Shoemaker et al. BMC Genomics 2012, 13:460
http://www.biomedcentral.com/1471-2164/13/460

BMC
Genomics

SOFTWARE Open Access

CTen: a web-based platform for identifying
enriched cell types from heterogeneous

microarray data

Jason E Shoemaker™, Tiago JS Lopes’, Samik Ghosh?, Yukiko Matsuoka'?, Yoshihiro Kawaoka

and Hiroaki Kitano'>>®

134

Abstract

heatmaps or downloadable text files.

changes in the number of key cell types.

Background: Interpreting in vivo sampled microarray data is often complicated by changes in the cell population
demographics. To put gene expression into its proper biological context, it is necessary to distinguish differential
gene transcription from artificial gene expression induced by changes in the cellular demographics.

Results: CTen (cell type enrichment) is a web-based analytical tool which uses our highly expressed, cell specific
(HECS) gene database to identify enriched cell types in heterogeneous microarray data. The web interface is
designed for differential expression and gene clustering studies, and the enrichment results are presented as

Conclusions: In this work, we use an independent, cell-specific gene expression data set to assess CTen's
performance in accurately identifying the appropriate cell type and provide insight into the suggested level of
enrichment to optimally minimize the number of false discoveries. We show that CTen, when applied to microarray
data developed from infected lung tissue, can correctly identify the cell signatures of key lymphocytes in a highly
heterogeneous environment and compare its performance to another popular bioinformatics tool. Furthermore, we
discuss the strong implications cell type enrichment has in the design of effective microarray workflow strategies
and show that, by combining CTen with gene expression clustering, we may be able to determine the relative

CTen is available at http//www.influenza-x.org/~jshoemaker/cten/
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Background

Microarray studies quantify genome wide changes in
gene expression and have a variety of applications - from
tracing allele ancestry as species evolve [1] to the devel-
opment of genome-based personalized medicine [2]. A
major challenge in the microarray analysis of tissue col-
lected in vivo is that often the perceived gene regulation
is the result of changes in the populations of particular
cell types as opposed to an actual change in transcrip-
tional activity (see Figure 1). Particularly in situations
which invoke the immune response, as the cell count of
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various lymphocytes change within the tissue, they bring
with them their own unique quantities of RNA [3]. This
leads to large changes in the copy number of RNA tran-
scripts and can lead to the false perception of increased
transcriptional activity.

Several bioinformatics tools exist to identify the cause
and effect of changes in gene regulation, with gene set
enrichment analysis (GSEA) [4] and gene ontology (GO)
enrichment [5] being the most popular, and there are
several other web-based platforms with improvements
or variations of these analytical tools [6-8]. GSEA relies
on a database of reference gene lists which were previ-
ously determined to be regulated under several condi-
tions (e.g., by transcription factors, chemical and genetic
perturbations, or between healthy and diseased states).

© 2012 Shoemaker et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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Figure 1 Changes in cell demographics can result in gene
expression. Two scenarios which result in similar gene expression
changes: (A) The cell type(s) within the sample are unchanged, but,
over time, inactivated cells (colored blue) become activated and
express a marker gene (colored red); (B) A second cell type already
actively expressing the marker gene (red colored pentagons)

migrates into the sample. The change in the marker gene

expression is similar in both cases but results from a different reason. )

GSEA determines which reference list - if any - has sta-
tistically significant, concordant regulation. Although
very useful for linking gene expression to specific tran-
scription factors or identifying similarities between dis-
eases, this tool does not include cell specific data at this
time. The other popular alternative, GO, relies on a con-
trolled vocabulary to describe the biological role of genes
and their products. It is often accurate in predicting the
local phenotype from gene expression data (e.g., inflam-
mation annotations are highly enriched in samples from
inflamed tissue [9]). However, cell specific GO annota-
tions are often overwhelmed by more ubiquitous terms
in the GO annotation hierarchy.

Additionally, some algorithms exist to unmix cellularly
heterogeneous gene expression data into expression pro-
files for each cell type [10,11] but generally either the
number of cell types must be known a priori or cell
counts must be determined. The Gene Expression Bar-
code [12] and BioGPS [13] web platforms provide tissue
specific gene expression data and allow researchers to
compare gene expression between different tissues in
their databases. However, these tools do not provide a
means to relate user-generated sets of differentially ex-
pressed genes to specific cell types. Hence, to facilitate
the proper interpretation of genomic regulation from
in vivo microarray data, we developed CTen to deter-
mine if the observed gene regulation is the result of
changes in the cellular make up of the sample.

Two principles guided the development of our highly
expressed cell-specific (HECS) gene database and the
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CTen website's interface. First, basal gene expression
levels strongly differ between cell types [3,14]. By analyz-
ing gene expression across several cell types and tissues,
we can select genes with very high expression in a lim-
ited number of cell types. In turn, each cell type has a
collection of HECS genes to act as a cell-specific signa-
ture. Thus for any user generated list of genes, we can
determine if the number of HECS genes for a particular
cell type is greater than the number expected by chance.

The second principle, which led us to optimize CTen's
interface for gene expression clustering studies, is the
observation that changes in messenger RNA levels due
to cell migration or variances in sample collection
techniques result in conserved expression patterns in
microarray data. Several clustering strategies, including
hierarchical clustering and the weighted gene corregu-
lation network algorithm (WGCNA) [15], have been
developed to identify gene expression patterns which are
conserved temporally or across experimental groups. By
combining clustering with cell type enrichment, CTen
can address a major challenge in biology today; namely
separating gene expression from cellularly heterogeneous
RNA samples into clusters representing differential
transcriptional activity and clusters representing changes
in gene expression due to cell migration.

Here, we first describe the construction of the HECS
database and discuss the workflow behind the CTen
website's design. We then validate CTen’s ability to cor-
rectly identify the appropriate cellular signature and
evaluate the benefits of users requiring increasingly strict
enrichment scores. We motivate the use of CTen using
genes differentially expressed in the lungs of mice in-
fected with influenza virus, and, lastly, provide an illus-
trative example promoting the use of CTen for detecting
changes in the cellular demographics and the critical
role this plays in functional enrichment and gene net-
work inference studies.

Implementation

The HECS database construction

We downloaded from BioGPS [13] gene expression data
from 96 mouse and 84 human tissues/cell types (Mouse
MOE430 Gene Atlas and Human U133A/GNF1H Gene
Atlas; a complete list of all cell types used is available
in the Additional file 1). The expression values were
averaged over the biological replicates (2 per cell type)
and, for each cell type, a transcript was identified as a
HECS gene if one of its corresponding probes had an
expression value (averaged over the 2 replicates) at
least 15x or 10x greater than the median expression
value of the probe for all cell types in the mouse and
human datasets, respectively. Next, probe identifiers
were matched to their Entrez Gene IDs and official gene
symbols using the Affymetrix Mouse Genome 430 2.0
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Array (mouse4302 version 2.5.0) and Affymetrix Human
Genome U133 Set (hgul33a version 2.5.0) annotation
files available from Bioconductor [16]. The final step was
to remove redundant Entrez Gene IDs assigned as HECS
genes to the same cell type (due to multiple probes
mapping to the same gene). The CTen database is avail-
able for download under the "Database Info" tab on the
CTen website.

Threshold selection

Importantly, as stated above, preset cutoffs were used in
developing the mouse and human HECS databases.
These cutoffs (15x and 10x the median expression level
for a probe across all cell types) were selected to balance
the quantity of genes with the uniqueness of the genes
assigned to each cell type. Uniqueness was quantified by
determining the percentage of genes identified as a HECS
gene for n or fewer cell types. As seen in Figure 2A-B,
raising the cutoff caused a sharp reduction in the num-
ber of genes but significantly improved the uniqueness
(Figure 2C-D) of the genes assigned as HECS genes to
each cell type. Increasing the cutoff for the mouse data
beyond 15x did not significantly improve uniqueness
and only served to limit the number of HECS genes per
cell type to act as cell signatures. For the cutoffs con-
sidered for the human data, a cutoff of 15x slightly
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improves the uniqueness but the number of HECS genes
per cell type became prohibitively small. Thus, the HECS
expression threshold requirement was reduced to 10x
the median expression value in the human dataset to en-
sure that all cell types are represented.

At the cutoff values selected (emphasized in
Figure 2A-B in blue (mouse) and orange (human)), even
when applying a more stringent expression requirement,
the number of HECS genes per cell type remains signifi-
cantly higher in the mouse data (average number of
HECS gene per cell=794 in mouse and only 351 for
human derived cell types). In terms of uniqueness of the
HECS genes (emphasized in Figure 2C-D in blue (mouse)
and orange (human)), we find that 55.8% of human
HECS genes are exclusive to 3 or fewer cell types, while
53.3% of mouse HECS genes are limited to 4 or fewer
cell types.

We emphasize that for both the mouse and human
HECS databases, for values greater than 10x the median
gene expression, the number of HECS genes per cell
type and the identity of the HECS genes do not change
significantly. Thus, cutoff selection within the ranges
considered should not strongly bias any results from en-
richment analysis. We validated this by showing that
CTen's performance was independent of the precise
threshold selected. We reconstructed the HECS databases
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Figure 2 The effect of threshold selection on the number and uniqueness of HECS genes. The distributions of the number of HECS genes
per cell type as the threshold criteria used to define a HECS gene is raised from 2x to 25x the median expression value across all cell types for
the (A) mouse and (B) human gene expression data. To quantify uniqueness, we determined the percentage of HECS genes that were mapped
to n or fewer cell types (i.e, the cumulative %) for the (C) mouse and (D) human gene expression data for different threshold values. The results
corresponding to the threshold values selected in the current implementation of CTen are colored blue and orange for the mouse and human
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for several different thresholds and then used the re-
ceiver operating characteristic (ROC) curve to determine
if changing the threshold affected CTen's performance
in terms of the true positive rate versus the false positive
rate. As seen in Additional file 2 and Additional file 3,
CTen's performance is robust to the precise threshold
used for developing the HECS gene databases.

The HECS genes are highly unique to each cell type

We also determined the percentage of HECS genes
shared by any two cell types within the human and
mouse databases. As seen in Figure 3, the vast majority
of cell types have highly distinct sets of HECS genes,
with two mouse cell types sharing an average of only
16.1% HECS genes, while human cell types share an
average of 11.6%. The two groups of cell types which
share the most HECS genes in both mouse and human
datasets belong to the nervous and reproductive systems
(denoted by red and purple ticks beside the heatmap in
Figure 3). Immune cells in different cell states also share
the majority of their HECS genes (e.g., human CD8+ T-
cells and CD4+ T-cells share 90.4% of their HECS genes)
but the number of HECS genes shared between two dif-
ferent immune cells (e.g., B-cells versus T-cells) is gener-
ally less than 50% (Additional file 4 provides a more
detailed heatmap). In all, the strategy behind the devel-
opment of the HECS database ensures that HECS genes
are limited to a few cell types - characterizing a signa-
ture for each tissue. Therefore, the HECS database pro-
vides a powerful means of identifying cell/tissue specific
enrichment in user gene lists.

Data preprocessing and calculating the enrichment score
A minimal amount of preprocessing is applied to the
user supplied gene list to ensure that, first, the list is
properly parsed, and second, the user supplied genes are
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Figure 3 HECS genes shared between different cell types. A
heatmap of the percentage of HECS genes shared between any two
cell types in the mouse (upper triangle) and human (lower triangle)
databases. Ticks adjacent to the heatmap denote cell types
belonging to the nervous (red), immune (blue), or reproductive
systems (purple).
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found in the HECS database. The workflow of the CTen
website is shown in Figure 4A. At the upload screen
(Figure 4B), users can upload a list of either gene sym-
bols or Entrez gene IDs, and optionally upload multiple
lists at once by choosing the appropriate format (the
CTen webpage provides a single and multi-list example).
The gene list is processed to determine the number of
unique user genes found in the database and if the list
does not appear to be one of the two gene identifiers
stated above or the inappropriate format was selected,
the website shows a parsing error screen and asks the
user to ensure that the proper identifier is selected. If
there are no parsing errors, CTen produces a table
showing the number of unique user genes mapped in
the CTen database for each uploaded list (Figure 4C). If
no user genes are found in the database, CTen produces
another error, "No genes found in the database” and the
user is asked to reevaluate the uploaded gene list. Should
CTen not detect either of these errors, the option to
continue to enrichment appears and the user can com-
plete their analysis.

Using the one-sided, Fisher's Exact test for en-
richment, the enrichment score returned from CTen is
the -logl0 of the Benjamini-Hochberg (BH) adjusted
P-values (all calculations are performed in R [17]). Al-
though the enrichment score is a statistic in origin (in-
deed the enrichment scores could be used to control
the false discovery rate), we advise users to consider
the enrichment score to be a ranking and to not apply
a strictly statistical understanding of the number. This
is due to the sensitivity of the score to the size of the
gene list being analyzed, and we show in detail in the
Results and Discussion that ranking the results allows
for easier interpretation. The appropriate contingency
tables are constructed using the intersection of the
user list and the HECS genes for each cell type. The
gene universe (or gene background) against which the
enrichment is calculated is currently defined to be all
of the genes annotated in the human or mouse arrays
defined above. Importantly, the enrichment scores for
each gene list are calculated separately.

When only a single list is processed, a radar map of
the enrichment scores is produced but in the case of
multiple gene lists being supplied, P-values between each
list cannot be compared since the length of the gene lists
differ. So we developed a "weighted-ranking” strategy in
which the enrichment scores for the 10 most enriched
cell types in each list are scaled by the maximum enrich-
ment score for that list. The enrichment scores of cell
types either not present in the top 10 or present in the
top 10 but with enrichment score of less than 2 are
excluded. This procedure selects only the most enriched
cell types for each list and allows us to visualize whether
the enrichment scores of the top cell types were similar
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Figure 4 Overview of a CTen session. CTen has been designed with a user-friendly interface to allow for rapid analysis of several gene lists,
simultaneously. Panel (A) illustrates the workflow between the user, CTen interface and the HECS database. (B) At the upload screen, users can
copy and paste their gene lists straight from spreadsheet software (e.g,
the separator used if multiple lists are being uploaded). (C) The data goes through preliminary processing to ensure the gene list(s) is parsed

properly and that the supplied genes are found in the HECS database. Once the user list passes preliminary processing, the enrichment of all cell

Excel) and select the appropriate parameters (species, gene identifier and

or if one cell type's enrichment score was dominant. The
influenza-infected lung tissue example and the advanced
use-case in the Results and Discussion illustrate CTen's
output for single and multi-list analyses.

Finally, for both single- and multi-lists analyses, the
final enrichment scores for all cell types can be down-
loaded for further processing by the users.

Results and discussion

CTen correctly identifies cell types

To assess CTen’s ability to identify the correct cell
type associated with gene expression data, we used an
independent database of cell-specific gene expression
(GNF1M_plus_macrophage small dataset from BioGPS;
abbreviated GNFM1) to develop several lists of genes
which were highly expressed in select cell types. This
data set is an interesting test case for CTen because the
differences in the experimental protocol tests CTen's
performance when using different microarray tech-
nologies and biological conditions. In the GNFIM ex-
periment, they used mice which were ~2 weeks older
(compared to the mice used to develop the Mouse
MOE430 Gene Atlas data set), used a different ratio of
male and female mice, and employed custom micro-
array slides (GPL1037) [3]. For several cell types (5 tissues
and 3 lymphocytes; 2 lymphocytes in different cellular

states), we selected the top 5% of the most highly ex-
pressed probes. Entrez Gene IDs were mapped using the
annotation files available from BioGPS, and the resulting
lists analyzed in CTen.

We found that CTen consistently ranked the correct
cell type the highest for each tissue tested (Figure 5A)
and, with the exception of bone marrow, there was a
large difference in the scores between the first and sec-
ond most enriched cell types. Not surprisingly, bone
marrow was identified as being highly enriched for bone.
For the lymphocyte gene lists (Figure 5B), CTen not only
identified the correct lymphocyte but most often identi-
fied the correct cellular state of the lymphocyte as being
the top ranked cell type. Only for the unstimulated
macrophages did CTen rank the inappropriate cellular
states the highest. Thus, from independent, cell-specific
gene expression data, we confirmed that CTen provides
clear guidance in relating gene expression data to the
appropriate cell type.

Ranking of the enrichment scores are robust

As with any analysis, small changes in experiment para-
meters should not greatly change the outcome. P-values
from the Fisher Exact test are very sensitive to changes
in the size of the gene list, but for many enrichment ana-
lyses, it has been observed that the rankings of the
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tissue data is available as Additional file 5.
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Figure 5 CTen validation and robustness of the enrichment score rankings. From an additional cell-specific gene expression database, we
took the top 5% most highly expressed genes for five kinds of tissue (lung, bone marrow, kidney, spleen and liver) and three lymphocytes in
different cellular states (CD4* and CD8™ T cells, B cells and macrophages that were unstimulated or collected 7 hours after simulation with LPS).
Each list was analyzed in CTen and we show the top 5 enrichments scores for (A) the tissue (B) lymphocyte test lists. To evaluate the robustness
of these results, we repeated this procedure for the top 2-10% most highly expressed genes in each cell type. The enrichment scores from CTen
were ranked from highest to lowest, and (C) the heatmap illustrates the top 3 most enriched cell types identified by CTen (columns) for each
lymphocyte data tested (row labels). The bar plot on the right hand side summarizes the number of genes per test list. The heatmap for the

enrichment scores are very robust [7,18]. Here, we asked
if CTen could robustly rank the correct cell types by
repeating the procedure described above - now using a
list of the top 2, 3,..., 10% most highly expressed genes
for the selected tissues and lymphocytes, resulting in 90
test lists. The different sizes of the lists simulate different
differential expression criteria during gene expression
analysis. As shown in Figure 5C, although the sizes of
the gene lists (and the underlying enrichment scores)
vary considerably, CTen most often ranks the appropri-
ate cell type the most highly. CTen was also able to
identify the proper cell state of the lymphocytes as well
although unstimulated macrophage data was assigned to
bone marrow macrophages collected 6 h after exposure
to lipopolysaccharide (LPS) 4 out of 9 times. CTen per-
formed even better for the tissue data, always ranking
the appropriate tissue the highest (Additional file 5). In

all, CTen can accurately identify a broad range of cell
types and very often identify the cellular state as well.
The results are very robust to changes in the length of
the test data, which can be equated to changes in the
cutoff criteria used during microarray analysis.

Minimizing the false positive rate

While CTen accurately identified the appropriate cell
type as having the highest enrichment score, we think
it's important to provide a comprehensive analysis of
CTen's accuracy for select cutoff values of the enrich-
ment score. Using the same test lists developed above
for Figure 5C, we used the receiver operating character-
istic (ROC) curve to identify what level of enrichment
was necessary to maximize the sensitivity (true positive
rate, TPR) while minimizing the false positive rate (FPR)
(Figure 6). Demanding a minimal enrichment score of 2
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provides a low FPR and, indeed, we found that for ran-
domly generated lists of genes, CTen rarely assigned
scores above 2 (Additional file 6). But we see here, rais-
ing the enrichment score cutoff from 2 to 25 greatly
minimizes the FPR without sacrificing the TPR. Re-
quiring enrichment scores above 25 only reduces the
sensitivity of the analysis. A similar analysis to this was
performed using the two databases from which CTen
was constructed resulting in nearly identical ROC curves
(Additional file 2 and Additional file 3). These curves
also suggest enrichment scores of 20-25 to optimally
minimize the FPR for mouse data, but slightly lower en-
richment scores (15 to 20) offer optimal performance for
human data. It should be noted that these performance
results are dependent on the size of the gene list. Thus,
for gene lists which are hundreds to thousands of genes
in number, a minimum enrichment score of 2 is recom-
mended, but scores of 20-25 appear to offer optimal
performance.

CTen versus GO analysis of influenza infected lung tissue

Using a list of genes found to be upregulated in lung tis-
sue collected from mice infected with influenza virus
(microarray data unpublished; the gene list is available
on the CTen website under the "Simple Example" tab),
we compared the results of a CTen analysis to a GO
analysis using DAVID [7]. Using the CTen website, we
find a very high enrichment of bone marrow derived and
peritoneal macrophages (Figure 7A), both of which have
been exposed to lipopolysaccharide (LPS) and collected
at different time points. Macrophage migration to the
site of infection is one of the first steps in coordinating
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Figure 6 CTen's performance for different levels of enrichment.
Using the same test lists behind the results shown in Figure 5C, we
constructed an ROC curve to evaluate CTen's classification
performance for different levels of the enrichment score. The error
bars depict the 95% confidence interval of the ROC curve for the
enrichment scores shown, J
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the innate immune response [19]. Both LPS exposure
[20] and influenza infection [21] induces the activation
of the Toll-like receptor pathways, and macrophages are
often susceptible to influenza infection themselves [22].
Thus, an increase in macrophage numbers is consistent
with previously published studies [23] and the observa-
tion of the resulting cell type as "macrophage exposed to
LPS", indicates that the macrophages have possibly be-
come infected with the influenza virus as well.

DAVID uses modules of related biological terms to in-
terpret large gene lists into a meaningful biological con-
text and reports the scores of each module as the -log10
of the average P-value for each term within the module
[24]. Using the default settings, DAVID identifies the
Toll-like receptor pathway (Figure 7B, Cluster #1) as the
most significant cluster of annotations (Enrichment
score: 12.62; full results available in Additional file 7).
However, the clusters indicating enhanced macrophage
presence have a low significance (Cluster #29; en-
richment score: 1.74) and are very closely followed by a
T-cell related cluster (Enrichment score: 1.68). Taken to-
gether, these results indicate that although both analyses
can identify aspects of the cellular state of the sample,
CTen is better suited to identify the known changes in
the cellular demographics of the RNA samples.

Advanced use-case: distinguishing changes in lymphocyte
cell count from gene transcription

The most exciting potential of CTen is that, when ap-
plied to clustering studies, cell type enrichment analysis
can be used to approximate the evolution of local cellu-
lar demographics. Our laboratory's research is primarily
focused on reconstructing the host response during an
influenza infection [25]; a goal which requires us to be
able to integrate local intracellular signaling (Toll-like
receptor/RIG-I/NFkB pathways) with the coordinated
migration, infiltration, and activity of macrophages, T-
cells, B-cells, and other immune related cell-types. Being
able to resolve the various cell types present in a sample
from microarray data would greatly facilitate discovery
in a broad range of in vivo studies.

Figure 8 illustrates the proposed strategy for identify-
ing cellular signatures in iz vivo data and its implications
for in vivo microarray based studies. In this illustration,
microarray data was assembled over a span of 5 days
from the lungs of mice infected with influenza virus on
day O (lung tissues are illustrated in Figure 8A). After
normalizing and differential expression testing, four gene
clusters (Figure 8B) were identified using the user's pre-
ferred clustering tool.

In this case, we are illustrating potential results from
using the WGCNA package [15], which applies color
labels to each cluster. The genes for each cluster can be
uploaded and analyzed in one session to identify the
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Osteoclasts

belonging to each cluster is available in Additional file 7.

Figure 7 CTen versus GO analysis. A list of upregulated genes in lung tissue collected from mice infected with the influenza virus is analyzed
in (A) CTen and (B) DAVID. The first cluster to have a cell specific term is ranked 29th in the DAVID analysis. A complete list of the terms
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most enriched cell types in each cluster. In Figure 8C,
we find that macrophages are highly enriched in the
dark red cluster while several categories of B- and T-
cells (CD8+ T-cells) are the most enriched cell types in
the green and black clusters, respectively. Interestingly,
the orange cluster is not enriched for any cell type, and
we would conclude that transcripts in the orange cluster
represent differential gene expression due to transcrip-
tional differences between the samples (as opposed to
difference in the cellular makeup of the samples) and are
suitable for further analysis using traditional approaches.
The dark red, green and black clusters can be further
analyzed for pathway or functional enrichment to iden-
tify processes that may be coordinated with cell migra-
tion. This result may also help researchers decide the
appropriateness of additional analyses. Some analyses,
such as gene network inference, will have to carefully
consider how to remove the effects of cell migration
prior to network construction. Furthermore, the green,
black and dark red clusters' gene expression is highly
correlated to the corresponding lymphocyte's cell count
change. Thus, we may be able to infer the relative
changes in the B cell, T cell and macrophage count in
the infected tissue.

In all, this example illustrates how CTen has been
designed to facilitate the understanding of clustering
results by identifying conserved expression patterns that
are the result of changes in the numbers of a particular
cell type, providing critical guidance for selecting add-
itional analyses for each gene set and allowing users to

infer changes in cellular demographics between samples.
Based on the CTen enrichment platform, we propose a
novel analytical workflow for in vive microarray, as illu-
strated schematically in Figure 8D, which ensures that
enriched biological pathways and processes identified in
a set of differentially expressed genes can be interpreted
in the proper cellular context.

Conclusions

In conclusion, CTen can effectively distinguish between
active gene transcription and apparent gene expression
resulting from differences in the numbers of select cell
types in microarray data. Furthermore, we provide a
novel research workflow which helps to ensure that gene
expression is interpreted in the proper biological con-
text. We will continuously improve the enrichment algo-
rithm so that a larger number of gene lists can be
processed simultaneously (currently, users are limited to
20 gene lists in a single session). Recently, a gene set en-
richment analysis based on the degree of pairwise correl-
ation within a given gene set was shown to successfully
relate samples to their corresponding tissue [26]. No
simple interface is available yet for researchers, but it
will be interesting to compare the performance between
these two approaches in the near future. Additionally,
we plan to introduce additional cell specific gene expres-
sion datasets so users can compare the results from dif-
ferent databases. And finally, while the examples focused
on lymphocyte migration, CTen can be used in several
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Figure 8 Detecting changes in lymphocyte cell counts and the appropriateness of follow-up analyses using CTen. (A) In infected tissue,
as B cells (green), T cells (black), and macrophages (dark red) migrate into the sample area, they bring with them their own unique quantities of
RNA, resulting in conserved expression patterns proportional to the cell type's increased (or decreased) presence. Here, we illustrate the potential
results from a clustering study using WGCNA [15], resulting in (B) 4 clusters with unique temporal expression profiles; 3 of which are highly
correlated to the changes in the number of lymphocytes shown in (A). (C) Analyzing the genes present in each cluster, CTen can distinguish
which clusters represent gene expression and which represent cell migration, and determine the cell type responsible for the observed gene
regulation. Using a "weighted-ranking" strategy (see text), CTen produces a heatmap showing the mast enriched cell types for each cluster. Based
on the CTen result, only the orange cluster is appropriate for further analysis using traditional bicinformatic techniques while the green, black,
and dark red clusters reflect the relative changes in the number of lymphocytes during the infection. (D) We propose a new analytical workflow
strategy which ensures that continued analysis of in vivo microarray data properly identifies events which may be coordinated with (or
coordinating) cell migration.
.

other scenarios; for example, comparing excised tissue Additional files

to ensure homogeneity between tissue samples.

Availability and requirements Additional file 1: A list of the cell types currently available in CTen.

Project name: CTen
Project home page: http://www.influenza-x.org/~jshoe-
maker/cten/

Additional file 2: The enrichment performance of the mouse HECS
database for select HECS criteria and enrichment scores. We
evaluated (1) does the precise cutoff for defining a HECS gene affect the
enrichment performance and (2) for each cutoff, what values of the
enrichment score seems to best minimize the false positive rate (FPR)

Operating system: Platform independent
Programming Language: PHP and R
Other requirements: None

License: EULA

without impacting the true positive rate (TPR). We reconstructed the
HECS database by defining the HECS assignment threshold as (A) 5, (B)
10, (C) 15, and (D) 20 times the median. Then, from the Mouse MOE430

L Gene Atlas dataset, we took the top 10% of the most highly expressed
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genes for each cell type. From this 10%, we randomly sampled between
500 to 4000 genes 3 times to create 288 gene lists. Using the same
procedures described in the CTen implementation, these lists were
analyzed for cell type enrichment for each HECS database constructed.
The ROC curve illustrates the that sensitivity (TPR) and the FPR are not
greatly affected by the HECS assignment threshold selected. Furthermore,
on each figure, we show the performance expected for selected values
of the enrichment score. We see that selecting enrichment scores of 2 or
higher results in a reasonably low FPR but this can be significantly
improved by demanding enrichments scores of ~25 before the TPR is
affected. )

Additional file 3: The enrichment performance of the human HECS
database for select HECS criteria and enrichment scores: We
evaluated (1) does the precise cutoff for defining a HECS gene affect the
enrichment performance and (2) for each cutoff, what values of the
enrichment score seems to best minimize the false positive rate (FPR)
without impacting the true positive rate-(TPR).-We:reconstructed the
HECS database by defining the HECS assignment threshold as (A) 5, (B)
10, and (C) 15 times the median. Then, from the Human U133A/GNF1H
Gene Atlas dataset, we took the tSp 10% of the most highly expressed
genes for each cell type. From this 10%, we randomly sampled between
500 to 4000 genes 3 times to create 252 gene lists. Using the same
procedures described in the CTen implementation, these lists were
analyzed for cell type enrichment for each HECS database constructed.
The ROC curve illustrates the that sensitivity (TPR) and the FPR are not
greatly affected by the HECS assignment threshold selected. Furthermore,
on each figure, we show the performance expected for selected values
of the enrichment score. We see that selecting enrichment scores of 2 or
higher results in a reasonably low FPR but this can be significantly
improved by demanding enrichments scores of ~20 before the TPR is
affected.

Additional file 4: A heatmap of the percentage of HECS genes
shared by any two cell types in the mouse (upper right) and human
(lower left) databases.

Additional file 5: The highest ranked cell types ldentlf ed by CTen.
Using the GNFIM_plus_| macrophage small dataset from BioGPS, the top- -
2-10% most highly expressed genes for the tissues shown were analyzed
in CTen. The enrichment scores from CTen were ranked from highest to
lowest, and the heatmap illustrates the top 3 most enriched cell types
(columns) for each lymphocyte data tested (row labels). BM =bone
marrow.

Additional file 6: Expected enrichment scores for random gene'
lists: We analyzed in CTen 150 lists of 100-400 randomly selected IDs for
(A) mouse and (B) human Entrez Gene IDs - this resulted in-a distribution
of enrichment scores. The distributions were fit to a gamma distribution
using the MASS package in R. Here, we show the density histogram and
fitted gamma function (left hand axis) and the probability distribution
function (right hand axis). The red bar highlights the enrichment score
which'is 95% confidently above 0 (a=095 at enrichment scores of 1.66
and 167 in the mouse and human data, respectively).

Adchtlonal file 7: A list of genes upregulated in mouse lungs which
have been infected with influenza virus and the full results of
analyzing this list in DAVID.
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