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ARTICLE INFO ABSTRACT

Maturation-associated changes in the internal distribution of tetrodotoxin (TTX) in the
goby Yongeichthys criniger were investigated in 29 and 40 female specimens collected from
Okinawa, Japan, from August 2008 to June 2009 (Group 1), and from November 2009 to
August 2010 (Group [I), respectively. In Group I, based on changes in the gonadosomatic
index (GSI) and histologic observation of the ovary, the period from October 2008 through
January 2009 was estimated to be the ‘previtelline-forming period’, February through
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f{‘g gng;)dn (TTX) March 2009 the ‘vitelline-forming period’, April through June 2009 the ‘spawning period’,
Geoliy and August 2008 the ‘end of spawning period’ of the preceding year. The TTX content

(mouse unit [MU] per gram tissue) of each Y. criniger tissue (skin, muscle, liver, and ovary)
quantified by liquid chromatography/mass spectrometry (LC/MS) was generally high
during the spawning period and continued to rise until the end of spawning period,
especially in the ovary. Total TTX per individual increased considerably during the
spawning period, most of which located in the ovary, indicating that Y. criniger obtains
a high amount of TTX during the spawning period, and accumulates most of it in the ovary.
In contrast, the TTX content of the skin was highest at the end of spawning period, and
most of the total TTX located in the skin during this period as well as during the
previtelline-forming period. In Group II, the maturation stage of the ovaries of all speci-
mens was determined, and the specimens were grouped accordingly. In the perinucleolus
stage, yolk vesicle stage, and yolk globule stage I, most of the TTX was localized in the skin,
but the TTX in the ovary greatly increased as the maturation stage advanced from yolk
globule stage I to yolk globule stage III.

Yongeichthys criniger
Gonadosomatic index (GSI)
Reproductive cycle
Maturation stage

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The pufferfish toxin, tetrodotoxin (TTX), is a highly
potent neurotoxin, and was once believed to distribute only
through pufferfish. Since Mosher et al. (1964) isolated tar-
ichatoxin from the eggs of the California newt and

* Corresponding author. Tel./fax: +81 95 819 2844.
E-mail address: arakawa@nagasaki-u.ac,jp (O. Arakawa).

0041-0101/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.toxicon.2012.11.009

identified it as TTX in 1964, however, TTX has been detec-
ted in many organisms of different phyla, including frogs,
octopuses, gastropods, starfish, crabs, flatworms, ribbon
worms, and marine bacteria (Miyazawa and Noguchi,
2001). Among fish, the goby Yongeichthys (Gobius) cri-
niger, as well as pufferfish, possess TTX (Noguchi and
Hashimoto, 1973). Y. criniger are widely distributed over
the Indo-Pacific Oceans, African east coast, China, and
Taiwan, and often appear in coastal waters of the South-
west Islands in Japan, especially estuarine areas where

174 —



MFEEROTITY - BRI

R. Tatsuno et al. / Toxicon 63 (2013) 64~69 65

mangrove forests develop (Shibuno et al, 2008). Gobies
accumulate TTX not only in the skin, liver, intestine, and
ovary, but also in the muscle and testis, which are usually
non-toxic tissues in toxic marine pufferfish (Noguchi et al.,
1971). In general, TTX is believed to be exogenous in TTX-
bearing organisms, and derived from the food chain
(Noguchi and Arakawa, 2008), but there are only a few
cases in which the toxic food organisms involved in their
intoxication are fully elucidated. Although Saito and
Kishimoto (2003) investigated the food organisms of Y.
criniger, they could not specify the organisms involved in
the intoxication.

Ikeda et al. (2010) recently investigated seasonal
changes in the toxicity of the pufferfish Takifugu poecilo-
notus, and indicated that ovary toxicity rises with an
increase in the gonadosomatic index (GSI). Although Lin
et al. (2000) examined seasonal variations in toxicity in
the Taiwanese Y, criniger, it is not clear whether the same
phenomena occur, because they did not distinguish
between male and female specimens. In our studies to
clarify the accumulation mechanism of TTX, and the effect
of maturation on the accumulation in TTX-bearing fish, we
investigated changes in the internal distribution of TTX as
the ovaries matured in female specimens of Y. criniger
inhabiting Okinawa, Japan.

2. Materials and methods
2.1. Goby specimens

From August 2008 to August 2010, wild specimens of Y.
criniger were collected from the Okukubi River, Okinawa
Prefecture, Japan, which were frozen immediately after
collection, and kept below —30 °C while being transported
to the laboratory at Nagasaki University. Each specimen was
partially thawed, and the skin, muscle, liver, and gonads
were dissected out. Sex was determined by observing the
gonad section under a light microscope, and 29 females
collected from August 2008 to June 2009 (Group I) and 40
females collected from November 2009 to August 2010
(Group II) were used in the experiments as described below.

2.2. Gonadosomatic index (GSI)

The GSI of each specimen was calculated from its gonad
weight (GW) and body weight (BW) using the following
equation: GSI = 100 x GW/BW.

2.3. Histologic observation of the ovary

Ovary sections were prepared according to conventional
histologic procedures. Briefly, tiny blocks from the ovaries
of representative specimens of Group I and all specimens of
Group II fixed in Bouin's fluid were dehydrated through an
ascending series of ethanol (70-100%), lucidified in xylene,
and embedded in paraffin. The embedded ovaries were
sectioned with a microtome at a thickness of 3-5 um, and
each section was deparaffinized in xylene, rehydrated
through a descending ethanol series (100%-70%), and then
rinsed with water. The sections were stained with hema-
toxylin—eosin, and observed under a light microscope.

2.4. TIX quantification

Skin, muscle, liver, and ovary of each specimen were
extracted with 0.1% acetic acid (Japan Food Hygiene
Association, 2005). Each tissue extract was filtered
through an HLC-DISK membrane filter (0.45 pm; Kanto
Chemical Co., Inc,, Japan) and then liquid chromatography/
mass spectrometry (LC/MS) analysis for TTX was performed
according to the method of Nakashima et al. (2004). ATTX
standard, purchased from Wako Pure Chemical Industries,
Ltd., Japan (purity >90%), was calibrated using a mouse
bioassay (Japan Food Hygiene Association, 2005), and the
amount of TTX was expressed in mouse units (MU), where
1 MU (equivalent to ~220 ng TTX) was defined as the
amount of toxin required to kill a 20-g male ddY strain
mouse within 30 min after intraperitoneal administration.
A preliminary experiment revealed that the Y. criniger toxin
comprised mainly TTX, therefore TTX derivatives were not
analyzed in the present study.

2.5. Immunohistochemic observation of the skin

A part of the skin of the goby specimen was immuno-
histochemically observed under a light microscope
according to the previously reported method (Tanu et al.,
2002; Mahmud et al., 2003a,b) using the anti-TTX antibody.

3. Results

3.1. Estimation of the reproductive cycle and ovarian
maturation stage

Changes in GSI are shown in Fig. 1. The GSI of Group I
was low (0.13-0.48) from August 2008 through January
2009, but began to increase in February 2009, and
remained high (0.94-9.31) until June, Changes in GSI were
similar between Groups | and Il. Namely, except for one
individual (1.02) from December 2009, the GSI was low
(0.11-0.62) until January 2010, began to increase in
February, remained high (0.71-9.00) until June, and then
greatly decreased (0.23-0.45) thereafter.

Light microscopic observations of ovarian sections from
Group I are shown in Fig. 2. The oocytes were immature and
in the perinucleolus stage (hematoxylin positive; baso-
philic) from October 2008 through January 2009 (Fig. 2-b),
after which vitelline began to accumulate, and oocytes in
the yolk vesicle stage, yolk globule stage I, and/or yolk
globule stage 1I (eosin positive; acidophilic) were observed
from February through March 2009 (Fig. 2-c). During the
period from April through June 2009, we observed oocytes
that reached the yolk globule stage Il (Fig. 2-d). On the
other hand, atretic follicles, in which fragmentation of the
nucleus occurred, were observed in addition to the oocytes
in the yolk globule stage II in August 2008 (Fig. 2-a).

Based on the above observations, for Group I, we
considered the period from October 2008 through January
2009, when the GSI was low and the perinucleolus stage
oocytes were observed, to be the ‘previtelline-forming
period'; February through March 2009, when GSI began to
increase and oocytes in the yolk vesicle to yolk globule
stage Il were observed, the ‘vitelline-forming period'; April
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Fig.1. Seasonal changes in the gonadosomatic index (GSI) of Group I (upper)
and Group 11 (lower). Data are shown as individual values (open circles) and
mean of each month (filled circles on the solid line).

Fig. 2. Light micrographs of a representative ovarian section from the Y.
criniger specimens collected in August 2008 (a), October 2008-January 2009
(b), February-March 2009 (c), and April-June 2009 (d). P, Yg1-3, and Af
indicate the oocytes in the perinucleolus stage, yolk globule stage 1-11f, and
atretic follicle, respectively.

through June 2009, when GSI was high and oocytes in the
yolk globule stages I and Il were observed, the ‘spawning
period’; and August 2008, when GSI was low and the atretic
follicles were observed, the ‘end of spawning period’ of the
preceding year.

In Group I], although no atretic follicle was found, oocytes
in the perinucleolus stage, yolk vesicle stage, and yolk
globule stages I to Il were observed as in Group I (data not
shown). Because a mix of different maturation stages of
oocytes could be observed in the same individual, the
maturation stage of the individual was expressed as the
most advanced maturation stage observed, From November
2009 to January 2010 (corresponding to the previtelline-
forming period in Group I), 10 of 11 individuals, and from
July to August 2010 (end of spawning period), 4 of 5 indi-
viduals were in the perinucleolus or yolk vesicle stage, while
from February to March 2010 (vitelline-forming period), 7 of
9 individuals were in yolk globule stage I or yolk globule
stagell, and from April to June 2010 (spawning period), all 15
individuals were inyolk globule stage Il oryolk globule stage
III (Table 1).

3.2. Internal distribution of TIX

Changes in TTX content (MU/g) of the skin, muscle, liver,
and ovary in Group I are shown in Fig, 3. The TTX content of
each tissue was generally high at the end of spawning
period, and in April and June during the spawning period,
while it was low in the other periods, especially during the
vitelline-forming period. The skin had the highest TTX
content (mean 311 MU/g) at the end of spawning period,
whereas the other tissues showed the highest content in
April and June of the spawning period. The ovary had an
extremely high TTX content during this period, with the
maximum score reaching 4050 MU/g.

The TTX tissue distribution of each reproductive period
in Group [ is shown in Fig. 4. The columns are stacked bars
representing the TIX amount of each tissue, and the pie
graph shows the percent contribution of each tissue to the
total TTX amount for each reproductive period. In the
previtelline-forming period, total TTX was 261 MU/indi-
vidual, of which 77% was in the skin, followed by 18% in the
muscle. In the vitelline-forming period, the TTX distribu-
tion greatly changed with the total TTX decreasing to
117 MU/individual; with the ovary containing 45% of the
total TTX, and the skin containing only 43%. In the
spawning period, total TTX increased about 8-fold
(922 MuU/individual) from that in the vitelline-forming
period, during which 73% of the TTX was in the ovary. At
the end of spawning period, total TTX (855 MU/individual)
was almost equivalent to that in the spawning period, but
the TTX distribution was differed considerably; the skin
had 81%, the muscle 14%, and the ovary approximately 2%.
This pattern was rather similar to that in the previtelline-
forming period. The ratio of liver TTX to total TTX was
very low, and, like that in muscle, remained almost
unchanged throughout the entire reproductive cycle.

The TTX tissue distribution of each maturation stage
(% contribution of each tissue to the total TTX amount) in
Group II is shown in Fig. 5. In the individuals in the peri-
nucleolus stage, yolk vesicle stage, and yolk globule stage I,
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Table 1

Change in the number of individuals in each maturation stage during the putative reproductive cycle in Group II.

Maturation stage Number of individuals

Previtelline-forming period Vitelline-forming period Spawning period End of spawning period
(Nov 2009-Jan 2010) (Feb-Mar 2010) (Apr-Jun 2010) (Jul-Aug 2010)
Perinucleolus 5 0 0 2
Yolk vesicle 5 2 0 2
Yolk globule stage 1 0 1 0 1
Yolk globule stage 1I 1 6 13 0
Yolk globule stage 11 0 0 2 0

70%-77% of the total TTX was in the skin, followed by 18%-
27% in the muscle, The TTX in the ovary, however, greatly
increased as the maturation stage advanced from yolk
globule stage I to yolk globule stage III, and exceeded 50% in
yolk globule stage I1I. As in Group I, the ratios of muscle and
liver TTX to total TTX remained almost unchanged, irre-
spective of the maturation stage.
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Fig. 3. Seasonal changes in the TIX content (MU/g) of each tissue in Group 1
Data are shown as the mean (column) and SD (error bar) of each month.
White, light gray, gray, and dark gray zones indicate ‘previtelline-forming
period’, ‘vitelline-forming period’, ‘spawning period’, and ‘end of spawning
period’ of the preceding year, respectively.

3.3, Microdistribution of TIX in the skin

In Y. criniger skin, TTX distributed almost equally over
the entire epidermis layer comprising basal cells, mal-
pighian cells, and sacciform cells (Fig. 6).

4. Discussion

In Group I, the period from October 2008 through
January 2009 was considered the previtelline-forming
period, February through March 2009 the vitelline-
forming period, April through June 2009 the spawning
period, and August 2008 the end of spawning period, based
on changes in the GSI and histologic observations of the
ovary. Y. criniger specimens were grouped according to the
reproductive cycle, and the amount of TTX was evaluated.
From March through June 2009, the GSI variability was
great, and individual variations in the maturation stage of
the ovaries (oocytes) were observed. Particularly during the
spawning period, many oocytes were in the yolk globule
stage [II just before spawning in the specimens obtained in
April and June, while no such oocytes were observed in the
specimens obtained in May. As Y. criniger spawns multiple
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Fig. 4. Reproductive cycle-associated changes in TTX amount (MU/indi-
vidual; column graph) and relative TTX amount (% of total TTX amount; pie
chart) of each part in Group I Total TTX amounts are shown by mean

(stacked column) and SD (error bar).
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Fig. 5. Maturation stage-associated changes in the relative TTX amount (% of
total TTX amount) of each part of the specimens from Group 1L

times with an interval of 15-20 d (Saito et al., 2002; Tanaka
et al., 2005), we presumed that specimens obtained in May
were in the gap between spawning periods. In Group |,
histologic observations were performed using only some of
the specimens representing each period, but in Group II, to
investigate the influence of maturation more precisely, the
maturation stage of the ovaries of all specimens was
determined, and the specimens grouped accordingly. As
seen in Table 1, advances of ovarian maturation corre-
sponded well with the putative reproductive cycle.

The TTX content of each Y. criniger tissue in Group I was
generally high during the spawning period and at the end

Fig. 6. Immunohistologic observation of the skin section of goby (upper).
TTX, visualized as a brown color, was found in basal cells (Bc), malpighian
cells (Mc), and sacciform cells (Sc). No TTX was observed in negative control
sections (lower).

R Tatsuno et al. / Toxicon 63 (2013) 64-69

of spawning period (Fig. 3). The TTX content of the ovary
increased considerably during the spawning period. Ikeda
et al. (2010) investigated seasonal changes in the toxicity
of T poecilonotus tissues, and reported that ovary toxicity
greatly increases with maturation of the ovary during
development. Like pufferfish, Y, criniger also accumulate
high concentrations of TTX in the ovaries as they mature. In
the case of T. poecilonotus, the toxicity of all tissues declines
sharply just after spawning. In Y. criniger, the TTX content of
each tissue also decreased once in May, possibly because
a lot of toxin was discharged with the eggs during
spawning. The TTX content, however, greatly increased
again in June, possibly because the goby is polytelic. Saito
et al. (2002) reported that when Y. criniger are reared
with non-toxic food after spawning, the eggs contain no
toxin at the next spawning. These findings suggest that Y.
criniger ingests large amounts of toxic food organisms
when entering the spawning period, and thus obtain
a great amount of TTX.

The TTX content of the liver and muscle showed
essentially similar changes to those in the ovary. In T, poe-
cilonotus, ovary toxicity is high during the maturation
period, but that of the liver is high during the ordinary
period, suggesting that toxin turnover occurs between the
liver and ovary (Ikeda et al,, 2010). Such phenomena were
not observed in Y. criniger, suggesting that unlike pufferfish,
the Y. criniger liver has little TTX storage function during the
previtelline-forming period.

In Group I, total TTX per individual considerably
increased during the spawning period, most of which was
in the ovary (Fig. 4). Moreover in Group I, the ratio of ovary
TTX to total TTX was greatly increased as the maturation
stage advanced from yolk globule stage I to yolk globule
stage III (Fig. 5), supporting the hypothesis that Y. criniger
take up large amounts of TTX during the spawning period,
and transport and accumulate most of it into the ovary
according to the maturation of oocytes. Although the
specific toxin accumulation in the ovary seems to start in
the vitelline-forming period, the reason for the low TTX
content during this period in Group I is not clear. Y. criniger
might ingest few toxic food organisms during this period.

In Group I, the TTX content of the skin was highest at the
end of spawning period (Fig. 3), and, as in the previtelline-
forming period, most of the total TTX accumulated in the
skin (Fig. 4). It is possible that when eggs that remain to be
ovulated at the final spawning were involuted and absor-
bed, a high concentration of accumulated TTX was taken up
with the vitellary substances into the body and then
transferred to the skin. Because even TTX-bearing organ-
isms die if they ingest huge amounts of TTX at once (Saito
et al,, 1984; Noguchi and Arakawa, 2008), the skin might
have a role in eliminating excess TTX taken up from the
atretic follicles. The fact that unlike pufferfish, the TTX-
accumulating ability of the liver is low in Y. criniger might
contribute to the high TTX content in the skin at the end of
spawning period and previtelline-forming period in Group
I, or in the perinucleolus stage, yolk vesicle stage, and yolk
globule stage I in Group II (Fig. 5). On the other hand,
pufferfish and newts have TTX-bearing glands or secretory
cells (sacciform cells) in their skin (Tanu et al, 2002;
Tsuruda et al,, 2002; Mahmud et al., 2003a,b), and secrete
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TTX in response to external stimuli (Kodama et al,, 1985;
Saito et al,, 1985; Tsuruda et al., 2002). Because such TTX-
bearing secretory cells were also observed in Y. criniger
skin (Fig. 6), the TTX content of the skin might be high so
that the toxin fulfills a biophylactic function, as in pufferfish
and newts.

In the present study, we could not collect enough
specimens each month for statistical analyses, partly
because we focused only on females. In addition, wide
variations in the maturation stage and TTX content during
the spawning period, due particularly to the polytelic
characteristic, were observed in Group I. Therefore,
although our results indicated that the TTX content was
significantly higher in the ovary than in the other tissues
during the spawning period (Tukey's test, p < 0.05), addi-
tional statistical analyses could not be performed. This was
the case in Group Il as well, in which only 2 individuals each
corresponded to yolk globule stages I and III.

Although TTX-binding proteins are found in the blood
plasma of toxic marine pufferfish (Matsui et al, 2000;
Yotsu-Yamashita et al., 2001, 2010; Tatsuno et al., 2012) and
may be involved in toxin transportation, it is unclear
whether Y. criniger possesses similar proteins. This, along
with the molecular mechanisms involved in TTX trans-
portation/accumulation to the oocytes and skin, is
currently under investigation.
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From January to June 2009, a total of 64 gastropod specimens of 15 species were collected from
the coastal waters of Okinawa Prefecture, Japan, and examined for toxicity by means of mouse bio-
. assay. Among the specimens tested, 5 species, Nassarius glans, Nassarius coronatus, Oliva annu-
lata, Oliva concavospira and Zeuxis sp., were toxic. The toxicity scores of N. glans were very high;
39.6-461 MU/g in muscle, and 98.6-189 MU/g in viscera including digestive gland, followed by
Zeuxts sp. (12.7 MU/g in whole body), N. coronatus (5.64—11.1 MU/g in whole body), O. annulata
(10.8 MU/g in the whole body), O. concavospira (6.65 MU/g in the muscle). Liquid chromatogra-
phy/mass spectrometry (LC-MS) revealed that the major toxic component was tetrodotoxin (TTX),
which accounting for 13-82% of the total toxicity. As for the remaining toxicity in the case of N.
glans, 4,9-anhydroTTX, 4-epiTTX and 11-0x0TTX were contributors. Moreover, Niotha albescens
showed no toxicity (less than 10 MU/g) in mouse bioassay, but TTX (5.08 MU/g) was detected by
LC-MS. Paralytic shellfish poison was not detected in any of the specimens by high-performance
liquid chromatography with fluorometric detection (HPLC-FLD).

(Received September 5, 2012)

Key words: BRAEMER scavenging gastropod; W &M% B carnivorous gastropod; ¥ ¥ 3 %A
Nassarius glans; B3 food poisoning; 7 7 # H # pufferfish toxin poisoning; 7 7' # puffer-
fish toxin; 7 F 17 F b F 3 ¥ tetrodotoxin
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t~4 = exaspertata STAEOEF SR 154 AR L L2, w

BRI 2ARFUAEPEL LT, BEATIRERKE
KBTI TYHAFKRY 20 KS Charonia sauliall £ 5
RESMONTW S, AHEFIT1979~1987F IZFM,
K, BEOLZETERERLIGREAEL, BEEIIFH4
%, ERPWEZF ba F M+ PV (tetrodotoxin: TTX)
PHREIRTY LYY RIE T, 2007EICRER
2008 I REARR TN AN /NBR L O A B+
334 Nassarius glansiZ X 28O TERE R TTX REHENRE
ELl TNREZIT, FEBFSRRES LURERES >
YL OFEBRRERT, ZLOBRBSEENT, »0o¥E
B ETHRICEMRELTWARI LR, FY 341
HEREE PBOCRBRLETH L EHRE LYY, —5,
ERETIE, BAEMNEEE LY OV A Rt AT A
1 Zeuxis siquijorensis D IR Zeuxis samiplicutus %
EEE:$TAHTTXHEN, TNITTRHBELTWEZETT
320 PRl LA L, BEREIZ419%, BTUERBE
1941201256979 5512, AETYH, AROBEE
L ATTXHEAT1994~2004 12 L% L b OBREL,
BEE LT G 46 ZHHBEL TWA Y. AEBTIIE
HI2EATIXHFHEORREL s, ToMlisEd TTX
BETLIEMRESNTVAHNOY oy bavu
HAFEF T34 7 5 U HT A Niotha clathrata, *+ ¥ F
Y7 NG A VU Zeuxis scalaris, A A ¥ T Nassarius
papillosus, <27 55 AFY 2 ¥ 27 9 Oliva miniacea
BHARBREICLSAT 5. hEOLR P HERE IR
BEOSMET, BARTIZMMABRCELNT S FAREDE
Bo#FHicowTid, &) av 7 rFrfefs =
YO XAARBICETAREY LD ERE, R
AREMEMNEILEAER W, FIT, AR TIRAKERS
L LTS BEOREMHBEICET S0, WREIRRIC
ST ABAAES L UCRAEENIEESH 1B MR
WKEMAZ ) —o v T RERT L LI, AHEROFR
IOV TEHETOMETZMATZ.

ESS = Wl

1. 2 #

20094 1~6 AICMMBERIGRTREL 20T #*
VN4 6@ R, 4 K= 7354 Nassarius coronatus 518
k. #7378 Zeuxis sp. (R REEE) 68
1k, 77 .31 Niotha albescens 6 BB L UFa7 A0
Pliarcularia globosus 3Tk, ~ 7 WA RF Y <+
Oliva annulata 8 B4R, ~2 3 <7 F Oliva concavospira
2EEB LUV 2 Fyw s I3k, NAFy A aA
Balylonia kirana 5181k, 7 7 F TA /T v EF KT
Chicoreus brunneus 34, 41 P<FKSFH A4 = F K
S Pleuroploca trapezium paeteli 18K, 7V I 4 #+
v < K F Cymatium aquatile 5SEE L 3 7 < F 714 Cy-
matium pileare 5TE, 7FHAF = F ) F N7 F Mi-
tra stictica 1B, v 7 ¥ 74 ®,n< V| Costellaria

FTNRORER, BEHRKBRKTHEZIELRY, —
20CTHBERE L. HRAOE, ABET52F 92
Wy ZIZAR, MAKRTEEMRE L, HREHRBRE S
WIRIC T THW:, 280, 43734, a7xay
T, NIV MIWTHROBEERLNE ok, AETE
R EPEEZE—L2d0 (BT, TAER) %, FRC
HrTTATNL ETIAYTIREREFNCEROLHE &
WiEEZE&—L72b 0 (LT, &—TER) 2HVZ.

2. BEHEB

ARBARERFENERD 7 V7 SREED 08T,
ERBOMHA, A, TTEBE A TAERRIIZ0.1%EE
R nA Cmsdmbg, ddYR#ET Y A (kE19~21g)
DIEFERICHRE L, <Y AORBRKM» SR 1g%720
DENEZEH L. TTXO1 w9 BN (MU) 24E
20gDT Y AIEEI0SHTHRECSEIFNLEEHRS I
TwWh,

3. BROOW

HURBRTHBLARABRELX045m OX VY75 >
74 NE—=T5BH, Zspray™ MD 2000 % 8 L 7= alli-
ance 2690 ¥ A 7 A (Waters#:8) % H\v,, BE&HoF
B ICEBRLTTTX 2R &35 LO-MSHH %47 - 72
# 9 AT Mightysil RP-18 GP (#2.0 <250 mm), &l
121230 mmol/L AT % 7 )V F T BEE % & e 1 mmol/L BERE
T UEZARER (pH5.0) #ERAL, HEE02ml/
min & L7z, FYNVNR—Y g ViRE0T, V—-ATay
Z#mE120C, 2—VBESOVICEREL, 14+ ik
ESIKY 714 7€~ FTHH L, MassLynx™F XL —
a UVATAITEN L, EEWEE LT, b
TEFREOTTX ZH Wz,

—H, BEE EE (paralytic shellfish poison; PSP)
Baeng e Loz, SWABRTRE L ZRBRE?
Sep-Pak C18 71— MY vV H 54 (Waterstt ) LB
FUBRA A (<10,000Da) (244 L, BE®PT o
HPLCHOGAAIRIZE U CTITo 2. Y HE L ¢, (&)
BEREGOH ¥y —pofisshioo v 3201~
4, FAVRSNEA VI ZF FFT 22, 3, Fabd=F b
*3 71,2 (CL 2), 2FFFTFFT Y (neoSTX), %
LUEZROWEEY E LY XH = Zosimus aeneus H>
LREBLAEYFY IV (STX), ~1 FoFd (hy)
STX, hyneoSTX® ZFH\W:72. 2B, TELFIEH =)
LOSTXDREHE, BIXUFZ0OERICHzoTIE, [E¥E
FOREL LR EWEOBRMNEICHET AEE] oBEI
PV, Do CORFEEED [V My v o8lES
LR ORT] 22, EEZEEOT, EMLZ.

BRBLUER

1. NEERBEOSEM

AL BRIBEOY L, F2 3354 4K 3734,
ATAGATNAL FYIEF, ANTITTITOFENS
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Nassarius glans
“kinshi-bai”

A

i
=

Niotha albescens
“awa-mushiro”

$_

Nassarius coronatus
“ibo-yofubai"

Oliva annulata
“satsuma-bina”

6 _

Zeuixis sp.
“kagerou-yofubai"

Oliva concavospira
“hekomi-makura"

Fig. 1. Toxic species of gastropods
Scale bar, 1 em

T o AENESB AN, —F, TUAYUDEE. TV
A FHIERRE (10 MU/gRTE) 545, ol BbD
LC/MS AHF CTTX A H S sz, Lo eficonTis,
BEE%Fig. 112, FH L TTX&E% Table 1IIRT. £
OB IVIT NI TAFUERE hd ol (VU
735, wAAuNL, 4 NFRG, $UKF, V%
FHAREMUgRG, I 74630, FrEFRS, =¥
F ) FN7 5, Y M3 10 MU/g K.

EHFLEEDI L, FUINADFENIRETEHL, HA
T39.6~461 MU/g (CEH+FE®FEZE 1962185 MU/g).
I T98.6 3 X UN189 MU/g (3144 MUlg) ThH o7k,
2 e ERF 3EETHAOFE N EMEE L R
H LB 100MUgRH A, REfHIZ461 MU/gITEL
720 Fh, AXRI TN 2BEOTEMIZILLB LT
564MU/g, # X awa 784 6lE0E—THEEIC
12.7 MU/g, #v =¥+ 1EEONEIZ108 MU, ~
3279 1 EHEOBHRIC6.65 MU/g DFHRD S5z,

HATEELLF AL hHICHELCT FE 51T
FRERADIRE SN RIGEEE B L UCREARR 25 AE
WAERBTAF VU NADBRAZ V-2V I ®iTo7. 1
BEX VY54 OFEIHHA T48~2,370 MU/lg. WIKT
16~10,200 MU/g 7R L, HEREERIIIEAEERDS
HIZBWT, BREABOYLSH—F, TLREHNE
ShEAE F B L2 5 1,000MUgE LE o Tz ?,
HEAMABES VY8 SR EBAEERIC1,000 MU/gEL
FOFEHRRTEEILEULE D, AL ABORS
F ik, FREN2600 B L U10,800 MU/gIZEL 7227,
FRRBEY VAL, BRICEE 1,170 MUg. i
BRI 538 MU/g L D CTEWENZHRE L TWAY,

., HATIR, FrI N 1UMAOREEEL LT
LAYuFARCETAT A NFL a7 ILH A, N
4 # 2% 4 Babylonia japonica 7 & TTX ® 1 H #l 4 &

I L nhhS, FRAFATEROE NI

3.4MU/g, 4~35MU/g, 15~53MU/g 1K<, oD
BEICEATIXHEE LTIE, 1957THEICASA L AdE
HHKIHHLOARTH ALY, BETRITROLELEHR
W|EINTHBY, ZOHIH12BIRIVERFEILRELT
BB s S L RBEYVL Py s I 3hEER
T, WELHIZ3~18MU/g (11+5MU/g) DOTTX % 4%
HLTwahY, SEEAELZEER S 7 A5k IR
HEnhol, £ MEETIEHLLTHEBELTY
57 A4 AL OFITRTEMUGRIMT, ASEE
F EE THhHol —FH, TRETHYTESF, AT

R7 G, AKRITNAL, hvrava TN, OFEMRICHET A

HREZR L, RBEMOTTH 5.

2. INREREOERS

A LA-BH 150 &, LC-MSIZTERS T L
72l lh, miz320070% NS LICBWT, RESM
RoOfFmAE., A, TER, W& BIXU7Tvivo
DOE—HEER S TTX (M+H]" =320) #EH & [R5
D—HTHE—2PBHENZ. 852, FV 4Tl
mlz 302, 320, 336D KHE 7T FFF AIIBWT, TTX
WS B AR B R B AL E S S, M1 4,9-anhydroT-
TX ([M+H]"=302). 4-epiTTX ([M+H]"=320),
11-0%0TTX ([M+H]*=336)%"2 LiftE s b ¥ — 28
b oz,

LC-MSH#T TH LN TIXE MUBREM) &, v
YNA DN TS.16~249 MUlg, Wl T4.17~43.9 MU/
g, YYTEFORBTSI0MUE, NIIIIOHRA
T3.23MUlg, A KF 74 OTWHE T551B LU
1.90MUlg, A ¥raa7:54 DAE—T&ET2.69MU/g,
TT7ATUDOAE—TRAETL08MU/gTH o 7= (Table
1), v AFENRRBTHEONENL OFEL2S, Fv
NADOHRTIIREIDNIZ~66%. AW TIX18B L
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