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Biomethods, Kitakyushu, Japan), and then cultured for 2 days. From Day 3 to Day 6, 10
nM of RA was added to the EB-medium to promote neuronal differentiation. The
EB-medium with RA was exchanged every two days, followed by culturing in
EB-medium alone from Day 7 to Day 8. On Day 9, the EBs were seeded onto
ornithine-laminin (O/L)-coated 24-well-plates and the medium was changed to neuronal
inducing medium (NIM) composed of DMEM/F12 medium, N-2 Supplement,
Penicillin-Streptomycin, and 10 ng/ml bFGF on Day 10. NIM was changed every 3
days until Day 22.

Culture and neuronal differentiation of human embryonic stem cells.

Similar to the mESC culture protocol, MEFs were used as feeder cells for the
culture and passage of the hESC line KhES3 in the medium composed of DMEM/F12
containing 20% KSR, 100 uM NEAA, 2 mM L-glutamine, 100 uM 2-ME, and 5 ng/ml
bFGF. After five times of passages with additional MEFs, the MEFs were eliminated by
a brief enzymatic treatment. The hESC colonies left on the dishes were harvested. The
hESCs (purity > 99%) were seeded at 1.0x10° cells/MSA in the medium containing
DMEM/F12, 20% KSR, 100 uM NEAA, 2 mM L-glutamine, 100 uM 2-ME, and 10
uM of ROCK inhibitor Y-27632 (Day 1). The generated EBs were cultured for 7 days in
the medium, which was exchanged every two days, followed by growth in the medium
without Y-27632 for two days. The growing EBs were cultured for 2 additional days in
NIM containing DMEM/F12: Neurobasal® Medium (1:1), N-2 Supplement, B-27°
Supplement, GlutaMAX ' -I,  Penicillin-Streptomycin  to  promote  neuronal
differentiation. Then EBs were re-plated onto O/L-coated 24-well-plates at 20 EBs/well.
They were cultured for 7 days in neuronal proliferation medium (NPM) containing
DMEM/F12: Neurobasal® Medium (1:1), two-fold concentrations of N-2 Supplement,
two-fold concentrations of B-27® Supplement, GlutaMAX" -1, Penicillin-Streptomycin,
20 ng/ml bFGF. NPM medium was exchanged every 3 days until Day 18, at which point
cells were cultured in neuronal differentiation medium (NDM) containing Neurobasal®
Medium, B-27® Supplement, GlutaMAX" -1, Penicillin-Streptomycin, 10 ng/ml BDNF
until Day 50. The medium was exchanged every 3 days.

Immunocytochemistry

After fixation for 10 min with 4% paraformaldehyde, the cells were permeabilized in
0.1% Triton X-100 in PBS. The cells were incubated with 1% BSA, which was
followed by overnight incubation with primary antibody specific for MAP2 (1:200).
After PBS washing, the cells were incubated at room temperature for 1 hr with Alexa
568-labeled secondary antibodies (1:1,000). Nuclei were stained using 2 pg/ml of
Hoechst 33342 for 15 min.
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Morphological measurement by IN Cell Analyzer.

Image analysis by the IN Cell Analyzer 1000 (ICA, GE Healthcare UK Ltd.,,
Buckinghamshire, UK) was performed as following. The microphotographs of 57 fields
(0.60 mm®) per well of 24 well plate, (i.e., 1,368 fields per exposure group) were taken
automatically. The fields in a well were created without overlap. The fluorescent signal
detected by the 535-nm laser line combined with a HQ620 60 M emission filter was
considered to be the MAP2-positive signal of neurons. The fluorescent signal detected
using the 360-nm laser line combined with a HQ460 40 M emission filter was
considered to indicate the Hoechst33342 positive nuclei. Fluorescence emission was
separately recorded in the blue and red channels, and a flat field correction was applied
for inhomogeneous illumination of the scanned area for each of the two channels.

A typical merged image of hESC-derivatives is shown in Figure SIA.
Hoechst-positive nuclei were recognized using IN Cell Developer Sofiware (GE
Healthcare UK Ltd.) and replaced by yellow dots to accurately count the nuclei number
(Figure S1B). MAP2-positive signals were also recognized by this software with a
threshold appropriate for tracing the MAP2-postive neurites. The replaced pink images
are shown in Figure S1C. MAP2-positive signals surrounding nuclei were regarded as
the cell bodies of differentiated neural cells. The number of nuclei within the cell body
was considered to be the number of MAP2-positive neurons in each field. The areas
considered to be cell bodies were subtracted from the MAP2-postive images to generate
the image of the neurites as shown in Figure S1D. Then the software automatically
replaces the MAP2-positive neurite images with branching morphologies, which
indicated neurite-length as green center lines and branching points as blue circles
(Figure S1D, S1E, and S1F). As shown in Figure S1E, the cell bodies were successfully
distinguished from the neurites. The total length of the MAP2-positive projection was
automatically measured on its midline (Figure S1F). The values for neurite length/cell
were calculated by dividing the total MAP2-positive neurite length within a field by the
number of MAP2-positive neurons. The branching points of MAP2-positive projections
were automatically counted as the total number of branching points of the
MAP2-positive projections (Figure S1F). The values for branching points/cell were
calculated by dividing the total MAP2-positive neurite branching points within a field
by the number of MAP2-positive neurons. The average of the neurite length/cell or
branching points/cell of all fields in one well of the 24-well plate were indicated as the
value of one experiment. Images of mESC-derived neuronal cells were analyzed in the
same manner.

To evaluate the accuracy of ICA measurements, the total neurite lengths of 5
randomly selected fields were manually measured using ImageJ (IJ) software (NIH).
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The correlations between data from IN Cell Developer Software and from 1J are shown
in Figure S2. Although the values obtained by ICA tended to be higher, (approximately
1.73-fold for neurite length and 4.42-fold for branching points), the two values obtained
by ICA and IJ were well correlated, which demonstrated the accuracy of the ICA
measurement.

Procedure of Bayesian network analysis

The linkages between MeHg and differentiation marker genes were visualized
using a network model that was based on the Bayesian algorithm, which was modified
from the one defined previous study (Toyoshiba et al. 2004). All the data of mRNA
levels were normalized by expressing values as a ratio to the average of DMSO control.
The values for MeHg concentration were expressed as following: 1.000, 1 nM of
MeHg; 1.100, 10 nM of MeHg; 1.200, 100 nM of MeHg. Calculated values used for
Bayesian network analysis are shown in Table S2 and Table S3.

The network was quantified to calculate the posterior probability distribution for
the strength of the linkages on the basis of gene expression and chemical exposure
datasets. Briefly, a network consists of a collection of P nodes, denoted G1, G2,... GP,
with observed values nl, n2,....np. We define Bij (i,j=1, 2,..., P) as parameters in the
log-linear function form describing the linkage from node i to node j. Mathematically,
this is written as

Ellog(G)]= . 1,/ lox(z,)

where E[log(G))] represents the expectation for the natural logarithm of G; and I;; (i,j =
1,2, ... ,P) is an indicator function that equals 1 if node G; has a link to node Gj,
otherwise it equals 0. If a node has a regulatory effect on node G; then that node is
referred to as a “Parent of node G;” and we refer to it as belonging to the set Pa(G;). The
prior distribution for the variance is assumed to be inverse Gamma and assuming that
the natural log of G; follows a normal distribution with mean and standard deviation f3;,
posterior distributions for each parameter can be estimated. The posterior distributions
for the linkages were derived using Gibbs sampling. Gibbs sampling method has no
limitation on the number of possible parents and is easy to cooperate with knowledge
information or past experimental result by taking the information into the prior
distribution. The network was used to evaluate the ability of the algorithm to produce
higher posterior probabilities (P-value) at the correct linkage in the network. In each
simulation, Gibbs sampling was performed 66,000 times. The initial Gibbs samplings
were considered to be the burn-in period and were removed in estimating and the last
32,000 iterations were used to establish.
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Figure S1. The process of image analysis using the ICA. (A) A typical merged image
for MAP2-positive hESC derivatives. (B) Processed images for the recognition of
nuclei. (C) MAP2-positive cells. (D) MAP2-positive neurites created using image A.
(E) Enlarged image (1.5X) of the inside of the green square in D. (F) Enlarged image
(8.5X) of the inside of the yellow square in D. The nuclei were discerned on the basis of
a threshold Hoechst signal strength in the blue channel images. Neighboring nuclei were
automatically separated (B, yellow spots). MAP2-positive cells were recognized on the
basis of the threshold of the Alexa 555 signal strength. The value of the MAP2-positive
area was obtained from similar processed images. The values for neurite length and
branching points were obtained from processed images (similar to D). Neurites were
distinguished from cell bodies, which were determined as MAP2-positive regions
surrounding nuclei as shown in E. The median lines of the neurites were traced
automatically (F, green lines), and their lengths were considered to be equivalent to
neurite lengths. Branching points were determined to be the branching points of the
median line (F, blue circle).
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Figure S2. Comparison of ICA and 1J data. The identical areas analyzed by ICA (A)
were traced again manually by 1J (C). The total neurites traced are shown as green lines.
(E) The correlation between ICA and 1J data for neurite length from 8 photographs.
Although the results obtained by ICA were approximately21.7-times larger than those
obtained using 1J, they showed a reliable correlation (R =0.8739). In addition, the
number of branching points was counted using both ICA (B) and 1J (D). The branching
points are indicated by green dots. (F) The correlation between ICA and IJ data of
branching points from 10 photographs. The results of ICA were approximately
4.4-times larger than those obtained by 1J, which was probably because the crossing
points of neurites were recognized as branching points. 1121 spite of such a large
difference, the branching points showed a robust correlation (R =0.8012).



Table S1. The primer used for RT-PCR in this study.
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Genes

Primer sequences

Forward (5' to 3')

Reverse (5' to 3")

Product
size

(bp)

Mouse
Nanog
Pou5f1
Eni
Nodal
Nes
Oxl
Pax6
Emx2
Hoxbl
Hoxb4
Oligl
Olig2
Map2
Gapdh

Human
NANOG
POUSF1
ENI
NODAL
NES
OTX1
PAX6
EMX2
HOXBI
HOXB4
OLIGI
OLIG?2
MAP2
GAPDH

TTTGCCTAGTTCTGAGGAAGC
CACGAGTGGAAAGCAACTCA
CCGGTGGTCAAGACTGACTC
CTCTGGCGTACATGTTGAGC
AGATCGCTCAGATCCTGGAA
AGGCGAGAGGTAGATGGTGA
CGGTGAGCAGATGTGTGAGA
GACCCGTCCACCTTCTACC
GAACCCAGCACTCTCACTCC
CTGGATGCGCAAAGTTCAC
CTGCGCGAAGTTATCCTACC
TTACAGACCGAGCCAACACC
GAGAAGGAAGCCCAACACAA
GGTGCTGAGTATGTCGTGGA

GATTTGTGGGCCTGAAGAAA
CTCACCCTGGGGGTTCTATT
GTCAAAACTGACTCGCAGCA
CCAAGCAGTACAACGCCTATC
AGCGTTGGAACAGAGGTTG
TCTTCGCCAAGACTCGCTAC
GTCCATCTTTGCTTGGGAAA
CGATATCTGGGTCATCGCTITC
CTCCGAGGACAAGGAAACAC
CTGGATGCGCAAAGTTCACG
GTCATCCTGCCCTACTCAGC
TATAGATCGACGCGACACCA
GGAGTAACCAAGAGCCCAGA
ATGGGGAAGGTGAAGGTCG

AGGCAGGTCTTCAGAGGAAG
CCAAGGTGATCCTCTTCTGC
CGCTTGTICTTCCTITCTCGTIT
CGTGAAAGTCCAGTTCTGTCC
CCAAGAGAAGCCTGGGAACT
GAGGCCAGGAGCAGTTCAG
CATGCTGGAGCTGGTITGG
AGCGTTGTGCAAAAGGAAAC
GGTGAAGTTTGTGCGGAGAC
CTCCTTCTCCAACTCCAGGAC
CAGCAGCAGGATGTAGTTGC
GATGGGCGACTAGACACCAG
CTTCCTCCACTGTGGCTGTT
GTGGTTCACACCCATCACAA

AAGTGGGTTGTTTGCCITTG
TCTCCAGGTTGCCTCTCACT
GCTTGTCCTCCTTCTCGTTC
TGGTGATCTAGGAGCACTCTG
AGGCTGAGGGACATCTTGA
GCACTGGAGAGGACTTCTITCT
CTAGCCAGGTTGCGAAGAAC
TGCCAGCTGCTTCCTITTC
CAGTTCTGTCAGCTGCCTTG
CGTGTCAGGTAGCGGTTGTA
CTGCCCAGCAGTAGGATGTAG
GAAAAAGGTCATCGGGCTCT
CTCTGCGAATTGGCTCTGAC
TGGAATTTGCCATGGGTGGA

154
174
137
110
145
109
113
106
123
112
111
166
124
141

155
235
130
205
171
180
111
183
175
138
107
208
166
170




Table S2. The normalized expression levels of genes in the mESC-derivatives exposed to MeHg.*
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Actual
MeHg 1 1 1 1 1 1 10 10 10 10 10 10 100 100 100 100 100 100
(nM)
MeHg 1.000 1.000 1.000 1.000 1.000 1.000 1.100 1.100 1.100 1.100 1.100 1.100 1.200 1.200 1.200 1.200 1.200 1.200
Enl 0.715 1.367 1.254 1.048 0454 1.192 1.100 0.837 0.633 1.850 1.737 2.724 1.582 1.429 1.172 0.935 2914 1.252
Nodal 0.653 2.140 0.957 1.112 0.757 0.762 0.757 0.520 0.387 0.791 0.349 0.779 1.797 7.764 2.720 4.422 69.679 2.002
Nes 0.899 0.739 1.090 1.234 1.085 1.175 0.899 0.739 1.090 1.085 1.175 0.920 1.521 1.254 1.558 1.128 1.246 1.455
Orxl 1.288 1.603 1.330 0.629 0.208 0.915 0.463 0.442 0.477 3.662 0.839 4.595 2.387  10.783 1.136 0.394 5.127 2.987
Emx2 0.560 1276 0.970 0.996 0.526 0.351 1.108 0.677 0.724 0.616 0.491 0.621 0.222 0.274 0.845 0.823 0.068 0.408
Pax6 1.286 1.203 1.290 1.110 1.102 1.102 1.110 0.947 0.863 0.813 0.649 0.704 0.498 0.522 0.536 0.687 0.165 0.362
Hoxbl 2.288 0.825 1.525  20.682 0.206 1.975 0.261 0.166 0.343 5.198 6.380 19444  16.609  11.751 1.677 0.508 7.128 7.189
Hoxb4 0.996 0.890 0.898 0.958 0.987 0.823 0.964 0.858 0.562 0.765 0.794 0.528 0.511 0.551 0.545 1.004 0.284 0.614
Map?2 1.018 0.837 1.080 0.837 0.759 0.808 0.855 0.902 0.787 0.797 0.839 0.674 0.378 0.359 0.401 0.627 0.106 0.426
Oligl 1.687 1.143 1232 1.478 1.406 1.338 0.928 1.300 1.393 1.084 1.347 1.164 0.889 1.162 1.054 1.135 0.669 1.094
Olig2 1.107 0.602 0.844 0.721 0.734 0.687 0.670 0.717 0.679 0.717 0.751 0.517 0378 0.486 0.393 0.598 0.160 0.473

*: Normalization procedure was described in the page-4 of this supplement.
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Table S3. The normalized expression levels of genes in the hESC-derivatives exposed to MeHg. *

Actual

MeHg 1 1 1 1 1 1 10 10 10 10 10 10 100 100 100 100 100 100
(nM)

MeHg 1.000 1.000 1.000 1.000 1.000 1.000 1.100 1.100 1.100 1.100 1.100 1.100 1.200 1.200 1.200 1.200 1.200 1.200
ENI 1.159 0.825 0.958 1.048 0.666 1.389 1.040 0.542 1.166 1.293 1.560 0.700 1.322 0.854 1.077 1.448 0.795 1.129

NODAL 0.932 0.915 1.522 0.714 0.932 0.891 1.215 1.292 1.557 0.938 3.444 2.460 4.464 3.368 2.017 0.761 2.112 0.873

NES 1274 1.253 0.964 0.966 1.054 1.016 1.045 0.973 1.142 1.161 0.928 0.819 1.125 1.004 0.781 1.208 0.635 0.936
OT1X1 1.357 0.859 0.688 0.928 1.129 1.225 1.073 0.817 1.246 1.385 0.516 1.059 1.544 1.045 0.879 1.122 0.413 1.322
EMX2 0.891 0.891 0.382 0.501 0.639 0.885 0.639 0.976 0.611 0.680 0.178 0.274 0.573 0.373 0.243 0.617 0.147 0.672
PAX6 0.907 0.848 0.412 0.623 1.049 0.775 0.760 1.044 0.598 0.681 0.240 0.466 0.647 0.564 0.469 0.740 0.243 0.520

HOXBI 0.406 0.834 5.161 1.421 1.928 0.930 1.308 1274 1.209 1.975 2.663 1.764 1.520 2430 1.509 1.509 2.300 1.184
HOXB4 0.207 1.039 9.919 6.170 2.876 1.321 3.159 1.897 3.331 1.887 9.283 9.758 5.806 7.686 7.948 1.543  10.607 2.876
MAP2 1.373 1.337 0.553 0.724 1.056 1.337 0.828 0.988 0.913 0.863 0.425 0.521 0913 0.589 0.464 1.002 0.386 0.714
OLIGI 1.514 1.193 0.969 1.215 1.339 1.183 1.244 1.798 1.095 1.283 1.808 0.988 1.278 0.991 0.745 0.346 0.762 1.125

OLIG2 1.189 1.845 1.242 1315 1218 2.121 2.579 2.783 1.052 2.843 2.843 1.977 1.796 1.676 1.423 1.387 0.712 1.580

*: Normalization procedure was described in the page-4 of this supplement.
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Abstract: The establishment of more efficient approaches for developmental neurotoxicity
testing (DNT) has been an emerging issue for children’s environmental health. Here we
describe a systematic approach for DNT using the neuronal differentiation of mouse
embryonic stem cells (mESCs) as a model of fetal programming. During embryoid body
(EB) formation, mESCs were exposed to 12 chemicals for 24 h and then global gene
expression profiling was performed using whole genome microarray analysis. Gene
expression signatures for seven kinds of gene sets related to neuronal development and

neuronal diseases were selected for further analysis. At the later stages of neuronal cell
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differentiation from EBs, neuronal phenotypic parameters were determined using
a high-content image analyzer. Bayesian network analysis was then performed based on
global gene expression and neuronal phenotypic data to generate comprehensive networks
with a linkage between early events and later effects. Furthermore, the probability distribution
values for the strength of the linkage between parameters in each network was calculated
and then used in principal component analysis. The characterization of chemicals
according to their neurotoxic potential reveals that the multi-parametric analysis based on
phenotype and gene expression profiling during neuronal differentiation of mESCs can
provide a useful tool to monitor fetal programming and to predict developmentally

neurotoxic compounds.

Keywords: developmental neurotoxicity; embryonic stem cells; high-content screening;

Bayesian network modeling; gene expression; multi-parametric analysis

1. Introduction

One of the emerging issues in developmental neurotoxicology is to detect effects of chemicals on
fetal programming, which is defined as variations in metabolism, gene expression and genome
modification during fetal life that induce or repress the somatic structure and physiological systems after
development [1-4]. A significant issue in the prevention of neurodevelopmental deficits of chemical
origin is the paucity of testing of chemicals for developmental neurotoxicity [5]. New, precautionary
approaches that recognize the unique vulnerability of the developing brain are needed for testing and to
control the use of chemicals.

Toxicity testing using embryonic stem cells (ESCs) is an efficient approach for developmental
neurotoxicity testing (DNT) [6,7]. Compared with the DNT in animal studies, which are costly,
time-consuming, and require considerable numbers of laboratory animals, the ESCs test is unique in
that, in a relatively simple cell-line-based assay, it incorporates the entire differentiation route from
pluripotent ESCs into differentiated cells [8]. Furthermore, as the neuronal differentiation of ESCs
provides insight into the early neurogenesis during embryonic development, several protocols have
been developed based on the disturbances of this process to model developmental neurotoxicity [9,10].
A 13-day neural differentiation protocol of mouse embryonic stem cells (mESCs), which is combined
with morphological observation, immunocytochemistry, gene expression and flow cytometry, has been
applied to assess the developmental neurotoxicity of methyl mercury chloride [9]. More recently, a
broad gene expression profile during a 20-day differentiation process of mESCs has been successfully
designed, in which transcription-based end points have been used to identify the disturbed neuronal
differentiation of mESCs [10]. Developing neurons display plasticity in the type of neurotransmitter
phenotype that they can assume, and alterations of synaptic activity and expression of neurotrophic
factors can influence the “wiring” of developing neuronal circuits [11]. Consequently, exposure to
environmental chemicals that promote or interfere with synaptic activity or expression/function of
neurotrophins can result in miswiring, leading to neurobehavioral anomalies. However, a sensitive
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method for quantitatively measuring alterations of fetal programming during neuronal differentiation,
particularly in the connection between the early disturbances and the later outcomes, has not yet
been devised.

Here, we produced a high-content and sensitive method for quantitatively measuring the
developmental neuronal toxicity of 12 environmental chemicals (see Table 1) using mESCs test
combined with DNA microarray analysis, morphological analysis and Bayesian approaches. This
confers a new predictive insight for chemical screening in a complex cell culture system that mimics
early mammalian embryonic development. We performed multi-parametric profiling of gene expression
data sampled at the early stage of mESC differentiation and neuronal phenotype data sampled at a later
stage of neuronal cell differentiation after embryoid body (EB) formation. Then, these sampled data
were analyzed by a Bayesian network analysis (BNA). This analysis can be depicted graphically to
represent the probability structure of the causal complex [12—14].

Table 1. Summary of 12 test chemicals.

. Physiological Effect Mode of .
Chemical Name Ellipsis Intended Use .. . Target Protein
and Toxicity Action
. . Endogenenous  Pseudo thyroid transcriptional  Thyroid hormone receptor
Triiodotyronine T3 .
hormne hormone regulation (TR)a, TRB
Medicinal Pseudo corticosteroid  transcriptional ~Glucocorticoid receptor
Dexamethazone DEX )
drug hormone regulation (GR)
. Endogenenous transcriptional ~ Estrogen receptor (ER)a,
17b-Estradiol E2 .
hormne regulation ERp
) Endogenenous transcriptional
Sa-Dihydrotestosterone DHT . Androgen receptor (AR)
hormne regulation
2,3,7,8-tetrachlorodibenzo-p Unintentional L transcriptional ~ Aryl hydrocarbon
TCDD . Multi-toxicity )
-dioxin chemical regulation receptor (AhR)
transcriptional  Retinoid X tor (RXR
Methoprene acid MPA Pesticides Teretogenecity ‘p ° reeer e
regulation RXRB, RXRy
. Medicinal ) Signal Hadgehog signaling
Cyclopamine CPM Teretogenecity o
drug inhibition pathway
L Medicinal Teretogenecity and L
Thalidmide TMD . Unknown Oxidative stress
drug Autism
4(OH)-2',3,3",4",5'- Metabolite of o Unknown
PCB Multi-toxicity Unknown L.
pentachlorobephenyl 107 PBC (ERa, oxidativestress)
Permethrin PMT Pesticides Neuro-toxicity Unknown Oxidative stress
. Plastic Reproductive and
Bisphenol A BPA . . Unknown Unknown (ERa, ERRY)
materials Neuro-toxicity?
Unknown [Peroxisome
Bis(2-ethylhexyl) Plastic Reproductive and proliferator-activated
DEHP . . Unknown
phthalate materials Neuro-toxicity? receptor (PPAR)a,

antiTR]
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The Bayesian algorithm used in this study was proposed by Toyoshiba et al. as a prediction tool
for the effect of exposure to chemicals [15]. The TAO-Gen algorithm is based on the assumption of
a linear relationship between changes in the expression levels of two genes following chemical
exposure [16], which employs the Gibbs sampling method on the search algorithm to estimate
posterior probability distribution [17,18]. The advantage of Gibbs sampling is that it samples from a
full conditional distribution and it is an efficient and easy sampling procedure. Gibbs sampling is a
Markov chain Monte Carlo method, which involves generating a sample from one or several variables
with an acceptance probability of one. This process is repeated until the sampled probability distribution
is close to the actual distribution. This algorithm can be used to search for key transcription factors of
signal transduction during ES cell differentiate process [19].

Figure 1. Experimental steps in this study for the assessment of developmental neurotoxicity.
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Therefore, the overall aim of this paper is to make a conceptual and methodological proposal
to establish a more efficient approach for DNT (Figure 1). More specifically, two objectives are
addressed. The first is to describe the DNT design and to identify multi-parametric profiling networks
(MPNs) multiple-index networks for 12 environmental chemicals as examples. These are based on the
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gene expression signatures of mESCs and phenotype profiling of neurons differentiated from EBs. The
second objective is to suggest an information-predictive approach to detect alterations of fetal
programming that can be made operational using BNA. We propose BNA as an operational tool for
empirically applying the DNT approach.

2. Results and Discussion

2.1. Phenotype Profiling Based on the Morphology of Differentiated Neuronal Cells by High-Content
Image Analysis and Generation of Phenotypic Networks

EBs neurally differentiated into neural cells after transfer to OP/L-coated plates. Effects of the
12 environmental chemicals on neural cell growth and NS morphology are shown in Figure 2.
Dexamethazone (Dex), Permethrin (PMT) and 17-estradiol (E2) significantly increased neurite length,
while 4-OH-2',3,3',4',5'-pentachlorobephenyl 107 (PCB), triiodotyronine (T3), Thalidmide (TMD),
cyclopamine (CPM) and methoprene acid (MPA) significantly decreased neurite length compared
with DMSO control (Figure 2A). In glial fibrillary acidic protein (GFAP) positive glial cells, Dex,
5a~dihydrotestosterone (DHT), bisphenol A (BPA) and PCB significantly increased neurite length,
while TMD significantly decreased neurite length (Figure 2B). Chemicals were then classified based on
morphological features by MPN analysis to extract and predict their toxicities. 12 phenotypic networks
(PNs) were generated from the MPN analysis based on the phenotypes of neuronal cells and NSs. We

manually classified three categories out of thel2 PNs depending on network structures (Figure 3).

Figure 2. Morphological data of MAP2-positive neurons and glial cells. (A) Total length
of MAP2-positive neurons per well; (B) Total length of glial processes per well. * P <0.05,
** P <0.001 vs. the vehicle control (DMSO).
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Figure 3. Classification based on morphological imaging and phenotypic feature networks.
Class 1: Extension from the turning point is short while the neurite is long; Class 2: Neurite
is long and the branch point is complex; Class 3: Neurite is short and there are many
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2.2. Generation of a Comprehensive Network Based on Gene Expression and Phenotype Profiling by
a Bayesian Network Model

A significant advantage of our unique MPN analysis is that it can predict the correlation coefficient
for each pair of nodes, regardless of the data types. Our initial efforts were to derive the interactions
between variations of gene expression data after chemical exposure at the early stage of mESC
differentiation and effects on the neuronal phenotype data sampled at a later stage of neuronal cell
differentiation after EB formation. That is to perform a comprehensive analysis combining data from
two different properties. We extracted a discriminative gene group as a gene expression signature from
exhaustive genetic profiling, each group was defined by their characteristic category (Table 2) and these
gene sets were used in a gene and phenotype interaction network (GPIN) with cell morphological data
(Figure 4). To verify whether the MPN analysis can draw out the developmental neurotoxicity, typical
examples of DPINs for autism and Parkinson’s disease related gene sets exposed to TMD and PMT,

respectively, were discussed.

Table 2. Lists of 7 gene sets selected for network analysis.

Alzheimer Autism Parkinson Axon Guidance Pluripotent Neural Development Oxidative-Stress

AR AR AR 1500003003Rik  Arid3b Atbfl Aass
ApoE Cntnap2 Casp3 Abll Esrrb Cdyl Als2
App En2 Casp7 Ablim1 Fkbp3 Fos Apoe
Bace Esrl Casp9 Cfl1 Hdac2 Gbx2 Ctsb
Casp3 Esr2 Esrl Cxcll12 Klf4 Gfap Dnm?2
Casp7 Fmrl Esr2 Efna4 Mybbpla Hrasl Fancc
Esrl Foxp2 Park2 Epha2 Naccl Map2 Gpx7
Esr2 Gabrb3  Park7 Ephbl Nanog Mapk1 Gpx8
Ide Mecp2 RARa Nfatc2 Nfkbib Mapk3 Gusb
N1rl Nlgn3 RARD Nfatc3 NrObl Nestin Hprtl
Mme RARa RARg Ntngl Nr5a2 Pla2g6 Kif9
Psen RARD Slc6a3 Sema3a Pou5fl1 Rafl Noxol
RARa RARg Snca Sema3b Rex1 Rhog Nxn
RARD Reln Th Sema3d Sall4 Rifl Park?7
RARg Slc6a4  Uchll Sema3f Smarcadl Rpso6kal Ppplrishb
Tnfrsfla Tscl Sema3g Smarccl Salll Prdx2
Tsc2 Semaba Sox2 Shel Prdx6-rsl
Ube3a Sema6b Spl Smarcad] Psmb5
Sema6d Spagl Sox2 Recql4
Srgap3 Trim28 Tuj1 Scdl
Unc5d Zp281 Map2k1 Slc41a3
c-Myc Sodl
Sod3
Txnip
Txnrdl

Xpa
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Figure 4. Typical example of GPINs for autism and Parkinson’s disease gene sets. Gene
expression and morphological parameters were connected by the strength of the correlation.
GPINs of autism related genes and morphological parameters: (A) the vehicle control
(DMSO) and (B) TMD exposure. GPINs of Parkinson’s disease related genes and
morphological parameters; (C) the vehicle control (DMSO) and (D) PMT exposure.
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In DMSO control GPIN, RARa positively regulates Fmr1 expression via positive regulation of RARy
expression, suggesting that RA induced neural differentiation could maintain Fmrl expression. On the
other hand, Mecp2, the responsible gene of Rett syndrome, negatively related with Fmr1 expression. It is
reasonable because Mecp2 plays a role in the transcriptional repression of methylated genes including
Fmrl [20]. However, in TMD-exposed GPIN, Fmr1 was not regulated by RARs, indicating the neural
induction by RA was counteracted by TMD. TMD repressed expression of Fmr1 and Mecp2 and MPN
analysis also revealed that Fmrl positively related with Mecp2 in TMD treated EB derivatives. The
results mean that TMD repressed expression of Mecp2 via repression of Fmrl expression. It seemed to
contradict the epigenetic silencing of Fmrl gene by Mecp2. However, Zhang ef al. reported that Mecp2
mRNA expression level was drastically decreased in the brains of Fmr1 knockout mice, an animal model
of fragile X syndrome of autism spectrum [21]. This means the relationship between Fmrl and Mecp?2 is
different between normal and pathological neurons. Additionally, Gabrb3, a subunit of GABA A
receptor, was positively affected by Mecp2. In Mecp2 deficient mice, subtle dysfunction of GABAergic
neurons contributes to numerous neuropsychiatric phenotypes [22]. The relationship of morphological
parameters and gene expression parameters was also changed by TMD. RARs became a hub connecting
the genes and morphological parameters and NS formfactor related to expression of some genes
independently from other morphological parameters in DMSO control GPIN. This result suggests that RA
induced neural differentiation via RARs, thereby, inducing morphological changes. In TMD-exposed
GPIN, the morphological parameters were independent from RARs and the expression of Tsc2 related to
them via positive connection with NS_formfactor. These results also indicated a counteraction by TMD
against the neural induction by RA. Tcs2 is well known to affect cell proliferation and to control cell size
and neural development [23]. Therefore, Tsc2 had a high correlativity to morphological parameters.

Parkinson’s disease is the result of degeneration of dopaminergic neuron expressing Th. Recently,
some research showed that exposure to pyrethroids including PMT could change the dopaminergic
system [24,25]. The genes including in the Parkinson set can be divided into three groups, the ubiquitin
pathway (Park2, Snca and Uchl1) and the mitochondrial pathway (Park7, Casp3, Casp7 and Casp9) [26]
and genes needed for normal dopaminergic activity (Slc6a3 and Th). In DMSO control GPIN, the
ubiquitin pathway genes were not connected into the network. The mitochondrial pathway genes were
connected positively but no connection was detected affecting the expression of Th. These results mean
that the differentiation of Th positive neuron was not affected by both pathways in normal neuronal
differentiation. However, in PMT-exposed GPIN, all genes were connected into the network.
Th expression was positively related by Park7, RARP, Slc6a3 and Uchll and negatively related by Snca,
Esrl, Crossing_point and NS _formfactor. These results suggest the differentiation of Th positive neuron
was affected in a complex manner in PMT exposed EB derivatives. Interestingly, Park7, Casp3, Snca,
Park2 and Casp9 were connected indicating the ubiquitin pathway and the mitochondrial pathway
affected each other as well as they do in dopaminergic neurons of Parkinson’s disease. Th positive
neuron might die by apoptosis because we detected the increased expression of Casp3 and Casp9 in
addition to these results. Although all morphological parameters were connected to GPIN in DMSO
control, the NS morphological parameters (NS_area, NS_count and NS _perimeter) were not connected
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to other morphological parameters or genes in the PMT-exposed GPIN. The neurite morphological
parameters (Neurite length, Branch point, Crossing_point and Posi_area) influenced expression of
genes in contrast to the NS morphological parameters. Considering the significant increase of total
length of Map2-positive neuron (Figure 2A) and no change in the NS morphological parameters by PMT,
the PMT-exposed GPIN successfully drew the change of neuronal morphology.

The comparison of TMD-exposed GPIN or PMT-exposed GPIN with DMSO control GPIN for
Autism set and Parkinson’s disease set could be understood without contradicting known pathological
pathways. Therefore, we propose that our MPNs approach could draw out the risk of chemicals. The
gene expression profiling data of our study have been published on the Profiles of Chemical Effects on
Cells (pCEC) system [27], which is a toxicogenomics database with a toxicoinformatics system for
risk evaluation and toxicity prediction of environmental chemicals [28] and produced by the National
Institute of Environmental Studies, Japan. The microarray data have also been released on the GEO
data base [29].

2.3. Classification of Chemicals Based on the Values of the Parameters of the Comprehensive Networks

The genomic data and cell morphological data were converted to the same matrix vector and were
used to analyze GPIN. Principal component analysis (PCA) based on the probabilistic relationship data
of the GPIN showed that all variance between the 12 chemicals could be described using the first and
second principal components (PCs) (Figure 5). The two dimensional PCA plot showed four different
groups: DMSO control (black), TMD group (CPM and DHT, green), BPA group
[2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), PCB, T3, bis(2-ethylhexyl) phthalate (DEHP) and E2, blue]
and MPA group (PMT and DEX, red) were derived for the Alzheimer’s disease related gene set. The
same color coding was used for other experiments, which enabled us to visually recognize changes to the
grouping of chemicals. When the largest variable variation was placed in the vertical axis (PC1) and
the second variation in the horizontal axis (PC2), the two-dimensional plot showed the position of each
chemical. PMT and DEX were located near, but separated from, DMSO in Alzheimer set and Parkinson
set. The toxic effects of DEX were reported in animal model of Alzheimer’ disease [30] and Parkinson’
disease [31] although we found no report about PMT in Alzheimer’s disease. In Alzheimer set, E2 was
located further away from DMSO than DHT and the opposite positioning was detected in Parkinson set.
It might reflect the sexual differences of the diseases as the risk of Alzheimer’s disease is higher in
females [32] and that of Parkinson’s disease is higher in males [33]. Because the responsible genes of
gender specific Autism spectrum were involved in the Autism set, such gender dependent differences
might not be detected in present data. In Autism set, TMD was more separate from DMSO than the
others. Indeed other than TMD, the chemicals show no evidence of involvement in autism at present. In
the Axon guidance set, all chemicals were almost equally distant from DMSO. As shown in (Figure 2A),
all chemicals influenced the total length of Map2-positive neuron at high dose. Therefore, this result is
reasonable. In the pluripotent set, PMT and PCB were separated from the others indicating that these
chemicals affected the differentiation from ES cells. In fact, PMT and PCB are also located away from

DMSO in neural development set. The characterization of chemicals according to their neurotoxic
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potential reveals that the method described in this current study—that the MPN analysis based on
phenotype and gene expression profiling during neuronal differentiation of mESCs—can provide a

useful tool to monitor fetal programming and to predict developmentally neurotoxic compounds.

Figure 5. PCA based on Bayesian network parameters. PCA were applied to the Bayesian
network parameters based on phenotypic and global gene expression profiling to evaluate
the neurotoxicity of 12 environmental chemicals. Score plots based on (A) Alzheimer’s
disease related gene set; (B) Autism related gene set; (C) Parkinson’s disease related gene
set; (D) Axon guidance related gene set; (E) Pluripotent related gene set; (F) Neural

development related gene set; and (G) Oxidative stress related gene set.
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2.4. Discussion for Future Work

ESCs test combined with transcriptomics for the assessment of development toxicity has been well
studied in recent years [8,34]. However, studies based on the genotype-phenotype profiling are rare. Cell
phenotypes are complex and difficult to quantify in a high throughput fashion. The lack of
comprehensive phenotype data can prevent or distort genotype-phenotype profiling. Our study
described a unique approach to perform multiple phenotype profiling using gene expression data from
the early stage of mESC differentiation and morphological data of neuronal cell differentiation after EB
formation. Our method provided numerous advantages: (i) Our method can predict multiple phenotype
profiles, which could help researchers to reveal different aspects of complex diseases and facilitate
treatment design; (ii) Our method can provide a quantitative phenotype description of the sample
characteristics; (iii) Our method can extrapolate the profiling to classes beyond those represented in the
training data. This is an advantage over traditional classification methods. In contrast, traditional
regression methods cannot be directly applied to microarray datasets from different platforms and
cannot predict relationships between early events and late phenomena during the differentiation of ES
cells into neuronal cells. However, our method can be applied to other types of genomics data such as
proteomics or metabolomics. The present study focuses on linear gene-phenotype associations, but more
complex relationships can also be devised depending on the data characteristics. Our multi-parametric
profiling method for constructing interfering networks of the gene expression data and cellular
phenotypic data is only one of many possible approaches. As mentioned above, our MPN analysis can
predict the correlation coefficient for each pair of nodes, regardless of the data types. Therefore, our
informatics approach and experimental design is also an efficient tool for data integration, mining and
network analysis for the other model systems. However, another important issue for the future will be
the validation of a larger set of chemicals at a broad concentration range to identify the specific and
mechanistically defined markers for differential environmental chemicals.

ES cell-based assays are a promising platform to assess developmental toxicity, because they are
capable of recapitulating many of the differentiation states and rely on signaling pathways present in
development. We used a neuronal differentiation assay of mESC to assess the activity of groups of
environmental chemicals, most of which have in vivo toxicity data. The results of this study
demonstrated that a subset of tested chemicals are effective in this assay, and that as a statistical analysis,
BNA, identified predictive models of detecting fetal programming in the mESC differentiation for a
subset of the tested chemicals. Chandler et al. demonstrated evaluation of environmental chemicals
using a mESC adherent cell differentiation and cytotoxicity assay, showing that genes involved in
reactive oxygen species signaling pathways were strongly associated with decreased ES cell
differentiation [35]. However, their approaches are linear regression or categorical approaches and are
not identical with our approaches. Our approach is unique in linking early gene expression events to the
later cellular phenotype features by BNA, which has become popular among biological scientists [36].
Many studies using BNA focus on basic physiological and developmental phenomenon based on cell
proliferation [37]. In contrast, our study targets effects of early exposure on late-onset phenotypes, in

accordance with the principles of fetal programming against environmental chemicals. In this regard,



