SBML) layout extension (Gauges et al., 2006). All
these approaches have limitations, as they have been developed
independently of SBGN. A new format was needed to support all
characteristics of SBGN maps (graphics, relationships, and seman-
tics). The other formats could be extended to cover these concepts,
but at the expense of brevity and clarity.

So we created a new format for the following reasons. First,
SBGN-ML focuses on the domain of visualization of SBGN con-
cepts. This sets it apart from existing exchange formats for path-
ways. BioPAX is a pathway exchange format that occupies the
domain of knowledge management, and has close relations to the
semantic web. SBML occupies the domain of computational mod-
eling of systems biology. The latter two could be extended to ac-
commodate SBGN concepts, but there is not a straight one-to-one
mapping. For example, there is no good equivalent for the AND /
OR gates which can be drawn in SBGN. Furthermore, omitted /
uncertain processes can be drawn in SBGN but have no direct
equivalent in BioPAX.

Secondly, SBGN-ML is easier to validate against the SBGN
specification. As mentioned before, the complexity of SBGN
makes software support for validation a must. Rules describing
validation of SBGN-ML are simpler and more concise than they
would be if they were encoded on top of an existing format.

Thirdly, the rendering comparison pipeline has ensured that
conversion of SBGN-ML to graphical formats is straightforward.
On the other hand, conversion from a graphical format such as
SVG to SBGN-ML requires inferring the meaning of lines, glyphs
and symbols, which is bound to lead to loss of information.

Fourth, by making SBGN independent, it is not tied to either the
SBML, BioPAX or any other research community. We observe
that currently LibSBGN is being used by both BioPAX-oriented
tools such as ChIBE and PaxTools as well as SBML-oriented tools
such as CellDesigner or GraphML-oriented tools such as SBGN-
ED.

SBGN-ML is officially endorsed by the SBGN scientific com-
mittee as a reference implementation and the best way to exchange
diagrams between applications. It is orthogonal to specific formats
used to represent pathways and models such as BioPAX (Demir et
al., 2010) and SBML (Hucka et al., 2003), and thus follows the
vision of the COMBINE initiative (http://co.mbine.org/about).

In the field of bioinformatics, it occurs all too often that the lack
of a feature in an existing piece of software is used to justify the
development of a complete new bioinformatics tool, which will in
its turn lack features in another area. The end result is the current
state of affairs: a balkanization of bioinformatics tools, or in other
words, many fragmented tools that integrate poorly. One of the

-422-

goals of LibSBGN is to improve existing software. LibSBGN
could serve as a model to counter the balkanization trend. We pre-
fer to see the development of software libraries instead of incom-
plete tools. Libraries, especially if they are open source, can be
shared, re-used and adopted by developers.

5 CONCLUSION

The SBGN-ML file format and LibSBGN library provide open
source software support for SBGN maps. They have been adopted
by several tools already, and development is ongoing. It is ex-
pected that the availability of a community-supported API will
significantly expedite SBGN’s adoption. We use the word “Mile-
stone” for versioning purposes - the latest release is Milestone 2,
which was released in December 2011.

LibSBGN is primarily focused on exchanging between SBGN
software. Other functionalities, such as conversion to other for-
mats, or generating suitable layout, are not currently supported. It
is certainly likely that some or all of these functionalities will be
added in the future as optional modules. SBGN-ML will likely see
the addition of fine-grained graphics specification, support for
linking between files, and improved usage of ontologies. Addition-
ally, LibSBGN will see expansion to other programming languages
beyond Java and C++, such as for example Javascript.

The SBGN-ML file format is represented as an XML schema
(SBGN.XSD). Examples are available as test files (XML, PNG).
The accompanying documentation reflects the content of the
schema, and clarifies a number of additional rules and conventions
(e.g. coordinate system). This set of resources constitutes the
SBGN-ML specifications. The LibSBGN library (in C++ and Java)
and the file format have been released on Sourceforge, under a
dual license: the Lesser General Public Licence (LGPL) version
2.1 or later, and Apache version 2.0.

The development process is an active community effort, orga-
nized around: regular online meetings, discussions on the mailing
list, and development tools on Sourceforge (bug tracker, SVN
repository, and documentation wiki). New developers are very
welcome.

ACKNOWLEDGEMENTS

The authors thank their individual sources of funding. This work
was in part supported by the Biotechnology and Biological Scienc-
es Research Council (BBSRC), the Netherlands Consortium for
Systems Biology (NCSB), which is part of the Netherlands Ge-
nomics Initiative/Netherlands Organisation for Scientific Research;
BioPreDyn which is a grant within the Seventh Framework Pro-
gramme of the EU, the Intramural Research Program of the NIH,
National Cancer Institute, Center for Cancer Research;, and the
German Ministry of Education and Research (BMBF). Authors are
grateful for useful feedback from the Path2Models project.

REFERENCES

Bornstein,B.J. et al. (2008), LibSBML: an API library for SBML. Bioinformatics, 24,
880-881.

Chandan, K. et al. (2011) PathVisio-Validator: A Rule-based Validation Plugin for
Graphical Pathway Notations. Bioinformatics, 28, 889-890.

Czauderna,T. et al. (2010) Editing, validating, and translating of SBGN maps. Bioin-
Jformatics, 26, 2340-2341.

Deckard,A. et al. (2006) Supporting the SBML layout extension. Bioinformatics, 22,
2966~2967.

Demir,E. et al. (2010) The BioPAX community standard for pathway data sharing.
Nature Biotechnology, 28, 935-942.

Dilek,A. et al. (2010} VISIBIOweb: visnalization and layout services for BioPAX
pathway models. Nucleic Acids Research, 38, W150-154.

Funahashi,A. et al. (2008) CellDesigner 3.5: A Versatile Modeling Tool for Biochem-
ical Networks. Proceedings of the IEEE, 96, 1254-1265.

Gauges,R. et al. (2006) A model diagram layout extension for SBML. Bioinformatics,
22:1879-1885.

Hucka,M. et al. (2003) The Systems Biology Markup Language (SBML): a medium
for representation and exchange of biochemical network models. Bioinformatics,
9, 524-531.

Le Novére,N. et al. (2009) The Systems Biology Graphical Notation. Nature Biotech-
nology, 27, 7153-741.

Luna,A. et al. (2011) A formal MIM specification and tools for the common exchange
of MIM diagrams: an XML-Based format, an AP and a validation method. BMC
Bioinformatics, 12, 167.

van JerseLM.P. et al. (2008) Presenting and exploring biological pathways with Path-
Visio. BMC Bioinformatics, 9, 399.

Villéger,A.C. et al (2010} Arcadia: a visualization tool for metabolic pathways.
Bioinformatics, 26, 1470-1471.

Drager,A. et al. (2011) JSBML: a flexible Java library for working with SBML,
Bioinformatics, 27, 2167-2168

Kohn,K.W. et al. (2006) Molecular interaction maps of bioregulatory networks: a
general rubric for systems biology. Mol. Biol. Cell, 17, 1-13.

Kitano,H. et al. (2005) Using process diagrams for the graphical representation of
biological networks. Nature Biotechnology, 23, 961-966.

-423-

Molecular Systems Biology 8; Article number 578; doi:10.1038/msb.2012.12
Citation: Molecular Systems Biology 8: 578

© 2012 EMBO and Macmillan Publishers Limited Al rights reserved 1744-4292/12
www.molecularsystemsbiology.com

molecujar
systems
hmlogy

A framework for mapping, visualisation and automatic
model creation of signal-transduction networks

Carl-Fredrik Tiger'*®, Falko Krause®®, Gunnar Cedersund™>*, Robert Palmér®, Edda Klipp®, Stefan Hohmann', Hiroaki Kitano

and Marcus Krantz' 25

' Department of Gell and Molecular Biclogy, University of Gothenburg, Géteborg, Sweden; 2
3 Department of Clinical and Experimental Medicine, Diabetes and Integrative Systems Biology, Linkdping University, Linképing, Sweden, ¢
The Systems Biology Institute, Tokyo, Japan,

Advanced Sciences, School of Life Sciences, Freiburg, Germany, °
Japan and 7 Okinawa Institute of Science and Technology, Okinawa, Japan
®These authors contributed equally to this work

3,5,6,7

Theoretical Biophysics, Humbo|dt-Un|versrtatzu Berlin, Berlin, Germany,
Frelburg Institute of
8 Sony Computer Science Laboratoriss, Inc., Tokyo,

* Corresponding author. Theorstical Biophysics, Humboldt-Universitat zu Berhn Invalidenstr. 42, Berlin 10115, Germany. Tel.: + 49 30 2093 8389;

Fax: + 49 30 2093 8813; E-mail: marcus.krantz@biologie.hu-berlin.de

Received 8.7.11; accepted 16.3.12

Intracellular signalling systems are highly complex. This complexity makes handling, analysis and
visualisation of available knowledge a major challenge in current signalling research. Here, we
present a novel framework for mapping signal-transduction networks that avoids the combinatorial
explosion by breaking down the network in reaction and contingency information. It provides two
new visualisation methods and automatic export to mathematical models. We use this framework to
compile the presently most comprehensive map of the yeast MAP kinase network. Our method
improves previous strategies by combining (I) more concise mapping adapted to empirical data, (II)
individual referencing for each piece of information, (IIl) visualisation without simplifications or
added uncertainty, (IV) automatic visualisation in multiple formats, (V) automatic export to
mathematical models and (VI) compatibility with established formats. The framework is supported
by an open source software tool that facilitates integration of the three levels of network analysis:
definition, visualisation and mathematical modelling. The framework is species independent and

we expect that it will have wider impact in signalling research on any system.
Molecular Systems Biology 8: 578; published online 24 April 2012; doi:10.1038/msb.2012.12
Subject Categories: metabolic and regulatory networks; computational methods; simulation and data

analysis

Keywords: combinatorial complexity; mathematical modelling; network mapping; signal transduction;

visualisation

Introduction

All living cells interact with and respond to their environment
via the cellular signal-transduction network. This network
encompasses all cellular components and processes that are
required to receive, transmit and interpret information. Due to
its key role in cellular physiology, the signalling network, and
several of its subnetworks, have been intensely studied in a
range of organisms. However, such networks are highly
complex and difficult to analyse due to the so-called
combinatorial explosion (Hlavacek et al, 2003). This explosion
refers to the fact that the specific state of each component is
determined by multiple covalent modifications or interaction
partners, and that these possibilities rapidly combine to a very
large number of possible specific states. Experimental data do
not generally distinguish between all these specific states, but
instead focus mostly on reactions between pairs of compo-
nents, usually giving no or limited information on other
modifications or interaction partners of the reactants. Hence,

© 2012 EMBO and Macmillan Publishers Limited

there is a discrepancy between the granularity of the empirical
data and the highly defined specific states used in most
mathematical models. This makes the interpretation and use
of empirical data in the context of such model states
ambiguous and often arbitrary. These problems pose major
challenges for systems biology, as they prevent us from (i)
unambiguously describing a network, (ii) visualising it with-
out simplifications or unsupported assumptions and (iii)
automatically generating mathematical models from knowl-
edge in data repositories.

Large efforts have been invested in addressing these issues.
Signalling systems are commonly visualised through the
informal ‘biologist’s graph’ that is simple and intuitive, but
lacks the stringent formalism and precision required to meet
the three criteria above (exemplified by Thorner et al, 2005).
The lack of standardised glyphs (defining e.g., mechanism of
information transfer and how edges combines to regulate
target nodes} makes the information in the ‘biologist’s graph’
ambiguous and difficult to reuse. To address this, the

Molecular Systems Biology 2012 1

-424-

A framework for mapping, visualisation and automatic modei creation
C-F Tigeret al

community has developed the Systems Biology Graphical
Notation, SBGN (Le Novere et al, 2009). This includes three
visual formats; the activity flow diagram, the entity relation-
ship diagram and the process description (or process
diagram). The activity flow diagram shares many properties
with the “biologist’s graph’, but the entity relationship diagram
and process description allow precise representations. The
process description corresponds to the state transition reaction
format used in most models developed by the systems biology
community, and which have been standardised in the Systems
Biology Markup Language (SBML; Hucka et al, 2003). The
process description could meet each of the three criteria above
but its utility is severely affected by the combinatorial
explosion. It is based on a specific state description, which
means that, for each component, each possible combination of
modifications and interaction partners must be accounted for
explicitly. Hence, only very simple systems can be described
completely and only very few models include the entire state
space (Kiselyov et al, 2009) while the vast majority include
simplifying omissions. While simplifications are often neces-
sary, the lack of discrimination between arbitrary omissions
and exclusions based on experimental evidence is a significant
shortcoming. These issues are partially addressed in the entity
relationship diagram, or molecular interaction map, which
comes in two flavours; explicit and implicit (called heuristic
and combinatorial by the author (Kohn et al, 2006)). The
explicit version requires all specific states to be displayed and
hence share the limitations of the process description. In
contrast, the implicit version displays only the possible
reaction types (or elemental reactions, as we will call them
below) and hence largely avoids the combinatorial explosion.
The entity relationship diagram represents each component as
a single node and reactions in a condensed format. While not
as intuitive as the other SBGN formats, it has the advantage of
concentrating all information on a given protein and works
especially well for simple regulatory circuits, as the concen-
trated information makes it difficult to trace the order of events
in more complex networks. The three SBGN format has
complementary strengths, but there is currently no software
available for conversion between the three different visualisa-
tion formats. However, the SBGN standards are under
continuous development and these issues will likely be
addressed in the future through the SBGN markup language,
SBGN-ML.

Similar efforts on the modelling side have resulted in rule-
based modelling and associated visualisation formats (Faeder
et al, 2005). Briefly, rules are defined as reactions that are valid
under a particular set of contingencies, and each reaction is
specified for each such contingency set. This means that when
a reaction’s rate is increased by phosphorylation of one
component it will be defined by two rules; one where that
component is phosphorylated and one where it is not. While
these rules define the entire state space and the system stays
subject to the full combinatorial explosion, the rule description
has alleviated the combinatorial problem in two respects: (1)
the system has been described more compactly and (2) the
actualised state space might be significantly reduced by
introducing only those states that are actually populated
(Lok and Brent, 2005), or by using agent-based stochastic
modelling (Sneddon et al, 2011). The rule definition format is

2 Molecular Systems Biology 2012

also a significant step towards the granularity of empirical
data, as compared with the abstract-specific states. These
advantages are mirrored on the visualisation side by graphical
reaction rules, which use the process description format to
display individual rules (Blinov et al, 2006). Network level
visualisation has used either topological contact maps (Danos,
2007) or entity relationship diagrams (Le Novere et al, 2009),
and these complementary visualisation formats have recently
been combined in the extended contact map (Chylek et al,
2011). Contact maps have software support, but neither entity
relationship diagrams nor extended contact maps can be
generated automatically from the rule-based models. Hence,
the rule-based format partially addresses the automatic
creation of models from data repositories (iii), as it provides
the tools to generate mathematical models automatically once
the knowledge has been reformulated as rules. However, the
rule-based system provides a cumbersome format for (i)
unambiguous network description and is not developed for (ii)
comprehensive visualisations. Taken together, this raises the
question whether graphical- and model-based formats are the
most appropriate for stringent network definition, or whether
there are more suitable network definition formats that allow
both visualisation and automatic model generation.

Here, we present a new framework to describe cellular
signal-transduction networks. Our network definition has the
same granularity as experimental data, avoids the combina-
torial complexity, can be automatically visualised in comple-
mentary graphical formats including all three SBGN formats
and unambiguously defines mathematical models. The rxncon
software tool complements the framework by automating
visualisation and model creation. The key feature of our
framework is the strict separation of elemental reactions (and
their corresponding states); which defines the possible
signalling events in the network, from contingencies; which
describes the contextual constrains on these reactions.
Importantly, each elemental reaction corresponds directly to
a single empirical observation, such as a protein-protein
interaction or a specific phosphorylation. The contingencies
define the constraints on these elemental reactions in terms of
one or more elemental states, for example, by defining the
active state of a protein kinase or the composition of a
functional protein complex. Hence, the format directly link
model states to empirical observations at the same level of
granularity, which pre-empts the need for additional assump-
tions or extrapolations. Moreover, the separation between
reactions and contingencies largely avoids the combinatorial
explosion as only combinatorial states with known functional
influence are considered. The rxncon tool provides automatic
export to established visual formats and to two new visualisa-
tion methods, which allow compact comprehensive represen-
tation. Finally, the framework is stringent and unambiguously
defines a mathematical model, and the rxncon tool support
export to SBML and rule- or agent-based models. This allows
coding of models in a format that mirrors empirical data,
which can be automatically visualised and which is highly
suitable for iterative model building. We illustrate our new
approach by conducting the most comprehensive literature
survey to date of the complete MAP kinase signalling network
of Saccharomyces cerevisiae. Taken together, we provide a
framework that integrates the three levels of network analysis;

© 2012 EMBO and Macmillan Publishers Limited

-426-

definition, visualisation and mathematical modelling and a
supporting software tool for automatic visualisation and
export to mathematical models. We expect this to be highly
useful for the community and envision a common framework
to bridge different standards as' well as experimental and
theoretical systems biology efforts.

Results

This section describes the architecture of the framework,
including its data structure, the different methods of visualisa-
tion and how it relates to a mathematical model (Figure 1A). In
the first part, we present the results of the methods
development and describe the system in detail. In the second
part, we present our results using the MAP kinase network.
The framework has been implemented in the rxncon software
tool that is distributed freely under the open source LGPL
licence and can be downloaded from www.rxncon.org.

The data structure

The events in a signal-transduction network can be categorised
in four types: (1) catalytic modifications, (2) bindings and
interactions, (3) degradation and synthesis and (4) changes in
localisation. Due to the limited information on spatial
(re)distribution of components, we have focused on types
1-3 here (Table I). However, the framework is fully capable to
include localisation reactions and the rxncon tool will be
upgraded to encompass these in the future. The first step of the
network definition is to distil the available knowledge into two
distinct categories of information: what can happen, and when
it can happen. The what-aspect (referred to as C1, or elemental
reactions) specifies the possible events, including the event
type (1-3 above), and which components and sites that are
involved. The when-aspect (referred to as C2, or contingencies)
specifies how the reaction rate is affected by the state of the
involved components. For instance, the MAP kinase Hogl
phosphorylate its target Hotl (C1—‘what’; Figure 1B), and this
reaction only occurs when Hogl is phosphorylated. on both
Thr174 and Tyrl76 (C2—‘when’). This second category of
knowledge therefore represents the causal relationships, or
contingencies, between the reactions characterised in the first
class of knowledge. The separation of C1 from C2 allows us to
define even large complex networks stringently in a concise
format, as exemplified with the yeast MAP kinase network
below. ,

The what-aspects of the knowledge are represented in the
reaction list (Figure 1C; simplified example). Importantly, we
have broken down the reaction network 'in elemental
reactions, which change elemental states. An elemental state
is similar to an empirical observation, such as an interaction
between two proteins or a specific modification at a specific
site on a specific protein. If a protein has been phosphorylated
on two sites, this corresponds to two different elemental states.
In other words, the elemental states correspond to overlapping
(non-disjoint) sets: This is different from the specific states in
ordinary state transition models, but analogous to the
macroscopic states used in the works by Conzelmann et al
(2008) (Borisov et al, 2008). An elemental reaction is similarly

© 2012 EMBO and Macmillan Publishers Limited

A framework for mapping, visualisation and automatic model creation
C-F Tiger et a/

defined as a two-component reaction that modifies a single
elemental state. Note that this precludes lumped reactions and
that, for-example, a kinase-substrate interaction and phos-
phorylation must be described by two different elemental
reactions. Hence, the reaction list has the same granularity as
typical empirical data, which pre-empts the need for assump-
tions in the mapping process. It also allows us to use the
established format for high-throughput data (Stark et al, 2006),
including specific referencing of each reaction with PubMed
identifiers and complemented with additional details such as
active domains, subdomains and residues (Supplementary
Tables S1 and S2). ,

The when-aspect of the knowledge is described in the
contingency list (Figure 1D; simplified example). This list
defines the contextual constraints on all elemental reactions.
Most contingencies will correspond to the direct effect of single
elemental states of the components involved in the particular
elemental reaction, but Boolean states allow for combinatorial
effects and indirect effects in, for example, scaffolds that
cannot be directly attributed to a single elemental state in one
of the reactants. There are six distinct reaction contingencies;
the Effector can be absolutely required (!}, positive (K+),
completely neutral (0), negative: (K —), absolutely inhibitory
(x) or of unknown effect (2). These overlap partially with the
influences of entity relationship diagrams (Le Novere et al,
2011), but distinguish between no effect (0) and no known
effect (?). The Boolean states provide a middle layer between
reaction contingencies and a combination of elemental states
and/or inputs, using either ‘AND’ or ‘OR’ to define, for
example, large complexes or alternative mechanisms. In
addition, inputs and outputs function as elemental states and
reactions, respectively, at the interface between the network
and the external environment. Each row in the contingency list
contains a Target (elemental reaction, output or Boolean
state), an Effector (elemental state, input or Boolean state) and
a symbol describing how the Effector influences the Target
(Contingency) that is a contingency symbol (!, K+, 0,K—, x,
?) when the Target is an elemental reaction or an output and a
Boolean operator (AND, OR) when the Target is a Boolean
state. The data structure is illustrated with a simplified version
of the Sho branch of the HOG pathway (Figure 1B). The
reaction list state that, for example, Hogl phosphorylates
(‘P +7) Hotl (Figure 1C; eighth reaction; on the last row), and
the contingency list state that this reaction requires (!} that
Hogl is phosphorylated on both Thrl74 and Tyrl7é
(Figure 1D, last two rows). These states in turn correspond
to the reactions six and seven, respectively (Figure 1C). Hence,
the reaction and contingency information suffice to describe
the network and their separation keeps the description concise
and at the granularity of empirical data. Consequently, the data
structure addresses the first issue; unambiguous network
definition.

Visualising the signal-transduction network

We address the second issue; comprehensive visualisation,
with two novel forms of visualisation; the contingency matrix
and the regulatory graph. These also keep reactions and
contingencies separate and hence avoid the combinatorial

Molecular Systems Biology 20123

-426-

