4.4.4 考察

(a) ポリスチレンラテックス粒子

図 4.37~図 4.39 において、全フィルターについて約 70nm で捕集効率が低くなっていた。 これは、捕集効率算出時の誤差によると考えられる。すなわち、70nm の発生粒子の個数濃 度測定値は、その次に測定値の低い粒径 10nm の発生粒子の測定値よりも 10 分の 1 以下と かなり小さいため、捕集効率を算出する際の誤差による影響が大きいと考えられる。 発生粒子の粒度分布から、約 30nm 付近は超純水または分散剤の残渣で約 100nm のピーク は試料の分散によると考えられる。

区分 RL2 のフィルターでどの粒径に対しても 100%近くの高い捕集効率を示していた。 区分 RL3 の S4N と区分 RL1 の R1、L は、約 200~300nm で捕集効率が少し下がってい るが、それにおいても約 98%と高い捕集効率を示していた。最も区分の低い RL1 の R1、L については DOP によるの捕集効率が 82%であるのに対し、約 98%とかなり高い値であっ た。この事から全フィルターにおいて、単分散のナノ粒子に対し高い捕集効率を示す事が 確認できた。

(b) 二酸化チタン

発生粒子の粒度分布では、約50~70nm にピークが見られ、単粒子が多く発生している と考えられる。図4.44~図4.46より、全フィルターについてフィルターの種類によって程 度は異なるものの、約200~300nmで捕集効率が最も低下しており、200nm以下では、粒 径が小さくなる程捕集効率が高くなっていた。これは、ナノ粒子のような粒径が小さい粒 子に有効である拡散効果によるものと考えられる。S4N、U2、C2、Lは、粒径によっては DOP による捕集効率よりも低い値を示していたが、全粒径に対する捕集効率はほぼ100% 近くであり、ナノ粒子に対して高い捕集効率を示す事が確認できた。

(c) 銀ナノ粒子

二酸化チタンの結果と同様、粒径が小さくなる程捕集効率は上昇し、約100%の高い値を 示していた。N3、L2W については、粒径によっては DOP による捕集効率よりも低い値で はあるが、全粒径に対する捕集効率はかなり高い値を示しており、銀ナノ粒子に対しても 高い捕集性能を示す事が確認できた。

4.5 まとめ

本実験で検討を行った国家検定区分 RL3、RL2、RL1 の 13 種類の防じんマスクフィルタ ーについては、検討を行った粒径や粒子形状の異なる全てのナノ粒子に対して高い捕集効 率を示し、ナノ粒子に対する捕集性能は有効であった。

区分やフィルターによって捕集効率は異なるが、全粒径に対する捕集効率は全フィルター において 96%以上と高い値を示しており、国家検定に使用されているフタル酸ジオクチル よりもそれ以上にナノ粒子を捕集する事が出来る事が分かった。 また、約 200~300nmの粒子に対する捕集効率は低下するが、ナノ粒子の拡散効果によって粒径が小さくなるほど、捕集効率が上昇する。

多層カーボンナノチューブのような繊維状のナノマテリアルについては、球形粒子に比 べて、フィルターに捕集されやすいと考えられ、形状が異なる事による捕集性能の違いが 考えられる。

4.6 防じんマスクフィルター捕集性能評価

「4.2.2 試験フィルター」で取り扱った以外のマスクメーカーで市販されている6種類の防じんマスクについて、ナノマテリアルに対する捕集特性及びその性能評価を行った。 4.6.1 実験目的

実験室において、粒径や粒子形状の異なるナノ粒子に対する、防じんマスクフィルター の捕集性能の評価を行う事を目的とした。

4.6.2 ナノ粒子分散方法

NANO AEROSOL GENERATOR (柴田科学株式会社製)の外観を図 1.1 に示す。図 1.1 において、右側がバイブレータ式発生器、左側がアトマイザー式発生器となっている。本 実験では、アトマイザー式発生器を使用した。

☑ 4.54 NANO AEROSOL GENERATOR

4.6.3 実験概要

1) 実験フロー

4.2 の実験フローと同様である。

2) 試験フィルター

本実験において検討を行ったフィルターは、興研株式会社製の電動ファン付き呼吸用保 護具と防じんマスクの取替え式フィルター5種類と、使い捨て式防じんマスクフィルター1 種類の計6種類である。各フィルターの詳細を表4.17、表4.18に示す。捕集効率は、 製品カタログに記載されている平均値を示している。

	12 4.17 日	21107		
品番		BRD-8U	RD-5U	LAS-52
国家検定区分		PL100	RL3	RL2
フィルター種類		メカニカルフィルター		
			取替え式	
世代· 試験粒子			DOP	
注用已	捕集効率[平均値]	99.999%	99.999%	98.6%

表 4.17 各フィルターの仕様

売 418	冬フィルターの仕様
衣 4.10	ロノイルターの江泳

品番		350	MF1005	MF1010
国家検定区分		DS2	RL2	RL1
フィルター種類		メカニカルフィルター 静電フィルタ		ィルタ
		使い捨て式	取替	え式
产生	試験粒子	NaCl	D	OP
THE	捕集効率 [平均値]	98.4%	99.1%	94.8%

4.6.4 試験に使用した試料

1) ナノ粒子

(1)ポリスチレンラテックス(PSL)粒子

本実験で使用したポリスチレンラテックス粒子は JSR 株式会社製の STADEX SC-0100-D と STADEX-SC-0050-D を使用した。平均粒径はそれぞれ 100nm、48nm で、

粒子径が非常に揃った真球状ポリスチレンラテックス粒子の水分散体であり、AIST((独)産 業技術研究所)、NIST(米国立標準技術研究所)に対して、トレーサビリティーを有している。

(2)二酸化チタン

本実験で使用した二酸化チタンは、日本エアロジル株式会社製の TiO₂-4 を使用した。平 均粒径は 50nm であった。

(3)多層カーボンナノチューブ(MWCNT)

本実験で使用した多層カーボンナノチューブは、シグマアルドリッチ製の 659258-2G を 使用した。粒子径が 110-170nm 、長さが 5-9µm であった。

(4) 銀ナノ粒子

本実験で使用した銀ナノ粒子は、シグマアルドリッチ製の 576832-5G を使用した。粒径は 100nm 未満であった。

4.6.5 使用試料

(1) TritonX-100

本実験で用いた多層カーボンナノチューブ用の分散剤は、関東化学株式会社製の 21568-1A を使用した。

(2) りん酸水素ニナトリウム・12 水

本実験で用いた二酸化チタン用の分散剤は、関東化学株式会社製の37240-00を使用した。

4.6.6 防じんマスクフィルター通過粒子確認試験

1) 使用装置、器具

- ・NANO AEROSOL GENERATOR:柴田科学株式会社
- ・FE-SEM: S-4500S 日立八イテクノロジーズ
- WPS : MODEL 1000XP, MSI Inc.
- ・ディスポーサブルサンプラー:柴田科学株式会社
- ・ニュークリポアフィルター:SKC社
- ・ポンプ:MP- 300,MP- 500,柴田科学株式会社
- ・タイゴンチューブ:サンゴバン株式会社

図 4.55 実験装置概略図

2) 実験方法

実験概略図を図 4.55 に示す。防じんマスクフィルターを通過する粒子を調べるため、デ ィスポーザブルサンプラーに直径 25mm の円形に切り取った各防じんマスクフィルターを 装着し、さらにその後ろにバックアップとしてニュークリポアフィルターをセットした。 このディスポーザブルサンプラーを実験チャンバーに接続し、ポンプで吸引する事により、 ニュークリポアフィルターに通過粒子を捕集した。試験粒子の発生は、NANO AEROSOL GENERATOR を用いて、アトマイザーにより各試料を実験チャンバー内に発生させた。こ のディスポーサブルサンプラー内のニュークリポアフィルターを、一定倍率に設定した FE-SEM を用いて 20 視野観察し、20 視野中の通過粒子数の計数を行った。

なお、防じんマスクフィルター通過粒子捕集実験を行う前に、WPS を用いて発生粒子の 粒度分布の測定を行った。また、ニュークリポアフィルターのみを装着したディスポ ザ ブルサンプラーを用いて発生粒子を捕集し、FE-SEM を用いてこのフィルターを観察した。 フィルターを通過する吸引流量について、防じんマスクの国家検定の試験流量 85L/min で 吸引した際に、防じんマスクフィルターを通過する気流の速度は、有効ろ過面積の違いの ためマスクによって異なるが、概ね 0.1m/s と言われている¹⁾。そこで、この値を用いて吸 引流量を式(4.1)より算出した。

実験条件を表 4.19 に、FE-SEM での観察条件を表 4.20 に示す。なお、表 4.20 の FE-SEM での観察倍率は、ポリスチレンラテックス粒子、二酸化チタン、銀ナノ粒子については 30,000 倍に倍率設定を統一して観察を行ったが、多層カーボンナノチューブについては、 繊維長が長いため 5,000 倍と設定した。

11 1.10		
測定時間		30分
	希釈流量	7L/min
アトマイザー	噴霧流量	3L/min
	ヒーター温度	80
WPS 分解能		10nm~500nm で 12ch
		2.9L/min

表 4.19 通過粒子捕集実験の実験条件

	•		
	倍率	x30,000, x5,000	
EE-SEM	視野数	20 視野	
LF-SEM	加速電圧	15kV	
	作動距離(W.D)	15mm	
艺羊	蒸着試料	Pt-Pd	
<u> </u>	膜厚	12nm	

表 4.20 FE-SEM 観察条件

4.6.7 防じんマスクフィルター通過粒子測定試験

防じんマスクフィルター通過粒子確認試験において、通過粒子が確認された防じんマス クフィルターについて、WPS と CPC を用いて通過粒子の粒度分布と個数濃度の測定を行 い、防じんマスクフィルターの捕集効率を算出した。

1) 使用装置、器具

・NANO AEROSOL GENERATOR:柴田科学株式会社

• WPS : MODEL 1000XP, MSI Inc.

- CPC(No.1,No.2) : MODEL 3800, KANOMAX
- ・ディスポーサブルサンプラー:柴田科学株式会社
- ・ニュークリポアフィルター:SKC社
- ・ポンプ:MP- 300,MP- 500,柴田科学株式会社
- ・タイゴンチューブ:サンゴバン株式会社
- ・ガラスチャンバー:三基科学工芸株式会社
- 2) 実験方法

図 4.56 実験装置概略図

実験装置概略図を図 4.56 に示す。各防じんマスクフィルターを直径 25mm の円形に切り 取り、ディスポーサブルサンプラーに装着し、CPC、WPS を図 4.56 のように接続する。 アトマイザーにより各検討試料を発生させ、CPC で防じんマスクフィルターの通過前濃度 と通過後濃度として通過粒子の個数濃度を測定し、捕集効率を算出した。WPS に関しては、 通過粒子の粒度分布を測定し、防じんマスクフィルターを装着しない状態で測定した発生 粒子の粒度分布から、粒径ごとの捕集効率を算出した。

3) 実験条件

実験条件を表 4.21 に示す。

表 4.21 通過粒子測定条件

測定時間		20分
希釈流量		7L/min
アトマイザー	噴霧流量	3L/min
	ヒーター温度	80
WPS 測定範囲		10nm~500nm で 12ch
CPC 測定範囲		15nm~1000nm(15nm~50nm:カウント効率 50%以上)
吸引流量		2.9L/min

4.6.8 実験結果

1) ニュークリポアフィルター ブランク

ブランクのニュークリポアフィルターの観察画像を図 4.57 に示す。図 4.57 より、約 60nm の正方形状の粒子のみが観察された。この正方形状の粒子はフィルター製造時に付着した と考えられるが、他の粒子と明らかに形状が違うので計数しないこととした。

図 4.57 ニュークリポアフィルター ブランク(×30,000)

2) ポリスチレンラテックス粒子(100nm)

(1) 防じんマスクフィルター通過粒子確認試験

アトマイザーにより、発生させたポリスチレンラテックス粒子の粒度分布を図 4.58 に、 ニュークリポアフィルターに捕集されたポリスチレンラテックス粒子の FE-SEM 観察画像 を図 4.59 に示す。

図 4.58 WPS による粒度分布 (試験粒子:ポリスチレンラテックス 100nm)

図 4.59 ポリスチレンラテックス粒子 100nm (× 30,000)

また、6種類の防じんマスクフィルターをそれぞれ通過した粒子を捕集した各ニュークリ ポアフィルターについて 20 視野観察し、通過した粒子数を計数した。その結果を表 4.22 に示す。発生させた粒子は、20 視野中 242 個であった。

化 4.22 迪迪拉丁可数和木				
品番	国家検定区分	通過粒子数(20視野中)		
BRD-8U	PL100	0		
RD-5U	RL3	0		
LAS-52	RL2	3		
350	DS2	2		
MF1005	RL2	0		
MF1010	RL1	0		

表 4.22 通過粒子計数結果

区分 PL100 と RL3 の BRD-8U と RD-5U では粒子の通過は確認されなかった。また、 静電フィルターの MF1005 と MF1010 においても粒子の通過は確認されなかった。 また、各フィルターを通過した粒子の 30,000 倍における FE-SEM 観察画像を、区分 PL100 の BRD-8U と区分 RL2 の LAS-52、区分 DS2 の 350、区分 RL1 の MF1010 についてそれ ぞれ図 4.60(a) ~ (e)に示す。区分 RL2 の LAS-52 については 100,000 倍の画像も図 4.60(c) に示す。

(a) フィルター: BRD-8U (PL100)(×30,000)

(b) フィルター: LAS-52 (RL2)(×30,000)

(c) フィルター: LAS-52 (RL2) (×100,000)

(d)フィルタ-: 350(DS2) (×30,000)
(e)フィルター: MF1010(RL1) (×30,000)
図 4.60 各フィルターを通過した粒子の FE-SEM 観察画像

(2) 防じんマスクフィルター通過粒子測定試験

「6.2.1 防じんマスクフィルター通過粒子確認試験」の結果より、BRD-8U,RD-5U では 粒子の通過が確認されなかったため、通過粒子の測定試験は行わない事とした。MF1005 とMF1010 に関しても粒子の通過は確認されなかったが、昨年度に静電フィルターに関す る検討は行っていないため、LAS-52,350 と同様に試験を行う事とした。

CPC 測定値より算出した各防じんマスクフィルターの捕集効率を表 4.23 に示す。CPC は 1 分間の個数濃度を測定する。20 分間測定しているので、算出した 20 個の捕集効率の 内、最低値を示している。

衣4.23 010 別と他による開采効率昇山加未		
品番	国家検定区分	捕集効率最低値[%]
LAS-52	RL2	99.7
350	DS2	99.8
MF1005	RL2	100
MF1010	RL1	100

表 4.23 CPC 測定値による捕集効率算出結果

WPS測定値より算出した各防じんマスクフィルターの各粒径における捕集効率を図4.61 に示す。

図 4.61 WPS 測定値による各粒径における捕集効率

3) 二酸化チタン

(1) 防じんマスクフィルター通過粒子確認試験

発生させた二酸化チタンの粒度分布を図 4.62 に、ニュークリポアフィルターに捕集された二酸化チタンの FE-SEM 観察画像を図 4.63 に示す。

図 4.62 WPS による粒度分布 (試験粒子:二酸化チタン)

図 4.63 二酸化チタン粒子 (× 30,000)

また、6種類の防じんマスクフィルターをそれぞれ通過した粒子を捕集した各ニュークリ ポアフィルターについて 20 視野観察し、通過した粒子数を計数した。その結果を表 4.24 に示す。発生させた粒子は、20 視野中 86 個であった。

衣 4.24 进過松丁計数約本			
品番	国家検定区分	通過粒子数(20視野中)	
BRD-8U	PL100	0	
RD-5U	RL3	1	
LAS-52	RL2	1	
350	DS2	2	
MF1005	RL2	2	
MF1010	RL1	3	

表 4.24 通過粒子計数結果

区分 PL100 の BRD-8U では粒子の通過は確認されなかった。また、各フィルターを通過 した粒子の 30,000 倍における FE-SEM 観察画像を図 4.64 に示す。区分 PL100 の BRD-8U、 区分 RL2 の LAS-52、区分 DS2 の 350、区分 RL1 の MF1010 の結果をそれぞれ(a)~(e) に示す。

(a) フィルター: BRD-8U (PL100) (×30,000)

(b) フィルター: LAS-52 (RL2) (× 30,000)

(c) フィルター:LAS-52 (RL2)(×100,000)

(d) フィルター: 350(DS2) (× 30,000)
(e) フィルター: MF1010(RL1)(× 30,000)
図 4.64 各フィルターを通過した粒子の FE-SEM 観察画像

「6.3.1 防じんマスクフィルター通過粒子確認試験」の結果より、BRD-8U では粒子の通 過が確認されなかったため、通過粒子の測定試験は行わない事とした。CPC 測定値より算 出した各防じんマスクフィルターの捕集効率を表 4.25 に示す。

品番	国家検定区分	捕集効率最低値[%]	
RD-5U	RL3	100	
LAS-52	RL2	99.7	
350	DS2	99.4	
MF1005	RL2	99.8	
MF1010	RL1	99.9	

表 4.25 CPC 測定値による捕集効率算出結果

WPS測定値より算出した各防じんマスクフィルターの各粒径における捕集効率を図4.65 に示す。

⁽²⁾ 防じんマスクフィルター通過粒子測定試験

図 4.65 WPS 測定値による各粒径における捕集効率

図 4.65 より、LAS-52 のメカニカルフィルターは粒径が約 200nm で捕集効率が低下して いるのに対し、MF1005 や MF1010 の静電フィルターでは、約 50nm において捕集効率が 低下している事が確認された。これは、粒子捕集理論に一致する結果である。そこで、静 電フィルターについて捕集効率の低下する 50nm に対する性能の更なる検討を行うために、 ポリスチレンラテックス粒子(50nm)を用いて実験を行った。

4) ポリスチレンラテックス粒子(50nm)

(1) 防じんマスクフィルター通過粒子確認試験

二酸化チタンの結果から、静電フィルターの捕集効率が約 50nm において低下する事が 確認された事から、その粒径での静電フィルターの性能を検討するために 50nm のポリス チレンラテックス粒子を用いて試験を行った。比較用として、RD-5U と LAS-52 について も同様の検討を行った。発生させたポリスチレンラテックス粒子の粒度分布を図 4.66 に、 ニュークリポアフィルターに捕集されたポリスチレンラテックス粒子の FE-SEM 観察画像 を図 4.67 に示す。

図 4.66 WPS による粒度分布 図 4.67 ポ (試験粒子:ポリスチレンラテックス 50nm)

また、防じんマスクフィルターをそれぞれ通過した粒子を捕集した各ニュークリポアフ ィルターについて 20 視野観察し、通過した粒子数を計数した。その結果を表 4.26 に示す。 発生させた粒子は、20 視野中 294 個であった。その内、単体粒子は 181 個であり、単分散 率は 62%であった。

(×30,000)

品番	国家検定区分	通過粒子数(20 視野中)
MF1005	RL2	0
MF1010	RL1	0
RD-5U	RL3	0
LAS-52	RL2	1

表 4.26 通過粒子計数結果

静電フィルターの MF1005 と MF1010 ではメカニカルフィルターRD-5U,LAS-52 と比較 して多くの粒子の通過が確認される事が予想されたが、どちらのフィルターについても粒 子は確認されなかった。

各フィルターの 30,000 倍における FE-SEM 観察画像を図 4.68 に示す。区分 RL2 の MF1005、区分 RL1 の MF1010、区分 RL2 の LAS-52 の結果をそれぞれ(a) ~ (c)に示す。

(a) フィルター: MF1005 (RL2) (× 30,000)

5 (b) フィルター: MF1010 (c) (RL1) (× 30,000) 68 冬フィルターの FF-SFM 知察画像

(c) フィルター: LAS-52 (RL2) (×100,000)

図 4.68 各フィルターの FE-SEM 観察画像

5) 多層カーボンナノチューブ(MWCNT)

(1) 防じんマスクフィルター通過粒子確認試験

発生させた多層カーボンナノチューブ(以下、MWCNT) を、ニュークリポアフィルターに捕集し、その FE-SEM 観 察画像を図 4.69 に示す。なお、WPS の測定については、 繊維状の多層カーボンナノチューブは DMA 内で壁面に付 着して長く連なり、対面に届いてしまうとショートして故 障の原因となるので、粒度分布の測定は行わなかった。 15.0kV X5.06K 6.004m

☑ 4.69 MWCNT(× 5,000)

参考として、ニュークリポアフィルター上に均一に捕集されていると仮定して、5,000 倍 観察画像の 20 視野中の発生粒子数カウント値と吸引流量、フィルター面積から、発生粒子 の換算濃度を算出した。その結果を表 4.27 に示す。

表 4.27 発:	生粒子
20 視野中通過粒子数	18本
換算濃度	$1.3 \times 10^4 $ 本/L

また、6種類の防じんマスクフィルターをそれぞれ通過した粒子を捕集した各ニュークリ ポアフィルターを観察したところ、全フィルターについて粒子の通過は確認されなかった。 各防じんマスクフィルターのバックアップフィルターの 5,000 倍における FE-SEM 観察 画像を図 4.70 に示す。区分 PL100 の BRD-8U、区分 RL2 の LAS-52、区分 DS2 の 350、 区分 RL1 の MF1010 の結果をそれぞれ(a) ~ (d)に示す。

(a) フィルター: BRD-8U(PL100)(×5,000)

(b) $7 + \mu 9 = 123 + 12$

(c) フィルター: 350(DS2)(×5,000)
(d) フィルター: MF1010(RL1)(×5,000)
図 4.70 各バックアップフィルターの FE-SEM 観察画像

- 6) 銀ナノ粒子
- (1) 防じんマスクフィルター通過粒子確認試験

銀ナノ粒子の粒度分布を図 4.71 に、ニュークリポアフィルターに捕集された銀ナノ粒子の FE-SEM 観察画像を図 4.72 に示す。

図 4.72 銀ナノ粒子(×30,000)

また、6種類の防じんマスクフィルターをそれぞれ通過した粒子を捕集した各ニュークリ ポアフィルターについて 20 視野観察し、通過した粒子数を計数した。その結果を表 4.28 に示す。発生させた粒子は、20 視野中 121 個であった。

品番	国家検定区分	通過粒子数(20視野中)
BRD-8U	PL100	1
RD-5U	RL3	2
LAS-52	RL2	3
350	DS2	2
MF1005	RL2	0
MF1010	RL1	1

表 4.28 通過粒子計数結果

さらに、各フィルターを通過した粒子の 30,000 倍における FE-SEM 観察画像を図 4.73 に示す。区分 PL100 の BRD-8U、区分 RL2 の LAS-52、区分 DS2 の 350、区分 RL1 の MF1010 の結果をそれぞれ(a) ~ (e)に示す。

15.0KV X100K _______

(d) フィルター: 350(DS2)(×100,000)
(e) フィルター: MF1010(RL1)(×100,000)
図 4.73 各フィルターを通過した粒子の FE-SEM 観察画像

4.6.9 考察

区分 PL100、RL3 の BRD-8U と RD-5U は全ての粒子に対して極めて高い捕集性能を示 していた。

メカニカルフィルターである LAS-52(RL2)は、ポリスチレンラテックス粒子(100nm)と 二酸化チタンの結果から粒径が約 200nm において捕集効率の低下が確認された。また、二 酸化チタンについては、粒径が 200nm より小さくなる程、捕集効率が高くなっている事が わかる。これはメカニカルフィルターの捕集理論に一致するような結果であると言える。 図 4.74 にメカニカルフィルターの捕集理論における粒子径と捕集効率の関係図を示す。沈 降、慣性、さえぎり、拡散の、4 つの効果が組み合わされて捕集がなされる。そして、約 300nm において捕集効率が低下し、ナノ粒子については拡散効果によって捕集され、粒径 が小さいほど拡散効果が有効であるとされている。このことから、今回の結果においても 粒径が小さくなるほど捕集効率が上昇している事から、拡散効果によってナノ粒子は捕集 される事が示唆される。

図 4.74 メカニカルフィルター捕集理論

静電フィルターについては、二酸化チタンの結果から約 50nm において捕集効率の低下 が確認された。しかし、ポリスチレンラテックス粒子(50nm)を用いた試験では、FE-SEM 観察において MF1005,MF1010 の両フィルターにおいて粒子の通過が確認されなかった。 静電フィルターは静電気力によって粒子の捕集を行う事から、粒子の帯電性の違いによっ て捕集性能に違いが出る事が示唆される。また、静電気力は粒子だけが帯電している状態 でも働くため、メカニカルフィルターにおいても粒子の帯電性の違いによって捕集性能に 違いが出ることが考えられる。今後、ポリスチレンラテックス粒子(50nm)を用いて捕集効 率の算出を行い、試験粒子を増やす等して、粒子の帯電性の違いによる検討を行う予定で ある。また、静電フィルターは、メカニカルフィルターにおいて捕集効率の低下がおこる 粒径約 200nm においては極めて高い捕集効率を示していた。

4.7 総括

多層カーボンナノチューブのような繊維長の長い粒子については、全てのフィルターで 通過が確認されなかった事から、球形の粒子に比べて捕集されやすい事が示唆される結果 であった。

なお、銀ナノ粒子の捕集効率の算出は検討中である。今後は、粒子の帯電性の違いによ る静電フィルターの捕集性能の検討、300nm ポリスチレンラテックス粒子に対するメカニ カルフィルターの捕集性能の検討を行い、更なる解明を行っていく予定である。