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Abstract

The interaction of viral proteins with host-cellular proteins elicits the activation of cellular signal transduction pathways and
possibly leads to viral pathogenesis as well as cellular biological events. Apoptotic signals induced by DNA-damage are
remarkably up-regulated by Friend leukemia virus (FLV) exclusively in C3H hosts; however, the mechanisms underlying the
apoptosis enhancement and host-specificity are unknown. Here, we show that C3H mouse-derived hematopoietic cells
originally express higher levels of the minichromosome maintenance (MCM) 2 protein than BALB/c- or C57BL/6-deriverd
cells, and undergo more frequent apoptosis following doxorubicin-induced DNA-damage in the presence of the FLV
envelope protein gp70. Dual transfection with gp70/Mcm2 reproduced doxorubicin-induced apoptosis even in BALB/c-
derived 3T3 cells. Immunoprecipitation assays using various deletion mutants of MCM2 revealed that gp70 bound to the
nuclear localization signal (NLS) 1 (amino acids 18-24) of MCM2, interfered with the function of NLS2 (amino acids 132-152),
and suppressed the normal nuclear-import of MCM2. Cytoplasmic MCM2 reduced the activity of protein phosphatase 2A
(PP2A) leading to the subsequent hyperphosphorylation of DNA-dependent protein kinase (DNA-PK). Phosphorylated DNA-
PK exhibited elevated kinase activity to phosphorylate P53, thereby up-regulating p53-dependent apoptosis. An apoptosis-
enhancing domain was identified in the C-terminal portion (amino acids 703-904) of MCM2. Furthermore, simultaneous
treatment with FLV and doxorubicin extended the survival of SCID mice bearing 8047 leukemia cells expressing high levels
of MCM2. Thus, depending on its subcellular localization, MCM2 plays different roles. It participates in DNA replication in the
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nucleus as shown previously, and enhances apoptosis in the cytoplasm.
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Introduction

Because ionizing irradiation (IR) and chemical agents such as
doxorubicin exhibit cell-killing activity by inducing double-strand
breaks (DSBs) and p53-dependent apoptosis, they have been
considered therapeutic tools against malignant tumors [1 5]. To
protect normal cells from injury, tumor cell-specific induction of
apoptosis would be one of the most important properties of anti-
tumor therapeutics [6,7]. To regulate the p53-dependent apoptosis
caused by DNA-damage, an understanding of upstream activators
or regulators of P53 would be vital. ‘These pathways partly involve
the phosphatidylinositol 3-kinase (PI3K)-related protein kinase
(PIKK) family of enzymes [8], including ataxia telangiectasia
(ATM), ATM and Rad3-related (ATR), and DNA-dependent
protein kinase (DNA-PK) {9 13].

Viral infections are known to modify cellular processes related
to DNA-damage responses or DINA synthesis [14 16]. We have
previously shown that Friend leukemia virus (FLV) infection
markedly enhances the IR-induced apoptosis of hematopoietic
cells in C3H mice via P53, ATM, and DNA-PK [17]. Mice
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infected with FLV and then treated with a low dose of total body
irradiation (I'BI) exhibit severe anemia. However, p53 knockout
mice, Aim knockout mice, and DINA-PK-deficient SCID mice with
a C3H background do not exhibit this phenotype. A comparison
of the apoptotic signals after FLV infection, I'BI, or FLV+1'BI
treatment of these mice revealed that ATM is necessary for the
general signal transduction of I'Bl-induced apoptosis [18], while
DNA-PK plays a specific role in enhancing p53-dependent
apoptosis following FLV infection [19,20].

The enhancement of p53-dependent apoptosis occurs almost
exclusively in the C3H strain of mice [21]. In relation to this host-
specific apoptosis-enhancement, we have previously demonstrated
that the FLV-derived envelope protein gp70 enhances cellular
apoptotic signaling in association with host-specific overexpressed
proteins, including the minichromosome maintenance (MCM) 2
protein, resulting in the activation of DNA-PK, which phosphor-
ylates P53 [22]. MCM2 is one of a set of 6 proteins (MCM
complex; MCM2-7) that play essential roles in DNA replication
[23]. The MCM complex associates with the origins of DNA
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replication to form part of the pre-replicative complex (preRC)
[24]. Activation of the MCM complex by cyclin-dependent kinases
leads to the initiation of DNA synthesis and MCM proteins also
act as a replicative helicase to unwind DNA at replication forks
during DNA synthesis [25,26]. The MCM complex contains a
nuclear localization signal (NLS) and a nuclear export signal (NES)
[27]. The NLS is split between MCM?2 and MCMS3 and the NES
is located in MCM3 adjacent to the NLS sequence. The transport
of all MCM proteins is interdependent, suggesting that nuclear
import requires the formation of the hexameric complex, which
would result in the assembly of a complete NLS [28,29]. MCM
proteins are expressed in cycling cells but are down-regulated and
dissociated from the chromatin in quiescent cells [30]. Thus,
detection of MCM proteins has emerged as a method for
evaluating the proliferative state and growth fraction in dynamic
cell populations. Indeed, elevated expression of several members of
the MCM complex has been reported in various malignant tumors
131,32]. Furthermore, studies with human samples have indicated
the utility of MCM2 as a proliferation marker, and a high level of
MCM?2 expression in malignant tumors has been associated with
several clinicopathological parameters, such as advanced tumor
grade, advanced stage, and poor prognosis [33 36]. Thus, MCM2
usually acts to support cellular  proliferation. However, as
described above, MCM2 enhances I'Bl-induced apoptosis in the
presence of gp70. Lo determine importance of such contradictory
functions of the MCM2 protein in the regulation of cellular
dynamics, the molecular mechanisms underlying MCM2-induced
apoptosis and MCM2-gp70 interaction need to be elucidated. An
understanding of the overall functions of MCM2 would enable the
molecular targeting of specific functions possibly to regulate
cellular proliferation/apoptosis in a cell type-specific manner and
develop a novel strategy to control tumor cell growth.

Results

Doxorubicin-induced Apoptosis of FLV-infected Cells
Correlates with High Levels of Mcm2 in Vivo

In previous studies, 1'BI caused prominent apoptosis in the bone
marrow cells of FLV-infected C3H mice, but not FLV-infected
BALB/c and C57BL/6 mice [17]. From a therapeutic perspective,
systemic distribution of the effects of DNA-damage would be more
easily achieved by chemical agents than IR. Therefore, to
determine whether DNA-damaging agents enhanced apoptosis
to similar extents in FLV-infected mice of different strains,
uninfected or ¥LV-infected BALB/c, C57BL/6, and G3H mice
were intraperitoneally administered with a low dose of doxorubi-
cin or PBS, and the apoptotic cell ratio was measured in the bone
marrow and spleen. In FLV-infected BALB/¢ and C57BL/6 mice,
the apoptotic cell ratios after treatment with doxorubicin were
similar to the ratios in uninfected mice (Figure 1A, B). On the
other hand, FLV-infected doxorubicin-treated C3H mice exhib-
ited significantly higher ratios with uninfected mice (Figure 1C).
Thus, we could generalize as to the effects of DNA-damage by IR
and chemical agents on the enhancement of apoptosis by FLV-
infection in hematopoietic organs.

Next, we examined the expression of Mcm2 mRNA in the bone
marrow and spleen of uninfected and FLV-infected BALB/c,
C57BL/6, and C3H mice. Mcm2 levels were significantly higher in
the bone marrow cells of G3H mice than in BALB/c and C57BL/
6 mice (Figure 1D). Spleen Mem2 levels were also higher in C3H
mice than in BALB/c and C57BL/6 mice. Furthermore, in C3H
mice, the spleen Mom2 levels were elevated by FLV-infection
(Figure 1E). Similar trends were observed across all the inbred
strains tested. These results suggest that doxorubicin treatment
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induces significant apoptosis in FLV-infected CG3H mice in
association with higher levels of Mem2. Moreover, we performed
a comparative GeneChip analysis using RINA isolates from mouse
spleen and identified several genes that exhibited various
expression patterns in the different mouse strains (Figure 1F-1).
Mem?2 expression was higher in C3H mice than in G57BL/6 mice,
and Mem2 expression was elevated by FLV-infection (Figure 1G).
Genes that exhibited expression patterns similar to that of Mem2
are listed in Table S1.

Dual Transfection with Mcm2/gp70 Enhances DNA-
damage-induced Apoptosis in BALB/c-derived 3T3 Celis

To investigate whether apoptosis enhancement was related to
the high levels of Mcm2 in FLV-infected cells, we analyzed
doxorubicin-induced apoptosis sensitivity in Mem2 and/or gn70-
transfected 3'1'3 cells. First, the expression of Mcm2 was analyzed
in each mouse cell line. BALB/c-derived 313 cells and primary
cultured BALB/c-fibroblasts expressed low levels of Mm2
compared to C3H-derived 8047 cells, 32D cells and primary
cultured C3H-fibroblasts (Figure 2A).

Next, the viability and apoptotic cell ratios of 313 cells were
evaluated after doxorubicin treatment. Gp70 plus Mcm2-transfect-
ed 313 cells exhibited a significant decrease in viability and an
increase in apoptotic cell ratio compared to control cells, whereas
cells transfected with gp70 or Mem2 exhibited no significant change
in viability and apoptotic cell ratio (Figure 2B, C). Gp70 and/or
MCM?2 protein levels following gp70- and/or Mem2-transfection
were similar in all the experimental groups (Figure 2D). Next, we
knocked down the expression of Mcm2 in Bak'3 and 32D cells using
siRNA. The 32D cell line, with a high level of endogenous gp70
expression, was established from FLV-infected G3H mouse bone
marrow [37] (Figure 2E). Mcm2 knockdown significantly reduced
Mem2 mRINA expression and apoptotic cell ratio of 32D cells
treated with doxorubicin in contrast to the non-remarkable change
in the apoptotic cell ratio of BaF3 cells (Figure 2F). ‘These results
suggest that the host-specific enhancement of DNA-damage-
induced apoptosis is associated with the higher level of Mem2
expression in C3H-derived cells.

Gp70 Directly Binds to the N-terminal Portion of MCM2

T'o examine the molecular interactions between MCM2 and
gp70, immunoprecipitation experiments were performed. We
generated plasmids encoding HA-tagged full-length MCM2
(MCM2-FL) and various deletion mutants: MCM2-AC, MCM2-
AN, MCM2-N and MCM2-C (Figure 3A). Each of these plasmids
was transfected into 313 cells along with FLAG-tagged gp70.
Irrespective of doxorubicin treatment, gp70 interacted with
MCMZ2-FL, MCM2-AC, and MCMZ2-N, but not with MCM2-
AN or MCM2-C (Figure 3B, C). These results indicate that gp70
associates with the N-terminal portion of MCM2. Gp70 binding
inhibited the formation of the MCM complex (Figure S1). As
shown in Figure 3B and 3G, the size of MCM2-N was larger than
the expected size. Generally, phosphorylated proteins are some-
times larger than their unphosphorylated counterparts [38,39].
Indeed, the N-terminal portion of MCM?2 possesses many
phosphorylation sites [40]. -Therefore, the apparent molecular
weight of MCM2-N may be higher than expected. Further,
MCM2-C does not have as many phosphorylation sites [40]. As a
result, MCM2-N may appear larger than MCM2-C.

We also generated plasmids encoding a FLAG-tagged gp70
deletion mutant (Figure S2A) and performed a similar pull-down
assay after co-transfection with HA-tagged Mem2-FL. MCM2
bound to the middle portion of gp70 (Figure S2B, C) and
enhanced apoptosis in response to doxorubicin (Figure S2D, E).
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Figure 1. /n vivo assessment of doxorubicin-induced apoptosis and the associated changes in mRNA expression in FLV-infected
mice. Uninfected or FLV-infected BALB/c (A), C57BL/6 (B), and C3H (C) mice were intraperitoneally (i.p.) administrated with 1.5 mg/kg of doxorubicin
or PBS, and the apoptotic cell ratios in the bone marrow (gray bars) and spleen cells (black bars) were determined 24 h later with annexin V-staining.
Note the significant increase in the proportion of annexin V-positive cells in the bone marrow and spleen of FLV-infected C3H mice after the
doxorubicin treatment compared to that in the bone marrow and spleen cells of uninfected mice “FLV (—), Doxorubicin (—)” (*p<0.01 and #p<0.01).

?@; PLoS ONE | www.plosone.org 3 June 2012 | Volume 7 | Issue 6 | e40129

-320-



Cytoplasmic MCM2 and DNA-Damage-induced Apoptosis

Data represent the mean and 95% confidence intervals (Cl) of 3 independent experiments. (D) Quantitative RT-PCR analysis of Mcm2 mRNA
expression in the bone marrow of uninfected and FLV-infected BALB/c, C57BL/6, and C3H mice. The bone marrow cells of the C3H strain exhibit
higher levels of Mcm2 in all groups compared to the corresponding groups of BALB/c and C57BL/6 mice (*p<<0.01, for each group). (E) Quantitative
RT-PCR analysis of Mcm2 mRNA expression in the spleen of uninfected and FLV-infected BALB/c, C57BL/6, and C3H mice. Spleen Mcm2 expression is
higher in the “FLV (+), Doxorubicin (=)” and “FLV (+), Doxorubicin (+)” C3H mice than in the corresponding groups of BALB/c and C57BL/6 mice
(*p<0.01 and *p<0.01, respectively). In C3H mice, FLV-infection induces higher levels of Mcm2 expression compared to the expression in uninfected
mice. Data represent the mean and 95% CI from 5 mice in each group and are representative of 2 independent experiments. The GeneChip data for
Mcm-associated and apoptosis-associated genes were analyzed using the Percellome method. Forty-eight male C57BL/6 and C3H mice were divided
into 16 groups of 3 mice each. Uninfected or FLV-infected C57BL/6 and C3H mice were administered (i.p.) with 15 mg/kg (high dose) or 1.5 mg/kg
(low dose) of doxorubicin, and the spleen was sampled 0, 1, 6, and 24 h after administration. The spleen transcriptome was measured using the
Affymetrix Mouse 430-2 GeneChip. (F) The Percellome data were plotted on 3-dimensional graphs for average, +1 SD, and —1 SD surfaces as
demonstrated in the left schema. The scale of expression (vertical axis) is the copy number per cell. The x-axis of the 3-dimensional graph shows the
experimental groups, including the C3H and C57BL/6 mice with doxorubicin treatment (high and low doses) with or without FLV-infection. The y-axis
shows the time course (0, 1, 6, and 24 h) after treatment with doxorubicin and the z-axis (vertical) indicates the intensity of mRNA expression of each
gene. The data of each point are connected to form a surface illustration. The expression patterns of genes are compared using the surface images.
(G) The Mcm2 expression pattern is shown in the upper right box. Of the lower columns, the first column (H) shows the data for the genes of
representative Mcm family members, the second column (I), PI3K members, the third column (J), p53-associated genes, the fourth column (K), caspase
members and fifth column (L), protein phosphatase members (PPs). Mcm family members, Dna-pk, caspase-3 (Casp3), Ppp2ac, and Ppp6 exhibit gene

expression patterns similar to that of Mcm2.
doi:10.1371/journal.pone.0040129.9001

The C-terminal Portion of MCM2 is Essential for the

Enhancement of Doxorubicin-induced Apoptosis

Next, to identify the functional domain of MCM2 essential for
apoptosis enhancement following DNA-damage, a functional
analysis was performed using MCM2 deletion mutants. First,
Mem2-FL or the deletion mutant were introduced into 313 cells
with or without gp70. After the transfection, 313 cells were treated
with doxorubicin, and cell viability and apoptotic cell ratio were
measured. 313 cells, transfected with gp70 and the Mem2-FL
exhibited a significant decrease in viability and an increase in
apoptotic cell ratio compared to cells transfected with the negative
control (Figure 4A, B). Surprisingly, cells transfected with go70 and
Mem2-AN- or Mcm2-C, which did not interact with gp70, also
exhibited a significant decrease in viability and an increase in
apoptotic cell ratio relative to the negative control (Figure 4A, B).
Among the cells singly transfected with Mem2-FL or the mutants,
Mem2-FL-, Mem2-4C-, and Mem2-N-transfected cells exhibited no
remarkable change in viability and apoptotic cell ratio compared
to the negative control (Figure 4C, D). By contrast, Mcm2-4N and
Mcem2-C-transfected cells exhibited a significant decrease in
viability and an increase in apoptotic cell ratio (Figure 4C, D).

Previous studies have shown that MCM2 is essential for DNA
replication [23,25], and its expression is up-regulated in prolifer-
ating cells [41]. Mem2-transfected 313 cells exhibited no
significant change in cell count during the early stage (Figure
S3A, B). However, at a later-stage (96 h), the cell count was
significantly higher in Mcm2-transfected 313 cells than in the
control (Figure S3C, D).

We next examined the protein levels of DNA-PK, phospho-
DNA-PK (pS2053), P53, phospho-P53, and cleaved caspase-3 in
Mem2-EL- or Mcm?2 deletion mutant-transfected 313 cells after
doxorubicin treatment. Among the cells transfected with g»70 plus
Mem2-FL- or gp70 plus mutant-transfected cells, Mcm2-FL-, Mem2-
AN-, and Mem2-C-transfected cells expressed higher endogenous
levels of DNA-PK, phospho-DNA-PK, P53, phospho-P53, and
cleaved caspase-3 than the negative control (Figure 4K). By
contrast, the levels of these proteins in Mcm2-4C- and Mem2-N-
transfected cells did not change (Figure 4E). Among the cells singly
transfected with Mem2-FL or a mutant, Mem2-AN-, and Mcm2-C-
transfected cells exhibited higher levels  of DNA-PK, phospho-
DNA-PK, P53, phospho-P53, and cleaved caspase-3 after
doxorubicin treatment (Figure 4F). These results indicate that
not only the binding of MCM2 with gp70 but also deletion of the
N-terminal portion enhances DNA-damage-induced apoptosis via
the activation of P53 by DNA-PK. Furthermore, MCM2 lacking

@ PLoS ONE | www.plosone.org

the C-terminal portion did not induce apoptosis even with gh70 co-
expression indicating that the C-terminal portion of MCM2 was
essential for the enhancement of DNA-damage-induced apoptosis.

DNA-PK is robustly activated by auto-phosphorylation at Ser
2056 (S2053 in mouse) in apoptotic cells [42], while phosphor-
ylation at Thr 2609 is associated with non-homologous end joining
[43]. Therefore, to examine whether DNA-PK was exclusively
required for the enhancement of apoptosis, we inhibited DNA-PK
activity using NU7026 in the presence (Figure 4G) or absence of
gp70 (Vigure 4H). Inhibition of DNA-PK activity by NU7026
substantially reduced the level of phospho-DNA-PK (pS2053) and
completely abolished apoptosis enhancement in cells expressing
the Mcem2 mutants (Figure 4G, H). These results and knockdown
experiments (Figure S4) indicate that DNA-PK activation is
necessary for the enhancement of doxorubicin-induced apoptosis.

The Gp70-MCM2 Complex Binds to PP2A and Causes
Hyperphosphorylation of DNA-PK

To determine the mechanism by which the gp70-MCM2
complex activated DNA-PK to enhance apoptosis, we sought to
identify the upstream regulatory factors of DNA-PK. We focused
on protein phosphatase 2A (PP2A), because this molecule has been
shown to dephosphorylate DNA-PK and control its function |44
46]. 3'1'3 cells were transfected with Mom2-FL or Mcm2 deletion
mutants with or without go70 and treated with doxorubicin. In the
absence of gp70, PP2A did not interact with MCM2-FL or the
mutants (Figure 5A, left). In gp70-transfected cells, PP2A co-
precipitated with MCM2-FL, MCM2-AN, and MCM2-C, but not
with MCM2-AC or MCM2-N (Figure 5A, right). Thus, PP2A
interact with the C-terminal portion of MCM2 in gp70-transfected
313 cells.

"T'o determine whether the enhanced apoptosis was caused by
the inactivation of PP2A, the PP2A-specific inhibitor okadaic acid
(OA) was added to 313 cells that were treated with doxorubicin.
As expected, the OA-treated 313 cells exhibited a significant
increase in apoptotic cell ratio compared to the control (Figure 5B).
Furthermore, NU7026 treatment abrogated the doxorubicin-
induced apoptosis . enhancement in OA-treated 313 cells
(Figure 5B). The expression of phospho-DNA-PK (pS2053) was
upregulated in OA-treated 313 cells after doxorubicin treatment
(Figure 5C). These results suggest that the gp70-MCM2 complex
binds to and inhibits PP2A. Consequently, DNA-PK is hyperpho-
sphorylated and doxorubicin-induced apoptosis is enhanced via
the P53/cleaved caspase-3 pathway.
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Figure 2. Dual transfection of gp70 and Mcm2 enhances DNA-damage-induced apoptosis in 3T3 cells. (A) Quantitative RT-PCR analysis of
Mcm2 mRNA expression in untreated and doxorubicin-treated BALB/c-derived BaF3 and 3T3 cells, and primary cultured fibroblasts, and C3H-derived
8047 and 32D cells, and primary cultured fibroblasts. Data represent the mean and 95% Cl of 3 independent experiments. (B) Cell survival (% of
control) measured with the MTT assay in gp70 and/or Mcm2-transfected 3T3 cells after treatment with doxorubicin for 24 h. Cell survival is
significantly different between control cells “gp70 (—), Mcm2 (—)" and gp70/Mcm2-transfected cells “gp70 (+), Mcm2 (+)" (#p<0.01). Data represent
the mean and 95% Cl of 3 independent experiments. (C) Apoptotic cell ratios in gp70 and/or Mcm2-transfected 3T3 cells were determined with
annexin V-staining after treatment with 1 pM doxorubicin for 24 h. The ratios in the control cells “gp70 (=), Mcm2 (—)" and gp70/Mcm2-transfected
cells “gp70 (+), Mcm2 (+)" are significantly different (#p<0.01). Data represent the mean and 95% Cl of 3 independent experiments. (D) Western blot
analysis of gp70 and/or Mcm2-FL-transfected 3T3 cells after treatment with 1 1M of doxorubicin for 24 h. Gp70 and MCM2 protein levels are similar in
all groups. (E) Expression of endogenous gp70 mRNA in BaF3, 3T3, 8047, and 32D cells. Gp70 mRNA expression (ng) was normalized to that of GAPDH.
Note the significantly higher expression of gp70 mRNA in 32D cells compared to that in the other cells (*p<0.01). Data show the mean and 95% Cl of
three independent experiments. (F} Mcm2 knockdown in BaF3 and 32D cells using siRNA. Quantitative RT-PCR (upper) was performed to confirm si-
Mcm2-induced reduction of Mcm2 mRNA expression. Apoptotic cell ratios were determined with annexin V-staining after treatment with doxorubicin
for 24 h (bottom). Note the significant decrease in the apoptotic cell ratio of 32D cells treated with si-Mcm2, compared to that of cells treated with si-
Control (*p<<0.01). Data show the mean and 95% Cl of 3 independent experiments.

doi:10.1371/journal.pone.0040129.g002
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Figure 3. Direct interaction of MCM2 with gp70. (A) Schematic diagram of full-length MCM2 (MCM2-FL) and MCM2 deletion mutants, MCM2-
AC (aa 1-703), MCM2-AN (aa 156-703), MCM2-N (aa 1-155) and MCM2-C (aa 704-904). The NLS domains are shown in black, and the Zn-finger
domains are gray. 3T3 cells were transfected with HA-tagged Mcm2 mutants along with FLAG-tagged gp70, and either left untreated (B) or treated
with 1 uM doxorubicin for 24 h (C). The expression of the MCM2 mutants (B, C, left upper) and FLAG-gp70 (B, C, left middle) was confirmed in 3T3
cells. Cell lysates were subjected to a pull-down assay to detect the binding of MCM2-FL or MCM2 mutants to FLAG-gp70 (B, C, right panel).
doi:10.1371/journal.pone.0040129.g003
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Figure 4. The C-terminal portion of MCM2 is important for apoptosis enhancement. 3T3 cells were co-taransfected with gp70 and Mcm2-
FL or the mutants (A, B) or transfected with Mcm2-FL or the mutants (C, D) and treated with 1 uM doxorubicin for 24 h. Cell survival (A, C) and
apoptotic cell ratios (B, D) were determined using the MTT assay and annexin V-staining, respectively. Asterisks (*) indicate p<<0.01 for control vs.
mutant-transfected cells. In all panels, data represent the mean and 95% Cl of 3 independent experiments. Western blot analysis of gp70/Mcm2-FL-
and gp70/mutant-transfected 3T3 cells (E) and Mcm2-FL- and mutant-transfected 3T3 cells (F) after treatment with 1 uM doxorubicin for 24 h. The
levels of DNA-PK, phospho-DNA-PK (pS2053), P53, phospho-P53, and cleaved caspase-3 are elevated in the groups with elevated apoptotic ratios. (G)
3T3 cells co-transfected with gp70/Mcm2-FL or gp70/mutants and (H) 3T3 cells transfected with Mcm2-FL or the mutants were pre-incubated with
10 uM NU7026, a DNA-PK-inhibitor, for 2 h and treated with 1 uM doxorubicin for 24 h. DNA-PK-pS2053 levels are substantially reduced in cells
treated with the DNA-PK-inhibitor (G and H, bottom) compared to the levels in the absence of NU7026 (E and F, respectively). Whole cell lysates from
gp70- and Mcm2-FL-transfected 3T3 cells after doxorubicin treatment are shown as a positive control (PC, G and H, bottom). Apoptotic cell ratios
were determined with annexin V-staining (G and H, upper graph). In both panels, data represent the mean and 95% Cl of three independent

experiments.
doi:10.1371/journal.pone.0040129.g004

The gp70-MCM2 Complex is Localized in the Cytoplasm

The MCM2 protein contains an NLS in the N-terminal portion.
Thus, MCM2 localizes to the nucleus when expressed in HeLa
cells [47]. To investigate the cellular localization of MCM2,
immunofluorescence was performed on 3'1'3 cells transfected with
Mem2-FL or mutated Mcem2, with or without gh70 and treated with
doxorubicin. In 313 cells singly transfected with Mem2-FL or the
mutants, MCM2-FL as well as MCM2-AC and MCM2-N were
localized in the nucleus (Figure 6A). By contrast, MCM2-AN and
MCM2-C lacking the NLS were localized in the cytoplasm
(Figure 6A). In cells transfected with gp70 plus Mcm2-FL or gp70
plus mutated Mcm2, MCM2-FL and all the MCM2 deletion
mutants were detected in the cytoplasm (Figure 6B). These results
indicate that gp70 binding inhibits the nuclear translocation of
MCM2 and show that MCM?2 lacking an INLS remains in the
cytoplasm. We confirmed that overexpression of gp70 and/or
MCM2-FL or the mutants did not cause any significant changes in
the cell-cycle profile of the transfected cells (Figure S5). Further-
more, the transfected gp70 induced the cytoplasmic localization of
DNA-PK as well as MCM?2 (Figure S6).

MCM2 has 2 NLS domains, NLS1 and NLS2. NLS2 but not
NLS1 is required for the nuclear localization of mouse MCM2
[47]. Thus, to further examine the gp70-mediated inhibition of
MCM2 nuclear translocation, we generated plasmids encoding
HA-tagged MCM2 NLS deletions; deletion of NLS1 (MCM2-
ANLS]1), deletion of NLS2 (MCM2-ANLSI1), and deletion of
NLSI to NLS2 (MCM2-ANLS1-2) (Figure 6C). 313 cells were

@ PLoS ONE | www.plosone.org

transfected with these mutants and treated with doxorubicin, and
apoptotic cell ratios were determined. The ratio was significantly
increased in Mcm2-ANLS2- and Mcm2-ANLSI-2-transfected cells
compared to the negative control. By contrast, McmZ2-ANLSI-
transfected cells exhibited no increase in the number of apoptotic
cells (Figure 6D). Furthermore, MCM2-ANLS] was localized in
the nucleus, whereas MCM2-ANLS2 and MCM2-ANLS1-2 were
detected in the cytoplasm (Figure S7). ‘These results indicate that
deletion of NLS2 alters the subcellular localization of MCM2 and
the apoptosis enhancement seen in the presence of the gp70-
MCM2.

Induction of Leukemia cell Apoptosis by DNA-damage in
FLV-infected Hosts

To determine whether C3H-derived leukemia cells exhibited
enhanced apoptosis in response to gp70 and DNA-damage i vivo,
SCID mice were intravenously transplanted with 8047 cells,
inoculated with FLV, and treated with doxorubicin. As expected,
the 8047 cell-containing liver samples from FLV-infected mice
exhibited a stronger expression of gh70 than those from uninfected
mice (Figure 7A). I'reatment with a low dose of doxorubicin caused
significant enhancement of apoptosis in FLV-infected SCID mice
but not in uninfected mice (Figure 7B, C). These results indicate that
gh70 overexpression and DNA-damage induction elicit significant
apoptosis of C3H-derived leukemia cells i vivo.

Next, to investigate the subcellular localization of MCM2 in the
transplanted 8047 cells from hepatic nodules, immunohistochem-
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Figure 5. MCM2 (FL and mutants) interacts with PP2A. (A) The Mcm2-FL- or mutant-transfected 3T3 cells (left) and gp70/Mcm2-FL- or gp70/
mutants-transfected 3T3 cells (right) were treated with 1 uM doxorubicin for 24 h. Cell lysates were subjected to a pull-down assay to detect the
binding of MCM2-FL or the mutants to PP2A. (B) 3T3 cells were pre-incubated with 10 nM okadaic acid (OA) and 10 uM NU7026 for 2 h, and treated
with 1 uM doxorubicin for 24 h. The apoptotic cell ratio was determined with annexin V-staining. Asterisk (*) indicates p<<0.01 for control vs. mutant-
transfected cells. Data represent the mean and 95% Cl of 3 independent experiments. (C) Western blot analysis of 3T3 cells to detect phospho-DNA-
PK. Note the significantly increased levels of DNA-PK-p2053 in OA-treated 3T3 cells, and the complete abrogation by NU7026.

doi:10.1371/journal.pone.0040129.g005

istry was performed. MCM2 was localized in the nucleus of 8047
cells in uninfected SCID mice (Figure 7D, top), whereas some
8047 cells exhibited cytoplasmic MCM2 in the FLV-infected mice
(Figure 7D, bottom). Furthermore, the number of cells with
cytoplasmic MCM2 was remarkably increased in FLV-infected
doxorubicin-treated mice compared to FLV-infected PBS-treated
mice (Figure 7D, bottom right and E).

A survival analysis was performed on mice treated with PBS or
doxorubicin twice a week. FLV-infected and doxorubicin-treated
mice exhibited a significant improvement in survival compared to
the other groups (Figure 7F). These results suggest significant
effects of cytoplasmic MCMZ2 on apoptosis induction in leukemia
cells in the # 20 model. Although not so remarkable, FLV-
infection alone prolonged the survival of 8047 cell-transplanted

@ PLoS ONE | www.plosone.org

mice. The phenomenon may be caused by intrinsic host defense
mechanisms such as innate immunity systems and inflammatory
reactions by natural killer cells, neutrophils, monocyte/macro-
phages etc., against leukemia cells. The reactions may include
reactive oxygen species or other stress signaling pathways
associated with DNA-damage induction. Thus, the circulating
leukemia cells may differ from the leukemia cells used @ wiro
experiments without any stimulation for DNA-damage.

Discussion

A novel strategy for controlling tumor cell growth is to target
regulators of cellular proliferation/apoptosis. However, the
cellular dynamics of non-tumor cells should not be influenced by
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Figure 6. Subcellular localization of MCM2 and the role of the NLS domains in enhancing doxorubicin-induced apoptosis. HA-Mcm2-
FL and HA-mutant-transfected 3T3 cells (A), and FLAG-gp70/HA-Mcm2-FL and FLAG-gp70/HA-mutant-transfected 3T3 cells (B) were treated with 1 uM
doxorubicin for 24 h. HA-positive cells containing the MCM2-derived proteins are shown in red (TRITC), and DAPI-stained nuclei are shown in blue.
Images were acquired using a BZ-9000 microscope (KEYENCE) with a 400x objective. (C) Schematic diagram of the NLS deletion mutants MCM2-
ANLS1, MCM2-ANLS2, and MCM2-ANLS1-2. (D) Mcm2-NLS deletion mutant-transfected 3T3 cells were treated with 1 M doxorubicin for 24 h, and
apoptotic cell ratios were determined with annexin V-staining. Data represent the mean and SD of 3 experiments. The asterisks (*) indicate significant
differences between the control and Mcm2-ANLS2- or Mcm2-ANLS 1-2-transfected cells (*p<0.01). Data represent the mean and 95% Cl of 3

independent experiments.
doi:10.1371/journal.pone.0040129.g006

these treatments. T'his is very difficult, but infection with certain
types of viruses elicits tumor cell-specific changes in cellular
dynamics [48]. Thus, virus-host interaction may provide clues to
develop a novel strategy for tumor therapy. Our previous study
has shown that FLV infection strongly enhances radiation-induced
apoptosis in the hematopoietic cells of G3H mice, although the
response is not uniform among the host strains [17]. Elucidation of
the molecular mechanisms underlying this host- and cell type-
specificity may provide an effective means to induce tumor cell-
specific apoptosis in host tissues.

Regarding host specificity, MCM2 was identified as a C3H-
specific protein that enhances DNA-damage-induced apoptosis in
association with the envelope protein of FLV, gp70. However,
MCM?2 is part of a conserved set of MCM proteins (MCM2-7),
with essential roles in the regulation of DNA replication:
functioning as license components for S-phase initiation and
further acting as a helicase to unwind DNA at replication forks
[25,26,49]. Indeed, MCM proteins are frequently overexpressed
in a variety of cancer or pre-cancerous cells [31 36]. In this study,
Mcem2-transfected 313 cells exhibited an increase in proliferation
96 h after transfection. On the other hand, co-transfection of
BALB/c-derived 313 cells, which originally expressed low levels of

@ PLoS ONE | www.plosone.org 9

Mem2, with gp70 and Mem2 enhanced doxorubicin-induced
apoptosis. These results suggest that human tumor cells may also
become more sensitive to DNA-damage-induced apoptosis
through changes in the molecular functions of MCM2.

MCM2 has several functional domains [50]. However, there are
no reports on its functions in apoptosis. Our study demonstrated
that a novel functional domain in the C-terminal portion of
MCM?2 plays a role in apoptosis enhancement under specific
conditions in conjunction with gp70 (Figure 8A).

MCM2 is known to interact with various types of molecules,
including protein PP2A [51]. PP2A is one of the major Ser/Thr
phosphatases implicated in the regulation of cellular processes such
as cell cycle progression |52], apoptotic cell death [53 55], and
DNA replication and DSB repair [45,52,53]. In the GeneChip
assay of the present study, PppZac exhibited an expression pattern
similar to that of Mcm2 in the in 2o experiments (correlation
coefficient >90%; Figure 1L, Table S1). Furthermore, our results
suggest that PP2A dephosphorylates DNA-PK and regulates its
function, as described previously [44 46]. Depletion of PP2A by
RINAIi has been shown to induce hyperphosphorylation of DNA-
PK and suppression of DNA end-joining followed by enhanced
cytogenetic abnormalities including chromosomal and chromatid
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exhibit higher levels of gp70 than those from uninfected mice (*p<0.01). Data represent the mean and 95% Cl of from 10 mice in each group and are
representative of 2 independent experiments. (B) Microscopic features of TUNEL-positive cells in hepatic nodules and (C) TUNEL-positive cell ratic in
each group of mice. Note the significant increase in apoptotic 8047 cells in mice with FLV infection and doxorubicin treatment (*p<0.01 compared
with the tumor cells of “FLV (—), doxorubicin {(—) mice"). Data represent the mean and 95% Cl of from 10 mice in each group and are representative
of 2 independent experiments. (D) Subcellular localization of MCM2 in 8047 cells of the liver demonstrated by immunohistochemistry. Images were
captured with a microscope at 1,000x magnification power. Note the nuclear and/or cytoplasmic localization of MCM2 in the 8047 cells from each
group of mice. (E) The cell counts for cytoplasmic localization of MCM2, Cell counts are shown as the number of cells per 10 high-power fields (HPF).
[# p<<0.01 compared with tumor cells of “FLY (—), doxorubicin (—)" mice; *p<<0.001. compared with “FLV (=) doxorubicin (=)" mice and p<0.05
compared with “FLV (+), doxorubicin (—)" mice]. Data represent the mean and 95% Cl of from 10 mice in each group and are representative of 2
independent experiments. (F) Kaplan-Meier survival curves for 8047-transplanted SCID mice with/without FLV-infection and doxorubicin-treatment.
Note the significant elongation of survival time in mice with FLV-infection [p<<0.0T compared with “FLV (=), doxorubicin (—=)” and “FLV (-),
doxorubicin (+)" mice] and in mice with FLV-infection and doxorubicin-treatment [p<<0.001 compared with “FLV (—), doxorubicin (=)" and “FLV (—),
doxorubicin (+)” mice, p<<0.01 compared with “FLV (+), doxorubicin (—)" micel. The survival curves represent data from 10 mice in each group.
doi:10.1371/journal.pone.0040129.g007 ' g

breaks [46]. Similar events may result from the interaction of 8047, was established at the National Institute of Radiological
PP2A with MCM2. Sciences in Chiba [22]. The cells were cultured in RPMI-1640
The MCM complex (MCM2-7) contains an NLS. MCM2 has medium (Sigma, St. Louis, MO, USA). Primary . cultured
2 NLS domains and histone-binding sites in the N-terminal fibroblasts were derived from the lungs of BALB/c and G3H
portion, and therefore deletion of the N-terminal portion resulted mice and cultured in DMEM (Sigma). The medium was
in the inhibition of nuclear translocation. NLS2 but not NLSI is supplemented with 10% fetal calf serum (FCS), penicillin (50
required for the nuclear localization of mouse MCM2 [47]. In the units/mL) (Invitrogen, Carlsbad, CA, USA), and streptomycin
present study, nuclear translocation of MCM2 was inhibited by (50 pug/mlL) (Invitrogen) and the cells were cultured at 37°C in a
the binding of gp70 to NLSI, and that the cytoplasmic MCM?2  humidified atmosphere of 5% GOy in air.
enhanced DNA-damage-induced apoptosis. :
In conclusion, we identified a novel function of MCM2: the  Antibodies and Reagents
enhancement of DNA-damage-induced apoptosis. This function Rabbit polyclonal anti-glyceraldehyde-3-phosphate dehydroge-
occurred in association with gp70, an FLV-derived envelope nase (GAPDH) antibody (Santa Cruz Biotechnology, Santa Cruz,
protein. Gp70 directly bound to the N-terminal portion of MCM2 CA, USA), rabbit polyclonal anti-A'TM antibody (MILLIPORE,
and inhibited its translocation. The cytoplasmic MCM2-gp70- Billerica; MA, USA), mouse monoclonal anti-DNA-PK  antibody
complex induced an interaction of MCM2 with PP2A, thereby (Santa Cruz), rabbit polyclonal anti-DNA-PK S2056 (Mouse-
interfering with the PP2A-DNA-PK interaction and leading to S2053) antibody (Assay Biotech, Sunnyvale; CA, USA), mouse
enhanced DNA-damage-induced apoptosis via the activation of monoclonal anti-P53 antibody (Merck, Darmstadt, Germany),
P53 by DNA-PK (Figure 8B). These results suggest that regulation rabbit polyclonal anti-phospho-P53 (Ser 15) antibody (Merck),
of the molecular dynamics of MCM2 may be a novel apoptosis- rabbit monoclonal anti-cleaved caspase-3 antibody (Cell Signaling
inducing therapeutic method to specifically target malignant  Technology |CSL], Danvers, MA, USA); rabbit polyclonal anti-
tumors that express higher levels of MCM2 than normal tissues. MCM3 antibody (CS'T), mouse monoclonal anti-MCM4 antibody
: (Santa Cruz Biotechnology), mouse monoclonal anti-HA tag

Materials and Methods ~ antibody (Invivogen, San Diego, CA, USA), and mouse mono-
clonal anti-FLAG M2 antibody (Sigma) were used as primary
Ethics Statement antibodies for immunoblotting. Rabbit polyclonal and-FLAG

Animal experiments were conducted and carried out in strict antibody (Sigma), rabbit polyclonal anti-HA antibody (Sigma), and
accordance with the Act on Welfare and Management of Animals rabbit polyclonal anti-PP2A  antibody (CST) were used. for
of the government of Japan and the Guidelines for the Care and immunoprecipitation. Horseradish peroxidase (HRP)-conjugated
Use of Laboratory Animals of the Tokyo Medical and Dental anti-mouse IgG and HRP-conjugated anti-rabbit IgG (GE
University. All experiments were approved by the Animal Healthcare, Little Chalfont Buckinghamshire, England) were used
Experiment Committee of the Tokyo Medical and Dental as secondary antibodies for immunoblotting. Doxorubicin hydro-
University (No. 100115). All efforts were made to minimize chloride (Wako, Tokyo, Japan) was used for DNA-damage

suffering in animal experiments. induction. NU7026 (Calbiochem, La Jolla, CA, USA) was used
to inhibit DNA-PK activity. Okadaic acid (OA; Wako) was used to
Mice and Cell Lines inhibit PP2A.

Eight to 10-week-old male C3H/He] mice (H— 2" raised under
specific-pathogen-free conditions were purchased from Japan  Viral Infection.and DNA-damage Induction
SLC, Inc. (Shizuoka, Japan) with the permission of Dr. Yoshiya The NB-tropic FLV complex, originally provided by Dr. C.
Shimada of the National Institute of Radiological Sciences in Friend, was prepared as described previously [56]. Eight- to 10-
Chiba. Specific-pathogen-free  C57BL/6] mice (H—2%) and week-old BALB/c, C57BL/6, and C3H mice were inoculated
BALB/c mice (H— 24 aged'8 ‘10 weeks were also purchased from intraperitoneally (i.p.) with FLV at a highly leukemogenic dose of
Japan SLC, Inc. Six-week-old male specific-pathogen-free SCID 10* PFU/mouse [57). On day 7 after the infection with FLV,
mice (C.B. 1754/ md, H— 2‘1 ) were purchased from CLEA Japan Inc. BALB/c, C57BL/6, and C3H mice were administered (L.p.) with
(lokyo, Japan). . 1.5 mg/kg of doxorubicin hydrochloride. In experiments in i,
"The mouse fibroblast cell line 313 and the mouse acute myeloid 3’1’3 cells were treated with 1 M doxorubicin to induce apoptosis.
leukemia cell line, Ba¥3, both derived from BALB/c mice, and the ,
C3H mouse bone marrow cell-derived 32D cells were purchased Detection of Apoptotic Cells

from the RIKEN Cell Bank (l'sukuba, Ibaraki, Japan). The To determine the apoptotic cell ratios in mouse bone marrow
radiation-induced myeloid leukemia cell line from C3H mice, and spleen cells after treatment with 1.5 mg/kg of doxorubicin for
@ PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e40129
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Figure 8. Schematic illustration of the structure of MCM2 and its functions in the cytoplasm and nucleus. (A) The various functional
domains of the MCM2 protein are shown, and the domains and regions required for the activities are indicated. (B) Schematic of the novel role of
MCM2 in apoptosis enhancement. Normally, MCM2 is recruited into the nucleus for participation in DNA replication. As a result, cellular proliferation
is upregulated (proliferation signal). However, when gp70 is present in the cytoplasm, it binds to MCM2 and inhibits its nuclear entry. Furthermore,
cytoplasmic gp70-MCM2-complex interacts with PP2A and inhibits its interaction with DNA-PK. Consequently, hyperphosphorylated DNA-PK
enhances DNA-damage-induced apoptosis via a P53-related pathway (apoptosis signal).

doi:10.1371/journal.pone.0040129.g008

24 h, samples were collected from each experimental group, To determine the apoptotic cell ratios in 32D, Bal'3, and 3'1'3 cells
washed with ice-cold PBS, stained with propidium iodide (BD after treatment with 1 uM doxorubicin for 24 h, samples were
Biosciences, San Jose, CA, USA) and fluorescein isothiocyanate collected from each experimental group and washed with ice-cold

(FI'TC)-labeled anti-annexin V antibody (BD), and analyzed on a PBS. These samples were stained with propidium iodide (PI),
FACScan flow cytometer (BD FACSCanto™ Flow Cytometer). incubated with FITC-labeled anti-annexin V antibody, and
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analyzed on a FAGScan flow cytometer. For detecting apoptotic
cells in tissue sections, the terminal deoxy-transferase (I'dl)-
mediated dUTP nick-end labeling (I'UNEL) method was used as
previously described [58]. Briefly, tissue sections were deparaffi-
nized and incubated with proteinase K (prediluted, DAKO
Cytomation, Glostrup, Denmark) for 15 min at room- tempera-
ture, After the tissues were washed, I'd’l', FITC-dUL'P and -dA'LP
(BoehringerMannheim, Mannheim, Germany) were applied and
the sections were incubated in a moist chamber for 60 min at
37°C. Ant-FI'1'C-conjugated antibody-peroxidase (POD convert-
er, Boehringer Mannheim) was employed to detect FITG-dUTP
labeling, and color development was achieved with 3,3'-diamino-
benzidine (DAB) solution containing 0.3% hydrogen peroxide.
The sections were then observed under a microscope and the
proportion of TUNEL-positive cells was determined by dividing
the number of positively stained cells by the total number of cells.

Sybr Green Real-time RT-PCR ,

RNA was extracted from the bone marrow and spleen cells of
BALB/c, G57BL/6, and C3H mice, 8047, 32D, BaF3, and 31’3
cell lines, and primary cultured fibroblasts using I'rizol (Invitrogen)
according to the manufacturer’s instructions. Briefly, the liquid
phase was incubated with chloroform for phase separation, "T'otal
RINA was finally extracted using one isopropancl precipitation step
and one ethanol wash. 'The RNA pellet was diluted in RNase- and
DNase- free water (Qiagen, Hilden, Germany). Then cDNA was
generated from RINA using TaqMan® Reverse I'ranscription
Reagents (Applied Biosystems, Foster, CA, USA) and quantitative
RT-PCR was performed. For quantitative RI-PCR, specific
primers were used with the Lightcycler Sybr Green master mix
(Roche, Basel, Switzerland). ‘I'he sequences of the primers are as
follows: for Mem2, GAGGATGGAGAGGAACTCATTG and
ATCTTCCICGCIGCIGTCA; for Dna-pk, GAATTCACCA-
CAACCCTGCYT and GCTTTCAGCAGGTTCACACA; for
Atm, CCTTITGTCCITCGCGATGTTA and GCIGTATGA-
CAAACTCGACITTAATAGGY; and for gn70, AAGGTCCAG
CGITCTCAAAAC and AGGIGGCGITAGCIGTITTGT.
The PCR product was detected using the ABI Prism 7900HT
Sequence Detection System (Applied Biosystems [ABI], Carlsbad,
CA, USA). The primers and TagMan probes for Gapdh were
purchased from ABIL Mcm2, Dna-pk, Aim, and gp70 RNA levels
were normalized to that of Gapdh.

GeneChip Analysis

FLV-infected or uninfected C57BL/6 and G3H mice were
administered (i.p.) with 15 mg/kg (high dose) or 1.5 mg/kg (low
dose) of doxorubicin, and the spleen was sampled at 0, 1, 6, and
24 h after administration, Total RNA was isolated using RNeasy
mini kit (Qiagen), according to the manufacturer’s instructions.
First-strand cDNAs were synthesized by incubating 5 ug of total
RNA with 200 U of SuperScript II reverse transcriptase (Invitro-
gen) and 100 pmol of the 'I'7-(d'1)gs primer [5'-GGCCAGT-
GAATTGTAATACGACTCACTATAGGGAGGCGG-(d1)es-
3'). After second-strand synthesis, the double-stranded cDNAs
were purified using a GeneChip Sample Cleanup Module
(Affymetrix, Santa Clara, CA, USA), according to the manufac-
turer’s instructions. Double-stranded cDNAs were labeled by in
vitro transcription using a BioArray High Yield RNA transcript
labeling kit (Enzo Diagnostics, Farmingdale, NY, USA). The
labeled cRNA ‘was then purified using a GeneChip Sample
Cleanup Module (Affymetrix) and treated with 1x fragmentation
buffer (40 mM acetate, 100 mM KOAc, 30 mM MgOAc) at 94°C
for 35 min. For hybridization to a GeneChip Mouse Genome 430
2.0 Array (Affymetrix), 15 g of fragmented cRNA probe was
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incubated with 50 pM control oligonucleotide B2, 1x eukaryotic
hybridization control (1.5 pM BioB, 5 pM BioC, 25 pM BioD and
100 pM Cre), 0.1 mg/mL herring sperm DNA, 0.5 mg/mL
acetylated BSA and I x manufacturer-recommended hybridiza-
tion buffer in a 45°C rotisserie-oven: for 16 h. Washing and
staining were performed with GeneChip Fluidic Station (Affyme-
trix) using the appropriate antibody dilution, washing and staining

-protocol. 'The phycoerythrin-stained arrays were scanned as digital

image files and the scanned data were analyzed with GeneChip
Operating Software (Affymetrix) [59]. All data are available online
(http://www.nihs.go.jp/tox/ I'tgSubmitted. htm) from the Nation-
al Institute of Health Sciences. '

Transfection of Expression Plasmids

Sequences of full-length mouse MCM2 (MCM2-FL) and MCM2
deletion mutants, MCM2-AC (amino acid |aa] 1 703), MCM2-AN
(aa 156 703), MCM2-N (aa 1 155) and MCM2-C (aa 704 904),
were amplified from the cDNA 0f 8047 cells using PCR primers, and
inserted into the Hindlll/Xhol site of the pcDNA™?3.1 3xHA
Expression Vector . (Invitrogen). T'he primers, synthesized at a
commercial laboratory (Invitrogen), were as follows: for Mcm2-FL,
the 5 primer was GCTCGAGGCGCGGAGTICITCLIGAGT-
CTCTICTCA and the 3' primer was ATAAGC T T TCAGAAC-
TGCTGTAGGATCAG; for Mem2-4C, GCTCGAGGCGCGG-
AGICTTCITGAGICTICICTCA and ATAAGCTTTCACTC-
CAAGGTGCCACCATTA; for Mem2-AN, GG'TCGAGGCCGC-
CACAGAGGATGGCGAGGA and ATAAGCTTTCAGAACT-
GCIGTAGGATCAG,; for Mcm2-N, GCITCGAGGCGCGGAG-
TCTTCTGAGTCICTCTCA and ATAAGCTITTCAGCGT-
TCTACGTGGCGGCGC; and for Mem2-C, GCTCGAGGCC-
CAGCCATGCCCAACACATAT and ATAAGCTTTCAGAA-
CIGCTGTAGGATCAG. The sequence encoding viral gp70
protein was amplified from the ¢cDNA of FLV-infected 8047 cells
using the PCR primers, and inserted into the Notl/Xbal site of the
PIXFLAG-CM V™10 Expression Vector (Sigma). The primers for
70 were ATAAGAATGCGGCCGCGAAAGGTCCAGCG-
T ITCITCAAAA and GCTCTAGACTAGCTAGCTATGCAGC-
TATGCCGCCCATAGY.  The 3xHA-Mcm2-ANLSI, Mcm2-
ANLS2, and Mem2-ANLSI-2 constructs were generated by PCR
using 2 KOD-Plus-Mutagenesis kit (FOYORO, Tokyo, Japan). The
primers, synthesized at a commercial laboratory (Invitrogen), were
as follows: for' Mem2-ANLSI, the 5 primer was CCGGCG-
CCGCTGACGGGCAGGGCTA and the3’ primer was GACG-
CCOTGACCTCCAGCCCTGGCA,; for Mem2-ANLS2, GCGCA-
TGCGTCCCAGGCCTCTIGCCA and CACGTAGAACGCG-
CCACAGAGGATG; and for Mem2-dNLSI-2, CCGGCGC-
CGCTGACGGGCAGGGCTA and CACGTAGAACGCGCC-
ACAGAGGATG. The 3xHA-Mcm2, Mcm2-AC, Mem2-AN, Mcm2-
C, Mem2-N, Mem2-ANLSI, Mcm2-ANLS2, Mcm2-ANLSI-2, and/or
IXHLAG-gp70 constructs - were - transfected. into 313 cells
2x10° cells) using Hily Max ‘I'ransfection Reagent (Nippon Gene,
Tokyo, Japan). The controls were generated by mock-transfection
with an empty vector, B

Cell Viability Assay

Cell viability was measured using a Cell Proliferation Kit (3-
[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetrazolium bromide,
ML) (Roche). Briefly, 313 cells were seeded in 96-well plates
at 1x10%/well. After incubation for 24 h, cells were transfected
with 3 xXHA-Mem2, Mcm2-4C, Mem2-AN, Mcm2-C, Mcm2-N, and/
or IxFLAG-gp70. Twenty-four hours after the transfection, the
cells were treated with 1 pM doxorubicin in culture medium for
24 h. Then 10 pL. of MT'I" labeling reagent was added to each
well and incubation continued for 4 h at 37°C. Next, 100 pL of
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solubilization solution was added to each well and incubation was
continued overnight at 37°C. Absorbance was determined at
560 nm using a microplate reader (Bio-Rad, Hercules, CA, USA).

RNA Interference

Small-interfering RINA (siRNA) was used to silence the Mem2
gene. The sequence of siRNA used was CAGGTGACAGACTI-
TATCAAA. An irrelevant siRNA (GCACACAGACTGCAA'T-
CACAGGTT'A) that did not lead to specific degradation of any
cellular mRINA was used as a negative control. Bak3 and 32D cells
@ x10° cells) were transfected with 120 pmol of Mem2 or control
siRNA using Amaxa® Cell Line Nucleofector® Kit V (LONZA,
Basel, Switzerland) according to the manufacturer’s instructions.
The oligonucleotides used for cloning short hairpin RINA
(shRINA)-encoding sequences targeting DNA-PK and ATM into
the pSUPER vector (Oligoengine, Seattle, WA, USA) were as
follows: Sh-Dna-pk; GATCCCCAGGGCCAAGCTATCATTICT-
ttcaagagaAGAATGATAGCTTGGCCCT I T TITA; and sh-Atm;
GATCCCCCATACTAAAGACA T I'ttcaagagaAA TG TC T T TGA-
GTAGTATGTI'TTTA. The annealed oligonucleotides were sub-
cloned into Bglll and Hindl1l sites. ‘These constructs were transfected
into 313 cells (2x10° cells) using Hily Max “I'ransfection Reagent
(Nippon Gene). The controls were generated by mock-transfected
with a sh-empiy vector.

Immunoprecipitation and Immunoblotting

Cell lysates were prepared by incubating cell pellets on ice for
30 min in ice-cold lysis buffer containing 10 mM 'I'ris-HCI,
pH 7.5, 5 mM EDTA, 1% Nonidet P-40, 0.02% NaN3, 1 mM
PMSF, 0.1% aprotinin, 100 uM leupeptin and 100 uM TPCK
(Sigma). Cell lysates were incubated with antibody and Protein G
Sepharose™ (GE Healthcare). The immunoprecipitates obtained
after centrifugation or whole cell lysates were mixed with 2X
sodium dodecyl sulfate (SDS) buffer (125 mM I'ris-HCl at pH 6.8,
4% SDS, 20% glycerol, 0.01% bromophenol blue, and 10% 2-
mercaptoethanol) and boiled for 10 min. The samples were loaded
onto a 5 20% or 3 10% gradient polyacrylamide gel (WAKO),
and electrophoretically transferred to nitrocellulose membranes
(GE Healthcare). 'The membranes were blocked with 10% skim
milk in PBS, incubated with primary antibodies, washed, and
incubated with peroxidase-conjugated secondary antibodies. ‘The
protein signal was detected using the ECL Plus Western Blotting
Detection System (GE Healthcare).

Chromatin Loading Assay

Chromatin loading of MCM2 was performed as described
previously [60]. Briefly, 313 cells were harvested using trypsin,
and the cell pellets were lysed by incubating in complete
cytoskeleton (CSK) buffer (20 mM HEPES, 100 mM NaCl,
3 mM MgCly, 300 mM sucrose, and 0.1% NP-40) for 15 min
on ice. Cytoplasmic fractions were obtained as supernatants after
low speed centrifugation (3,000 xg) at 4°C.. Pellets were rinsed with
complete CSK buffer for 10 min on ice and recentrifuged to
obtain a chromatin-enriched fraction. Pellets were then sonicated
for 5 s in GSK buffer and subjected to high-speed centrifugation
(16,000 xg). ‘The post-sonication supernatant was designated as the
chromatin-bound fraction.

Analysis of Cell Cycle Distribution

Cell cycle distribution was monitored by quantifying the cellular
DNA content after staining with PI. Cells were fixed with ethanol
for 20 min at —20°C. After centrifugation, cells were suspended in
PBS containing PI (50 pg/mL) and RNase (0.2 mg/mlL), incu-
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bated at room temperature for 30 min, and analyzed on a
FACScan flow cytometer (BD FACSCanto™ Flow Cytometer).

immunofluorescence

313 cells were fixed in 1% paraformaldehyde in PBS and
permeabilized with 0.1% NP-40 in PBS at room temperature.
Cells were incubated with mouse monoclonal anti-HA antibody
(Invivogen) at a 1:100 dilution in PBS for 1 h at room
temperature. Cells were then stained with tetramethylrhoda-
mine-5-(and 6)-isothiocyanate (I'RITC)-conjugated anti-rabbit
antibody (Dako Cytomation, Glostrup, Denmark) at a 1:100
dilution for 20 min at room temperature. Slides were washed 3
times with PBS and mounted with Vectashield mounting medium
containing 4',6-diamidino-2-phenylindole (DAPI; Vector Labora-
tories, Inc., Burlingame, CA, USA). Images were acquired using a
BZ-9000 microscope (KEYENCE, Osaka, Japan) with a 400x
objective.

Transplantation of MCM2-expressing Leukemia Cells into
SCID Mice and Apoptosis Induction

‘The 8047 cells (1 x 10° cells) derived from C3H mice were
transplanted intravenously into SCID mice via the tail vein. ‘T'wo
weeks after the transplantation, FLV was injected (i.p.) into SCID
mice at a dose of 10* PFU/mouse. Then, 7 days after FLV
inoculation, the mice were treated twice a week with 1.5 mg/kg of
doxorubicin.

Immunohistochemistry

Formalin-fixed paraffin-embedded tissue sections (4 pm thick)
of the liver from 8047-transplanted SCID mice were de-waxed in
xylene and re-hydrated through graded alcohol to water. Antigen
retrieval was achieved with a 10-min autoclave treatment in 0.1 M
citrate buffer (pH6.0). Endogeneous peroxidase activity was
inhibited by dipping the slides in 0.3% hydrogen peroxide in
methanol for 30 min and non-specific protein binding was blocked
by incubation with normal horse serum (Vector Laboratories,
Burlingame, CA, USA). Sections were then treated with anti-
MCM?2 mouse monoclonal antibody (BD Biosciences) (1:2,000)
overnight at 4°C. Detection was achieved using the streptavidin-
biotin-peroxidase complex technique (Vector Laboratories) with
DAB as the chromogen.

Statistical Analysis

Statistical significance was determined using a two-tailed
Student’s #test. For Kaplan-Meier analysis of SCID mice
transplanted with 8047 cells, a log-rank test was performed.

Supporting Information

Figure 81 Gp70 suppresses the formation of the MCM
complex. Control, HA-Mcm2-transfected and HA-Mcm2/FLAG-
gp70-transfected 313 cells were left untreated or treated with
1 pM doxorubicin for 24 h. Cell lysates were subjected to a pull-
down assay to detect the binding of MCM3 or MCM4 to HA-
MCM2. In Mem2-transfected 313 cells, MCM?2 interacts with
MCM3 and MCM4, both in the presence and absence of
doxorubicin-treatment. By contrast, in gh70 plus Mcm2-transfected
313 cells, MCM2 does not co-precipitate with MCM3 or MCM4
after treatment with doxorubicin. These results suggest that gp70
binds to MCM2 and inhibits the formation of the MCM complex
and the binding to chromatin under DNA-damage by doxorubi-
cin.

(I1F)
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Figure S2 Gp70 directly interacts with MCM2. (A)
Schematic diagram of full-length gp70 (gp70-FL) and the gp70
deletion mutants, gp70-1 (aa 1 153), gp70-2 (aa 154 330), and
gp70-3 (aa 331 461). 313 cells were transfected with FLAG-tagged
gb70 mutants along with HA-tagged Mcm2 and left untreated (B) or
treated with 1 pM doxorubicin for 24 h (C). The expression of the
gp70 mutants (B, C, left upper) and HA-MCM2 (B, C, left middle)
was confirmed in 3713 cells. Cell lysates were subjected to a pull-
down assay to detect the binding of gp70-FL or the mutants to HA-
MCM?2 (B, C, right panel). Apoptotic cell ratios were determined
with annexin V-staining of MemZ2-FL/gp70 mutant-transfected 31'3
cells that were left untreated (D) or treated with 1 M doxorubicin
for 24 h (E). Asterisks (*) indicate significant differences between
mutant-transfected cells and the control ($<<0.01). Data represent
the mean and 95% CI of 3 independent experiments.

(L)

Figure 83 Effects of MCM2 and deletion mutant
overexpression on 3T3 cell proliferation. 313 cells were
transfected with Mem2-FL or the McmZ2 deletion mutants and the
cell number was counted at an early phase (48 h, A, B) and a late
phase (96 h, G, D) after transfection with (A, C) or without (B, D)
gp70. Data represent the mean and 95% CI of 3 independent
experiments, Note the significant increase in cell counts following
Mem2-FL- and Mcem2- AC-transfection (*p<<0.01).

(L)

Figure 84 Knockdowns of Dna-pk and Atm in gp70 plus
Mcem2-transfected cells using the pSUPER shRNA sys-
tem. The expression of Dna-pk (A) and Atm (B) mRNAs and DNA-
PK (C) and ATM (D) proteins were examined by quantitative R'I-
PCR and western blotting, respectively. Cell survival (E, G) and
apoptotic cell ratio (F, H) were determined with the M'I'I" assay
and annexin V-staining, respectively, after treatment with 1 uM
doxorubicin for 24 h. Note the apoptosis-abrogating effects of si-
Dna-pk (E, F). Asterisks (*) indicate significant differences between
sh-Dna-pk-treated and sh-Control-treated cells (*p<<0.01). However,
Atm. knockdown causes no remarkable change in viability or
apoptotic cell ratio relative to that of cells treated with sk-Control
(G, H). Data represent the mean and 95% CI of 3 independent
experiments.

(ILF)

Figure S5 Effects of MCM2 and deletion mutant
overexpression on the cell-cycle distribution of 3T3
cells, 3'1'3 cells were transfected with the Mcm2 deletion mutants
with (A) or without (B) g070 and treated with 1 pM doxorubicin
for 24 h. The cells were fixed with ethanol, stained with propidium
iodide (PI), and analyzed by flow cytometry. Data represent the
mean and 95% CI of 3 independent experiments. 3'1'3 cells exhibit
an increase in G2/M fraction after treatinent with doxorubicin.
However, the differences between the cell cycle profiles of Mem-2
or gp70- transfected cells are not significant:

(I1r)

Figure 86 Co-localization of gp70, MCM2, and DNA-PK
in the cytoplasmic fraction of 3T3 cells. Control, HA-Mcm2-
transfected and HA-Mcm2/FELAG=gp70-transfected 3713 cells were
left untreated (left) or treated with 1 pM doxorubicin for 24 h
(right). Cell lysates from these cells were separated into chromatin-
bound and cytoplasmic fractions. HA-MCM?2 (upper) and DNA-
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PK (bottom) were detected by western blotting. In AMem2-
transfected 3'1'3 cells, MCM2 binds to the chromatin irrespective
of doxorubicin treatment. By contrast, in- go70 plus Mem2-
transfected 313 cells, MCM2 does not bind to the chromatin
after treatment with doxorubicin (upper). DNA-PK is not detected
in the chromatin-bound and cytoplasmic fractions of samples not
treated with doxorubicin. Under doxorubicin-treated conditions,
equal proportions of chromatin-bound DNA-PK are seen in all
groups. By contrast, DNA-PK is more strongly expressed in the
cytoplasmic fraction of go70 plus Mcm2-transfected 313 cells than
in the other groups (bottom). these results suggest that gp70,
MCM2, and DNA-PK co-localize in the cytoplasm, leading to
subsequent P53 activation and apoptosis induction,

(I

Figure 87 Subcellular localization and interactions of
MCM2 NLS deletion mutants in 3T3 cells. (A) 313 cells
transfected with HA-tagged” Mcm2 NLS deletion mutants were
treated with 1 pM doxorubicin for 24 h. The cells were then fixed
with 1% paraformaldehyde in PBS, permeabilized with 0.1% NP-
40 in PBS at room temperature, and stained with TRITC-
conjugated anti-HA antibody. HA-positive cells are shown in red
(I'RITC), and DAPI-stained nuclei are shown in blue. Images
were acquired using a BZ-9000 microscope (KEYENCE) with a
400% objective. Note the nuclear localization of MCM2-ANLS1
in contrast to the cytoplasmic localization of MCM2-ANLS2 and
MCM2-ANLS1-2. (B) 313 cells were transfected with HA-tagged
Mem2 NLS deletion mutants along with KLAG-tagged gp70, and
treated with 1 pM doxorubicin for 24 h. Expression of the MCM2

* NLS deletion mutants (left panel, upper) and FLAG-gp70 (left

15

panel, middle) was confirmed by western blotting. Lysates from
these cells were subjected to a pull-down assay.to detect the
binding of the MCM2 NLS deletion mutants to FLAG-gp70.
MCM2-FL and MCM2-ANLS2 proteins coprecipitate with gp70
(right panel). Thus, gp70 is able to interact with MCM2-FL and
MCM2-ANLS2, but not with MCM2-ANLS1 or MCM2-ANLS1-
2. These results suggest that gp70 is bound to the NLS1 domain of
MCM2 and indirectly inhibits the function of NLS2.

(T1E)

Table S1 Identification of genes with expression pat-
terns similar to that of Mcm2 using the GeneChip assay.
Gene expression patterns were determined by the GeneChip assay
in FLV-infected or un-infected G3H/C57BL/6 mice after
treatment with doxorubicin. A part of genes exhibited similar
expression patterns with Mcm2. The similarity in gene expression
patterns was evaluated with the Percellome system using a Pearson
product-moment correlation coefficient.

(DOCX)
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ARTICLE INFO ABSTRACT

The two estrogen receptor isoforms ERa and ERB mediate biological effects of estrogens, but are also
targets for endocrine disruptive chemicals (EDCs), compounds that interfere with hormonal signaling.
3-Methylcholanthrene (3-MC) and dioxin (TCDD) are EDCs and prototypical aryl hydrocarbon receptor
(AhR) agonists, and can inhibit ER signaling. However, in contrast to TCDD, 3-MC gives rise to metabolites
with estrogenic properties.

We compared gene expression profiles in HepG2 cells after exposure to 3-MC, TCDD, and the synthetic
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gf{dwég;diholamhrene estrogen diethylstilbestrol (DES). Interestingly, we observed little overlap between the genetic networks
Dioxin Y activated by 3-MC and TCDD, two compounds sometimes considered as interchangeable AhR ligands.

Like DES, 3-MC induced a number of ER-regulated genes and lead to recruitment of ERa to the promoters
of such genes. Interestingly, in contrast to DES, the estrogenic effects exerted by 3-MC were exclusively
observed in ERa, but not in ERB-expressing cells, suggesting ER isoform selectivity of 3-MC-derived

Estrogen receptor
Arylhydrocarbon receptor

Endocrine disruption
metabolites.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The intensive use of chemicals in modern society has resulted in
a plethora of compounds released into the environment. Many of
these chemicals disturb hormonal signaling, and are collectively
known ‘as endocrine disruptors (EDCs; reviewed in e.g. Ruegg
et al., 2009). Exposure to EDCs has raised considerable concern in
recent years, and they are implicated in many of the main ailments
of the Western societies such as reproductive disturbances (e.g.
Vidaeff and Sever, 2005), hormone-related cancers (Mukherjee
et al., 2006; Nomura, 2008), and metabolic disorders like obesity
and diabetes (reviewed in e.g. Elobeid and Allison, 2008; Newbold

Abbreviations: 3-MC, 3-methylcholanthrene; AhR, aryl hydrocarbon receptor;
ARNT, AhR nuclear translocator; ChIP, chromatin immunoprecipitation; CYP1A1,
cytrochrome P450 1A1; DES, diethylstilbestrol; EDC, endacrine disruptive chemical;
ER, estrogen receptor; ERE, estrogen response element; FST, follistatin; GREB-1,
growth regulation by estrogen in breast cancer 1; IGFBP4, Insulin-like growth factor
binding protein 4; PAI-1, plasminogen activator inhibitor-1/Serpine I; TCDD,
2,3,7 8-tetrachlorodibenzo-p-dioxin; TFF1, trefoil factor 1; UTRN, utrophin; XRE,
Xenobiotic response element.
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et al., 2008; Swedenborg et al., 2009). The molecular basis of endo-
crine disruption is complex, and the outcome is influenced by
many parameters such as exposure dose, developmental stage at
time of exposure, and species- and tissue-specific factors.

A system that is particularly vulnerable to EDCs is the estrogen
system. The effects of the female sex hormone estrogen are mainly
mediated by the estrogen receptors (ERs). There are two main ER
isoforms, ERa and ERB, that have overlapping but not identical
functions. The ERs belong to the family of nuclear receptors and
are. ligand-induced transcription factors. Xenobiotics that affect
the estrogen system include dietary substances like phytoestro-
gens and chemical pollutants such as bisphenols and polyaromatic
hydrocarbons (Nilsson et al., 2001). Many of these compounds
mediate their action by occupying the ER ligand-binding pocket
and thus acting as bona fide- ligands for one or both ER isoforms,
whereas others activate alternative signaling pathways, which in
turn interfere with ER biological function.

An example for the latter mechanism is the effect of the envi-
ronmental pollutant dioxin that interferes with ER signaling but
does not bind to the ERs. The most potent dioxin congener, TCDD
(2,3,7,8-tetrachlorodibenzo-p-dioxin), is formed through incom-
plete combustion of waste material, e.g. backyard burning of
household waste, or as a side product in certain industrial pro-
cesses. Dioxin is resistant to biodegradation and ubiquitously
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present in the environment. The biological responses to dioxin in-
clude toxic and teratogenic effects and a marked up-regulation of
drug-metabolizing enzymes such. as cytochrome P450 1A1
(CYP1A1) (Poland and Knutson, 1982). The biological responses
to dioxin are mediated through the aryl hydrocarbon receptor
(AhR), an intracellular receptor that binds to many xenobiotic com-
pounds with high affinity. Several molecular mechanisms behind
inhibitory AhR-ER crosstalk and anti-estrogenic effects by dioxin
have been proposed, such as competition for common cofactors,
binding site hindrance and alterations of hormone metabolism
(Astroff and Safe, 1990; Boverhof et al., 2008; Chaloupka et al.,
1992; Harper et al., 1994; Kharat and Saatcioglu, 1996; Klinge
et al., 2000; Ruegg et al., 2008; Zacharewski et al., 1994). The inter-
ference might consist of the combination of several mechanisms,
depending on cell- and gene-specific factors.

The polycyclic aromatic hydrocarbon (PAH) 3-methylcholan-
threne (3-MC) is classified as a human carcinogen. It has been fre-
quently used as a mutagen in cancer studies, due to its ability to
form bulky adducts on DNA and thereby cause mutations. It is also
considered a classical AhR agonist and CYP1A1 inducer, and as
such it has beeh used in numerous AhR studies. However, in con-
trast to TCDD, 3-MC is not resilient to cellular biotransformation
and various 3-MC metabolites have been identified (Wood et al.,
1978). The parent compound 3-MC does not bind to the ERs as a
bona fide ligand (Swedenborg et al., 2008); however, we and others
have shown that 3-MC treatment activates ER signaling (Abdelra-
him et al., 2006; Swedenborg et al., 2008), most likely via metabo-
lites with estrogenic properties. Similar findings have been
reported for other PAHs (Charles et al., 2000; Gozgit et al., 2004;
Liu et al, 2006).

In this study, we compared the effects of 3-MC, TCDD and the
synthetic estrogen diethylstilbestrol (DES), on estrogen signaling
in a HepG2-derived cell line expressing ERo. Gene expression
microarrays were used to identify and study gene networks that
are controlled by these compounds. Our studies reveal consider-
able differences between the cellular responses to dioxin and 3-
MC at the transcriptional level. Bioinformatic analysis and group-
ing of the affected genes by function demonstrated that distinct
regulatory networks are affected by the different ligands, with sur-
prisingly little overlap between 3-MC and TCDD.

Like DES, 3-MC induced known ER-regulated genes as well as
genes that have not been previously reported as ER targets. These
findings were confirmed by quantitative PCR in a different cell line.
Additionally, recruitment of ERa, but not AhR, was observed to
promoter regions of DES and 3-MC induced genes. In contrast to
DES, however, the effects of 3-MC were only mediated by ERa
but not by ERB, suggesting an ER subtype-selective mechanism.

2. Materials and methods
2.1. Cell culture and reagents

2.3,7.8-Tetrachlorodibenzo-p-dioxin and 3-methylcholanthrene
were purchased from AccuStandard (New Haven, CT). 17B-Estra-
diol and diethylstilbestrol were from Sigma (St. Louis, MO).

HepG2 cells stably transfected with ERo expression vector
(Hep-ERo) have been described previously (Barkhem et al,
1997). MCF-7, HepG2 wildtype and Hep-ERo were routinely main-
tained in Dulbecco’s modified Eagle's medium (DMEM; Invitrogen)
supplemented with 10% fetal calf serum (FCS; Invitrogen), penicil-
lin (100 U/ml) and streptomycin (100 pg/ml). HepG2 stably trans-
fected with ERE-Luciferase (HepELN), in combination with ERo
(HepELN-ERa) or ERB (HepELN-ERB), were a kind gift of Patrick
Balaguer. HepELN-ERa and HepELN-ERPB were maintained in phe-
nol-red free RPMI (Invitrogen) supplemented with 10% dextran-

coated charcoal- (DCC)-treated FCS (HiClone), 1% pen/strep, 1%
non-essential amino acids (Invitrogen), 1% sodium pyruvate (Invit-
rogen) 1 mg/ml G418 (Invitrogen) and 0.5 pg/ml puromycin.

2.2. Microarray analysis

The experimental method used has been described previously
(Kanno et al., 2006), with minor modifications. In short, Hep-ERa
cells were grown in phenol red-free medium with 5% DCC-treated
FCS for 48 h prior the experiment. Treatments for 24 h with vehi-
cle, DES (50 nM), 3-MC (10 pM) or TCDD (10 nM) were carried
out in triplicate. For each treatment group, six 10-cm plates were
used (two dishes were pooled in order to get at least 2 x 10~
cells). The cells were rinsed in PBS and harvested in RLT buffer
(QIAGEN GmbH, Germany). Total RNA was extracted using RNeasy
Mini Kit (QIAGEN) and analyzed by GeneCHIP (Affymetrix).

2.2.1. Bioinformatical analysis

For computer-based analysis, we used the Genomatix software
suite, combining BiblioSphere, Gene2Promoter and Matlnspector.
For gene ontology classification and deciphering signaling net-
works, BiblioSphere was used. Promoter sequences of selected
genes were extracted by Gene2Promoter. For analysis of transcrip-
tion factor binding sites, we used MatlInspector.

2.3. Quantitative real-time PCR

Quantitative real-time PCR was carried out on a subset of genes
to validate the regulation observed in the microarray analysis.
HepELN control, HepELN-ERa or HepELN-ERB cells were seeded
into 60-cm dishes and grown in phenol red-free medium with 5%
DCC-treated FCS for 48 h. After treatment with DES, 3-MC or TCDD
for 6 or 20 h, RNA was isolated using Trizol (Invitrogen, CA) accord-
ing to the manufacturer’s recommendations. One microgram of to-
tal RNA was treated with DNAsel and reverse transcribed using
random hexamer primers (Invitrogen). The resulting cDNA was
then used for real-time PCR with Fast SYBR green master mix
(Invitrogen) on an ABI 7500 instrument. All gene transcripts were
normalized to the 18S rRNA content (internal reference gene)
and to the vehicle-treated samples. The analysis was based on
the AACT method.

Primers were designed with the Primer Express software (ABI)
and are listed in Table 1.

2.4. Chromatin immunoprecipitation (ChIP) assays

ChlP assays were performed as described (Metivier et al., 2003)
with minor modifications. Briefly, HepELN-ER« cells were grown to
80-90% confluency in phenol-red free DMEM supplemented with
5% DCC-stripped FCS for 2 days, before they were treated with
vehicle, 50 nM DES, 10 uM 3-MC or 10 nM TCDD for 2 h. Cells were
cross-linked with 1.5% formaldehyde for 15 min at room tempera-
ture, and washed twice with ice-cold PBS. The cells were collected
in 0.5ml cell collection buffer (100 mM Tris-HCl [pH 9.4] and
10 mM DTT) and incubated on ice for 10 min and subsequently
at 30 °C for 15 min. Cells were then lysed sequentially by suspen-
sion and 5 min centrifugation at 2000g (4 °C) with 1 ml PBS, 1 ml
Nucleus/Chromatin Preparation (NCP) buffer I, (10mM EDTA,
0.5 mM EGTA, 10 mM HEPES [pH 6.5], 0.25% Triton X-100) and
1mi NCP II (1 mM EDTA, 0.5 mM EGTA, 10 mM HEPES [pH 6.5],
200 mM NaCl). Finally, chomatin preparations were resuspended
in 0.3 ml lysis buffer (10 mM EDTA, 50 mM Tris-HCl [pH 8.1], 1%
sodium dodecyl sulfate (SDS), 0.5% Empigen BB), and sonicated in
ice water for 10 min with 30 s intervals (Bioruptor, Diagenode Inc.).

After centrifugation, 40 pl of the supernatants were used as in-
puts, and the remainder diluted 3.5-fold in IP buffer (2 mM EDTA,
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Table 1
Top 20 upregulated genes upon 3-MC compared to vehicle treatment.
Accession_No. Gene_ID Gene_symbol Log Regulation Regulation ER target gene® ERE AhR target XRE
’ ‘ ratio by DES by TCDD gene?
NM_000499 1543 CYP1A1 3.821 Down Up Matthews et al. Predicted Whitlock Whitlock (1999)
(2005) , (1999) ,
NM_000691 218 ALDH3A1 3.104 Down Up Sladek (2003) Not predicted Vasiliou et al. Vasiliou et al.
(1999) (1999)
NM_000602 5054 SERPINE1 2.523 NR NR Burdette and Predicted Puga et al. Huang and
Woodruff (2007) (2000) Elferink (2011)
NM_004864 9518 GDF15 2404 NR NR Predicted Not predicted
NM_018485 27202 GPR77 2246 Up NR Predicted Not predicted
AK025719 3481 IGF2 2.074 Up Up Szabo et al. (2004)  Pathak et al. (2010) Not predicted
AK095363 360 AQP3 2.07  Down Up Moller et al. (2010) ~ Not predicted Not predicted
NM_004551 6364 CcL20 1987 NR NR Predicted- Not predicted
NM_014331 23657 SLC7A11 1986 NR NR Not predicted Burchiel et al. Burchiel et al.
) ) (2007) (2007)
XM_001116862 1026 CDKN1A 1982 NR NR Thomas et al., 1998 Mandal and Davie Iseki et al. Pang et al. (2008)
: ) (2010) (2005)
XM_517958 1958 EGR1 1.895 NR NR Not predicted Predicted
AK125255 467 ATF3 1.832 NR Up Not predicted Predicted
XM_001136017 3589 IL11 1.767 NR NR Predicted Predicted
NM_001736 728 C5AR1 1.754 NR Up Predicted Not predicted
AK127286 54498  SMOX 1.723° NR NR Predicted Predicted
NM_013409 10468 EST 1716 Up NR Predicted Predicted
NM_004024 57834 CYP4F11 1.665 NR NR Predicted Not predicted
AK125714 2302 FOX]1 1.657 NR NR Not predicted Predicted
NM_008240 7102 TSPAN7 1.627 Up Up Predicted Predicted
NM_004615 79083 MLPH 1.611 NR Up Predicted Predicted

NR: not regulated.

# ER- and AhR-target genes are defined as genes that are regulated by ER or AhR ligand with a clear involvement of the respective receptor. Prediction of EREs and XREs was

made by Matlnspector (Genomatix).

150 mM NadCl, 20 mM Tris-HCl [pH 8.1], 1% Triton X-100) with
protease inhibitors freshly added (Complete Protease Inhibitor
Cocktail tablets; Roche). After 2 h preclearing at 4 °C with 10 ul
DCC serum, 2 ug sheared salmon sperm DNA, and 40 pl protein
AJG-Sepharose beads (Sigma), the lysates were subjected to over-
night immunoprecipitation. Specific antibodies used for precipita-
tion were H184 (ERa), H211 (AhR), H172 (ARNT), all from Santa
Cruz Biotechnology, Santa Cruz, CA. Complexes were recovered
by a 2 h incubation at 4 °C with 2 pg of sheared salmon sperm
DNA and 50 ul of protein A/G-Sepharose. Precipitates were serially
washed with 300 pl Washing Buffer (WB) [ (2 mM EDTA, 20 mM
Tris~HCI [pH 8.1], 0.1% SDS, 1% Triton X-100, 150 mM NaCl), WB
I (2mM EDTA, 20 mM Tris-HCl [pH 8.1], 500 mM Nacl), WB III
(1 mM EDTA, 10 mM Tris-HCl [pH 8.01], 1% NP-40, 1% deoxycho-
late, 0.25 M LiCl) and then three times with 1T mM EDTA, 10 mM
Tris-HC! [pH 8.1]. Immunoprecipitated complexes were removed
from the beads by extraction with 50 pl of 1% SDS, 0.1 M NaHCO3
for 10 min, vortexing and cenwrifugation, repeated three times.
Cross-linking was reversed by incubation at 65 °C overnight. DNA
fragments were isolated and purified with MSB Spin PCRapace
(Invitek GmbH, Germany). Real-time PCR was performed as de-
scribed above with primersylis‘ted in Supplementary Table 1.

3. Results
3.1. TCDD and 3-MC regulate distinct gene networks

TCDD and 3-MC are AhR ligands and both affect ER signaling.
Although they are frequently used as interchangeable compounds,
they have distinct effects on ER transcriptional activity. While
TCDD acts solely as ER inhibitor (Safe and Wormbke, 2003), at ledst
in the presence of AhR (Abdelrahim et al., 2003), we have shown
previously that 3-MC gives rise to metabolites that display estro-
genic properties in a cell-type specific fashion (Swedenborg et al.,

-2008). In order to systematically compare the effects of TCDD

and 3-MC on ER signaling, we conducted a whole genome analysis
of the transcriptional effects of TCDD and 3-MC, and compared it to
the transcriptional response after treatment with diethylstilbestrol
(DES), a well-characterized ER ligand. -

We analyzed gene expression profiles in HepG2 cells, a human
hepatocellular carcinoma cell line, stably expressing ERc; at moder-
ate levels (HepG2-ERa, Barkhem et al., 1997). We chose this cell
line because it endogenously expresses the AR signaling machin-
ery and exhibits high metabolic capacity towards 3-MC (Sweden-
borg et al.,, 2008) and other substances (Bursztyka et al., 2008).
To allow for possible metabolism of 3-MC to occur, a 24 h treat-
ment was chosen. HepG2-ERa cells were treated with vehicle,
50 nM DES, 10 uM 3-MC or 10 nM TCDD, total RNA was prepared
and ‘microarray analysis was performed. The analysis included
genes that were either induced or repressed by the treatments
compared to vehicle-treated cells. The cut-off was set to at least
2-fold change (p < 0.01).

Interestingly, comparing the up- and down-regulated genes,
there was very little overlap between the three treatments, sug-
gesting that TCDD, 3-MC and DES control separate sets of genes
and induce distinct signaling pathways (Fig. 1A). Among those
genes whose expression was upregulated by both 3-MC and TCDD,
classical AhR target genes like CYP1A1 and aldehyde dehydroge-
nase 3A1 were identified, which also serve to validate the assay.
However, surprisingly few genes were regulated by both 3-MC
and TCDD (Fig. 1B), suggesting that these two AhR ligands induce
different regulatory networks in the cells at least after 24 h of
treatment.

In cells treated with the ER agonist DES, weidentified a wide re-
sponse including well-characterized estrogen-responsive genes
such as GREB1 and TFF1/pS2, confirming that the ER signaling
machinery is functional in the cells.

A striking difference between the treatment groups was the
high number of genes that were regulated by 3-MC; approximately
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