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Abstract

Diabetes mellitus is considered one of the main
chronic diseases, and uncontrolled diabetes can lead
to various complications that trigger other chronic dis-

" eases. Disease management for diabetes is therefore
important to reduce the total healthcare cost. Unfor-
tunately, managing diabetic patients is -often difficult
due to their sparse and incomplete medical records.
Many patients drop out during treatment, and each pa-
tient might require different treatment. On the other
hand, the widespread use of mobile devices with var-
ious sensors and instant communication capability has
enabled healthcare providers to collect and monitor pa-
tients’ condition. In this paper, we study the role of
sensor data analytics to complement sparse and incom-
plete medical records for diabetes disease management.
We test various machine-learning techniques on real-
world datasets of diabetic patients, and show that sen-
sor datasets can be used to improve the precision of
methods identifying high-risk patients..

1. Introduction

Many developed countries are faced with aging pop-
ulation that brings a serious problem with the increase
of chronic diseases. It is expected that in Japan more
than 40% of the workforce will be over 60 year in
2050, while the figures in US, China, and EU countries
range from 30% to 40% by 2025. Chronic diseases that
are often prolonged in duration and rarely completely
cured, occupy more than 75% of the total healthcare
cost. Diabetes is considered one of the main chronic
diseases in aging population, and uncontrolled diabetes
can lead to various complications of other chronic dis-
eases, such as, heart diseases, strokes, nerve damages,
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blindness, and kidney failures. Disease management
for diabetes, especially to identify high-risk patients, is
therefore important to reduce the total healthcare cost
since hemodialysis for the advanced stage of diabetic
patient requires $50K per year per patient.

Disease management for diabetes is aimed to pre-
vent such advanced stage of diabetic complication that
can also significantly decrease patients’ quality of life.
Important steps for managing chronic diabetes include
providing periodical medical checkup, identifying high-
risk persons, inferring patients’ condition from their
medical records, and monitoring patient condition to
prevent complication. Unfortunately, in practice these
steps are often difficult to perform due to sparse and
incomplete medical records. Obtaining periodical med-
ical condition of diabetic patients is difficult since many
of them drop out during treatment, and each patient
might require different measurement which results in
sparse and incomplete health measurement data. On the
other hand, the widespread use of mobile devices with
various sensors and instant communication capability
has enabled healthcare providers to collect and monitor
patients’ condition, such as blood pressures, weights, -
and blood sugar levels, and activities, with minimal in-
terruption to patients’ daily activities.

In this paper, we study the role of sensor data an-
alytics to complement sparse and incomplete medi-
cal records for diabetes disease management. We
tested various machine-learning techniques on real-
world datasets of diabetic patients, and found that sen-
sor datasets can be used to improve the precision of
identifying high-risk patients. On a set of patients who
performed up to four times of medical check-up, we
found patients that were classified as having worse fast
plasma glucose (FPG) value or having worse HbAlc
value at the last medical check-up could be predicted



using the results of their first-time medical check-up
and the values of their sensor datasets. The predic-
tion accuracies were better with more sensor data, and
hence showing the importance of monitoring patients
with sensors for diabetic disease management. We also
found evidences that monitored patients tend to have
fower FPG than unmonitored patients. We believe that
our study is the first to show the plausibility of sensor
data sets in disease management that enhance many pre-
vious work on predicting patients’ future health state,
such as, [3] and [2].

2. Methods

We describe methods used for exploiting electronic
medical records of patients along with their sensor data
for diabetes disease management.

2.1, Problems and Data Sets

The problems that are considered in this paper in-
clude two types of prediction outcomes. The first type is
to predict the future (real) values of HbAIc (also called
glycohemoglobin) and Fast Plasma Glucose (FPG). The
HbA1c values reflect the average plasma glucose con-
centration over prolonged periods of time (two or three
months), while the FPG values reflect the amount of
glucose in the blood 12 hours after eating. A patient
with HbA 1c higher than 6.5 is considered to have dia-
betes, while the values of FPG is used for monitoring
the state of disease management of patients with dia-
betes. The second type is to predict the binary values
of the state of patients after treatment: having worse
HbAlc or FPG values, or not (better, or roughly the
same). More formally, the problems are:

Input: Patients’ electronic medical records at the first
‘medical check-up and their temporal sensor data on
their weights, blood pressures, blood sugar values, and
activities.

Output: Patients’ values of HbAlc, FPG, and the states
of the values of HbAlc and FPG at the final medical
check-up compared to the initia] ones (worse, or nor-
mal/same).

The electronic medical records and temporal sensor
data sets in this paper are obtained from anonymous pa-
tients’ records collected from around November, 2008
to January, 2009. The medical records consist of obser-
vation data sets (such as, age, sex, height, weight, types
and number of chronic diseases, and so on), and mea-

surement data sets (taken during medical check-ups at

hospitals, such as, cholesterol, blood pressures, blood
sugar, and so on). The temporal sensor data sets are
gathered from sensor devices that were distributed to a
selected set of patients. The sensor devices collect pa-
tients® weight, blood pressure and sugar values, as well
as patients’ activities (walking, running, etc).
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2.2. Label

For determining the states of patients, their values
of HbAlc and FPG at the final check-up are compared
against those at the first check-up. Each patient per-
formed at least two and at most four medical check-ups
during the period of data collection. A patient state is
called worse if his values of HbA 1c or FPG were higher
than the initial values by several percents, provided that
his HbA1c or FPG values satisfied the condition of dia-
betic patients.

2.3. Performance Evaluation

The predicted real values of HbAlc and FPG for
each patient are evaluated against their true values (from
the last medical check-up) using tHe Mean Squared Fr-
ror (MSE). We performed Leave-One-Out Cross Vali-
dation and computed the MSE of all patients for each
predictive model described in the next subsection. For
the binary prediction (worse or normal/same values of
HbAlc or FPG), the predicted values are compared
against their true values to obtain the area under the
receiver operating characteristic curve (AUC) using
Leave-One-Out Cross Validation. The AUC value for
the binary classification is the same as 1 — MSE.

2.4. Predictive Model

In this paper, we use the framework of generalized
linear model (GLM) to predict the values of HbAlc
and FPG. In GLM, the predicted value y; of patient
i is obtained from a linear combination of his input
data (medical records and temporal sensor data), x;
(Zi1y e, Tin ), Where v is the length of inputs. Namely,
Y = wo + E?:I w;Z;;. One of the advantages of
GLM is that we can obtain the values of weight vec-
tor elements and interpret their signs as their positive or
negative contribution to the predicted values. The mag-
nitude of their absolute values can afso be used to find
significant factors to the predicted values.

Several methods are used to obtain the weight vec-
tor w = (wg,w1,...,Wn). We used Linear Regres-
sion (LR), Ridge Regression (RR), Lasso (Las), and
Bayesian Ridge Regression (BRR). LR finds a weight
vector w that minimizes the sum of squared differences
of predicted values and true values. RR is similar to LR
but puts a penalty to the sum of square of the weight
vector element. Las can produce sparse weight vector
by assigning a penalty to the sum of absolute value of
the weight vector element. BRR is similar to RR, but it
assumes the Gaussian distribution of the weight vector
element. For binary prediction, we employed Logistic
Regression (LogitR). Readers are directed to standard

1See, e.g., Exccutivé Summary: Standard of Medical Care in Dia-
betes — 2011



textbooks in machine learning, such as, [1] for detailed
discussions of those methods.

3. Experimental Results

To perform experimental results using predictive
methods described in the previous section, we first pre-
pared medical records and temporal sensor data sets by:
(1) preprocessing data, (2) interpolating missing values,
and (3) building feature vectors. Once we obtained a
feature vector x; for each patient ¢, it is straightforward
to apply the aforementioned predictive models.

The preprocessing of medical records is essential
since some elements of records are categorical (i.e.,
sex, stages of complication, etc.), or different patients
can have different elements of records due to different
treatments they received. We employed interpolation of
missing element values by using the median of record
values from other patients, as suggested in [3].

We experimented with 68 patients: 35 patients with-
out and 33 ones with intervention of sensor devices.
From 35 patients without intervention, there were only
observation and measurement data sets. Prior to prepro-
cessing, each patient of this set had 35 fields of obser-
vation records, and 89 fields of measurement records.
After preprocessing, those numbers became 13 and 50,
respectively. The fields of observation records include
age, sex, weight, height, and stages of diabetic com-
plication, while those of measurement records include
blood sugar levels when fasting and after meals, blood
pressure, glycoalbumin, HbA 1c, FPG, and other lab test
data.

From 33 patients with intervention, besides observa-
tion and measurement data sets, there were also tempo-
ral sensor data sets that recorded weight, blood pres-
sure, blood sugar, and activities. The activities con-
tain types and their frequencies which were determined
by acceleration sensor devices developed by Bycen Co.
Ltd. For each type of activities, we created a field of
feature vector whose element denoted the averaged fre-
quencies of each activity per day. For other sensor val-
ues, we created elements of feature vectors from their
mean and standard deviation, which is quite standard in
the literature (see, e.g., [4]). After preprocessing, the
number of fields in the measurement data sets is 35,
which is 30% less than that of patients without inter-
vention.

On the patients without intervention, we labeled
them with worse diabetic state if their HbAlc or FPG
values at the final check-up were higher by at least 6%
from those at their initial check-up. On the patients
with intervention, we labeled them with worse diabetic
state if their corresponding values of HbAlc or FPG
were worse by at least 5%. From this labeling, we ob-
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Method HbAlc FPG
LR 2.28 (447) | 17907.23 (27564.32)
RR 0.46 (0.95) | 13929.64 (22108.35)
Las 0.69(1.73) | 5343.62 (12337.31)
BRR 048 (0.98) | 741227 (15375.31)

Table 1: The MSE (and its variance) of predictive methods for
HbAlc and FPG of patients without intervention.

Method HbAlc FPG
Las+0.25-sensor 1.10 | 2019.16
Las+0.50-sensor 1.14 | 2018.79
Las+0.75-sensor 1.19 | 2015.24

Table 2: The MSE of Lasso for HbAlc and FPG of patients
with intervention. The variances for HbA I¢ and FPG are 5.0,
and 5500, respectively.

tained 15 patients (out of 35 patients) without interven-
tion whose final states were worse, while there were 16
patients (out of 33 patients) with intervention whose fi-
nal states were worse.

Table 1 shows the values of MSE (the lower the
better) of each predictive method for HbAlc and FPG
on patients without intervention. We can see that RR
(Ridge Regression) produces the best prediction for
HbA1lc, while Las (Lasso) produces the best prediction
for FPG.

Table 3 shows the values of MSE of each predic-
tive method for HbAlc and FPG on patients with in-
tervention. Notice that on those patients, there were
less number of features from measurement records, and
more features from temporal sensor devices. We can
observe that Las (Lasso) gives the best prediction for
both HbA1c and FPG.

Table 2 shows the variation of the MSE values when
only a fraction of sensor data sets'is used in Las. We can
observe that the MSE values are very much the same
for predicting the values of HbAlc and FPG on patients
with intervention.

With regards to binary prediction on the state of pa-
tients, we found that by using Logistic Regression, the

Method HbAlc FPG
LR 2.16 (3.06) | 3349.82(4413.9)
RR 1.93 (2.81) | 3208.54 (4228.0)
Las 1.19 (2.68) | 2015.24 (3893.53)
BRR 1.59(4.38) | 2624.78 (4229.73)

Table 3: The MSE (and its variance) of predictive methods for
HbAlc and FPG of patients with intervention.



Method AUC
LogitR+0.25-sensor | 0.45
LogitR+0.50-sensor | 0.66
LogitR+0.75-sensor | 0.70

Table 4: The changes in prediction accuracy (AUC) of Logis-
tic Regression when using a quarter, half, and three quarters
of sensor data sets.

value of AUC (the higher, the better) is =~ 0.69 on pa-
tients without intervention. On the other hand, on pa-
tients with intervention, the value of AUC is = 0.70.

On Table 4, we can observe the effect of temporal
sensor data sets on the prediction quality of LogitR (Lo-
gistic Regression). When we only used up to the first
quarter of sensor data sets, the prediction is not better
than random quessing (LogitR + 0.25-sensor in the ta-
ble). When we use up to half of the sensor data sets, the
AUC becomes 0.66, and by using up to three quarters
of them, the AUC is the same (0.70) as using the whole
sensor data sets.

4, Discussion

‘We have seen in the previous section that Lasso (Las)
gives the best accuracy for predicting FPG on patients
without intervention, and for both HbAlc and FPG on
patients with intervention. For HbAlc on patients with-
out intervention, Ridge Regression (RR) gives the best
one but the value is not that far from that of Lasso.

Oune of the advantages of Lasso compared to other
generalized linear models is the ability to derive sim-
ple but important features that are highly correlated to
the predicted values. This is due to thé sparsity of co-
efficients of weight vectors produced by the method.
On patients without intervention, Lasso showed that for
predicting future values of HbAlc, the previous val-
ues of HbAlc, FPG, in-urine protein quantity, intraoral
examination, coronary heart disease, and visits to dia-
betologist/urologist are important features. On the other
hand, for predicting future values of FPG, those features
are the previous values of FPG, HbAlc, infraoral ex-
amination, in-urine protein quantity, and age. Similary,
those features can also be derived from Lasso on pa-
tients with intervention with several types of activities
having effects of reducing the values of HbAlc.

From the experiments, we also observed that the sen-
sor data sets did not give significant improvement for
predicting the real values of HbAlc and FPG. However,
the sensor data sets could improve the prediction qual-
ity of Logistic Regression for identiying patients whose
HbAlc or FPG values were worse by 5% to 6% from
their initial values.
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We also compared the model learned from patients
without intervention against patients with intervention
to see the effects of monitoring patients with sensor de-
vices. We found that there were 22 common features
of measurement records of patients with and without
intervention. Building predictive models on those fea-
tures, we found that Lasso model that was constructed
on patients without intervention could be used to pre-
dict HbAlc of patients with intervention with roughly
the same quality on those without intervention. How-
ever, we found that the FPGs of patients with interven-
tion were predicted higher than actual ones by models
learned on patients without intervention.

It also seems that the Logistic Regression on patients
without intervention could not be used on those with
intervention, since the quality was worse than random
quessing (ACU was less than 0.5). This mightimply the
importance of monitoring patients with sensor devices
to identify high-risk patients, i.e., those whose HbAlc
or FPG could be worse after some period of treatment.

5. Conclusion

We found that temporal sensor data sets that
recorded variation of weight, blood pressure, blood glu-
cose, and activities of diabetic patients could be used to
improve the quality of prediction of the changes of their
HbAlc and FPG values. The more sensor data sets, the
better was the quality of the prediction. We presented
experiments on various regression methods that hinted
the possibility of sensor devices to identify high-risk pa-
tients without burdening them to have regular medical
check-ups. We found that the data sets from the first
medical check-up combined with the sensor data sets
were sufficient to predict the future states of patients.

There are obviously many future work to pursue.
For example, how to improve the prediction accuracy
by methods such as SVM, or how to better interpolate
missing values which are common in medical records.
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Abstract

In this paper, we describe a sensor dataset, which
was collected in a hospital, to be used for paitern
recognition and/or data mining for medical purposes.
The dataset includes those of patients and nursing care
in a cardiovascular center in a hospital. The experi-
ment was applied for hospitalized patients who caught
such as an acute cardiac infraction or angina (pre-
infarction), applied PCI (Percutaneous Coronary Inter-
vention) or CABG (Coronary Artery Bypass Graft), and
who have consented to the experiment. The patients
provided vital sensor data such as monitoring cardio-
gram, bed sensor to measure heart rate and breath, ac-
celerometer, environmental sensor;, and also medical in-
Jormation which were recorded in the electronic clinical
pathways and indirectly in patients’ sensor data. At the
same time, we also gathered accelerometer data of real
nursing in the hospital. As far as we know, these data
are the ‘biggest data’ of sensors which were used in a
real hospital in real situations.

1 Introduction

In this paper, we describe a sensor dataset, which
was collected in-a hospital, to be used for pattern recog-
nition and/or data mining for medical purposes. The
dataset includes those of patients and nursing care in
a cardiovascular center in a hospital. The experiment
was applied for hospitalized patients who caught such
as an acute cardiac infraction or angina (pre-infarction),
applied PCI (Percutaneous Coronary Intervention) or
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CABG (Coronary Artery Bypass Graft), and who have
consented to the experiment. The patients provided
vital sensor data such as monitoring cardiogram, bed
sensor to measure heart rate and breath, accelerome-
ter, environmental sensor, and also medical information
which were recorded in the electronic clinical pathways
and indirectly in patients’ sensor data.

At the same time, we also gathered accelerometer
data of real nursing in the hospital. We asked nurses
to bring smart devices (iPod touches), which have ac-
celerometers, into their breast pockets with a roughly
fixed direction. Moreover, they attached small 2 ac-
celerometer devices on their right wrists and the back
waists. We collected 100 hours data of 5964 activities
which was labeled with 41 nursing activity classes and
7400 hours data of real nursing activities. As far as we
know, these data are the ‘biggest data’ of sensors which
were used in a real hospital in real situations.

Moreover, we analyze the correlations among multi-
ple sensors. In order to see mutual effects among sen-
sors including time lags, we calculate cross-correlation
values between every pair of sensor data for each pa-
tient.

2 Plan for data collection

Clinical pathways, also known as critical pathways,
are one of the main tools used to manage the quality in
healthcare concerning the standardization of care pro-
cesses. Clinical pathways reduce the variability in clin-
ical practice and improves outcomes such as medical
care cost and hospitalization period. A main objective
of this research is finding factors that affect pathway



outcomes by exploratory analysis[1]. There exists two
types of affecting factors: one is caused by patients and
the other is caused by medical staffs such as doctors and
nurses. Therefore, we plan two experiments : one is for
patients and the other is for medical staffs.

In the experiment for patients, we collect patients’
various information including sensor data and their out-
come in order to discover important patients’ data that
affect pathway outcomes. If we notice patients’ vari-
ance before some hours, we may keep standard care
process by appropriate cares and improve outcomes.

In the experiment for medical staffs, we collect nurs-
ing care information — when and what kinds of cares
are done by nurses for patients. We invastigate what are
important care factors — kinds of cares, work speed,
care interval, years of experience of nurses etc.

3 Collected dataset

From April 2011 to March 2012, we have 70 patients
who consent to this experiment. In this section, we de-
scribes the collected dataset.

3.1 Patient data

An electrocardiogram (ECG) is attached to the chest
of the patients to collect the patients’ vital data during
the period from after the surgery to discharge. ECGs
send vital data via wireless connection to an ECG mon-
itor placed in a nursing station, and the ECG monitor
centralizes these vital data, The vital data, which in-
cludes heartbeat, type of arthythmia and ST level is
stored on a PC connected to the ECG monitor. We have
collected total 3900 hours of cardiogram data.

We use a bed sensor system in which a thin, air-
sealed cushion is placed under the bed mattress of the
patient[2]. The system measures heartbeat, respiration
and body movement of the patient non-invasively by de-
tecting the changes of air pressure of the cushion caused
by their heartbeat etc. We have collected total 2500
hours of bed sensors.

The patients wear a 3-axis accelerometer on their
wrist to measere the patients’ movement. Accelerom-
eters detect turn over in patients’ sleep and measure
the depth of their sleep. Moreover, accelerometers de-
tects the position of the patients and help recognizing
nurses’ care for the patients by integrating the nurses’
accelerometers data described in Section 3.3. -

We also gather medical record of the patients — age,
sex, height, weight, body temperature, blood pressure,
diagnosis, medical cost and hospitalization period etc.
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Figure 1. Nurses with three accelerome-
ters

3.2 Environment data

In order to check the effect of patients’ environment
on their prognosis, three environment data loggers are
placed on the patients’ room and record four types of
data — temperature/humidity, illuminance and loud-
ness. Temperature and humidity are recorded every 5
seconds and the others are recorded every second. We
have collected 5600 hours of environmental sensors’
data.

3.3 Nurses data

Nurses who care the patients bring -smart devices
(iPod touches), which have accelerometers, into their
breast pockets with a roughly fixed direction{3]. More-
over, they attached small two accelerometers on their
wrist and waist(See Figure 1). These three accelerom-
eters are used for recognizing when and what kinds of
activities are done by the nurses. The nurses also carry
an RFID tag and an RFID reader is installed on the en-
trance of each of the patients’ rooms. RFID enables
to detect nurses’ entering and leaving of the rooms, i.e.
when and for which patients nurses care. Therefore, we
recognize when and what kinds of cares are done by the
nurses for the patients. We have collected total 7400
hours of real nursing activities and 4600 hours of RFID
data.

We also collect accelerometers data which is cate-
gorized by activities for supervised learning, which en-
ables to predict nursing care using accelerometers data.
These data is collected through a simulated nursing, in
which the real nurses care for simulated patients (See



Figure 2. Simulated nursing for super-
vised learning

Figure 2). In the simulated nursing care, we collected
100 hours data of 5964 activities which are categorized
41 activity classes.

4 Preliminary analysis

In this section, we analyze the correlations among
multiple sensors. One factor on the site may affect one
or more sensors, or one sensor value may affect another.
Moreover, such a mutual effect might have a time lag
between sensors, since the effect might appear with la-
tency. Therefore, to see mutual effects among sensors
including time lags, we calculate cross-correlation val-
ues between every pair of sensor data for each patient.

By knowing cross-correlations among sensors, we
can apply the result to higher-level pattern recognitions
or data mining tasks, such as:

¢ To estimate the value of a sensor from another sen-
sor, and alert if there are abnormal values by outlier
detection.

o If there is strong correlations between sensors at
a particular time lag, future-value prediction of a
sensor form the/another sensor would be possible.

¢ To know the necessity of omitting independency
~among sensor values when they are used for pat-
" tern recognition inputs.

¢ To find optimum time lags of the sensors as an in-
put variable to recognize a static values of the pa-
tient, or the care.

The procedure of the analysis is as follows: For each
patient,
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1. Take the median values of 1 minutes for each sen-
sor value. Exceptionally, take number of entering
the room from the RFID logs.

2. Divide them to 3 hours.

3. For every pair of sensors of 3 hours, calculate
cross-correlation values with time lags of £60
minutes at maximum.

Utilized sensors are:

¢ (ECG monitor): from the ECG monitors which are
placed in the nursing station, we extracted heart
rates values and ST levels.

o (Bed sensor): from the bed sensors, heart rates,
breath rates, and body movement rates were ex-
tracted.

e (RFID tags): from the RFID which identifies
the entries of nurses, we counted the number of
nurses’ entries.

o (Environment sensors): the illuminance sensor,
temperature/humidity sensor, and the loudness
sensor data.

In the following, we show typical cross-correlations
we obtained. )

Figure 3 shows the cross-correlations between body
movement and loudness for all patients, which is rep-
resented by box-and-wisker plot to show distributions
among patients.. Moreover, Figure 4 shows the cross-
correlations between ECG heart rates and loudness for
all patients. These figures show that loudness has cor-
relations with body movement and ECG heart rates
around 0 minutes. This implies that patients tend to
move and the heart rates tends to be higher when there
is noise. Using a bed sensor or ital sensors and such
an environment sensor, we can know in which environ-
mental condition patients states become active.

Figure 5 shows the cross-correlations between the
number of nurse entries and illuminance for all patients.
Moreover, Figure 6 shows those between nurse entries
and loudness for all patients. If we look at the quantile
values, we can see that nurse entries have positive cor-
relations with illuminance and loudness around 0 min-
utes. Using a RFID and such environment sensors, we
can know the relationship between nurses’ entry and en-
vironment changes.

As shown in this section, by looking at the correla-
tions between sensors, we can find which sensor value
may affect another sensor. Moreover, since it seems that
there exist stronger correlations if we see each sample,
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Figure 3. Cross-correlation between body
movement and loudness for all patients.
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Figure 4. Cross-correlation between ECG
heart rates and loudness for all patients.

we could find more effective correlations with personal-
ized approach. Clustering patient to several categories
of correlation natures and utilizing them for higher-level
mining tasks are our future work. ‘

5 Conclusion

In this paper, we described a sensor dataset, which
was collected in a hospital, to be used for pattern recog-
nition and/or data mining for medical purposes. The
dataset includes those of patients and nursing care in a
hospital. For analyzing nursing activities, we collected
100 hours data of 5964 activities which was labeled
with 41 nursing activity classes and 7400 hours data of
real nursing activities.

Moreover, we analyzed the correlations among mul-
tiple sensors. In order to see mutual effects among sen-
sors including time lags, we calculated cross-correlation
values between every pair of sensor data for each pa-
tient.
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Figure 5. Cross-correlation between
nurse entries and light sensors for all
patients.
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Figure 6. Cross-correlation between
nurse entries and loudness for all pa-
tients.
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All Variance Analysis of Electronic Clinical Pathway
Wakata Yoshifumi Nakashima Naoki Nohara Yasunobu
Medical Information Center, Kyushu University Hospital

Recently, most hospital in Japan have introduced electronic hospital information system (HIS) such as electronic medical
chart, and with this, clinical pathway (CP) also has been electronicized. Most remarkable advantage of electronic CP is to
reduce the time and effort spent on tallying votes of variance dramatically. In addition, heavy workload tallying paper-baced
CP data has been major disincentive of CP data analysis (especially variansce analysis). Therefore the expectation for
progress of CP analysis by using electronic CP was great. However, it is hard to say that CP analysis is performed
sufficiently among the hospital where erectronic CP has been introduced.

All-variance type outcome-oriented electronic clinical pathway has been introduced and used in the Kyushu University
Hospital and the Saiseikai Kumamoto hospital. In the Kyushu University Hospital, four years have passed from introduction
of electronic CP and the cases applied CP were accumulated. So we try to establish method of multivariable analysis to
extract critical indicator (CI) exploratory among the all outcomes setting in the pathway by using all variance type electronic
critical pathway data. Therefore we refer to functionality reqirements of electronic CP for analysis by providing emerging
problem in the process of establishing analytic method and actual analytic result.

Keywords: outcome-oriented clinical pathway ,critical indicator,all variances method,electronic clinical

pathway
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In clinical diabetes field, information technology has been used in various ways from earlier days with the history of
devices to assay blood glucose. Many devices and applications about diabetes are available and still glowing in the clinical
market. On the other hand, because digitalization of diabetes informatics has not been managed well, data sharing with other
fields and data accumulation have been ineffective. For example, data items, unit, and definition in past clinical diabetic
database or in clinical support tools have been implemented by non-integrated manner, and thus, we cannot integrate
databases or data transition to other database. Digitalization without management should be ineffective and produce huge
cost to correct in the future. Japan Society of Diabetes and Japan Association for Medical Informatics organized the Joint
Committee for Appropriate Digitalization of Diabetes Information (JADDI, the chair is Prof. Naoko Tajima) in Aug, 2011to
avoid non-integrated digitalization, and to promote strategic interoperability. in 2011, JADDI established "Minimum Data
Set of Diabetes Mellitus" consists of 12 items. This set, which specifies units and description manner, must be included in
any usecases of diabetes databases. JADDI joined the working group of the task force team for medical information in the
Cabinet and developed dataset of "DOKODEMO My hospital, diabetic record" which is suitable from pre-diabetes to
diabetes without serious complication as an usecase of diabeic database.

In this panel discussion, we invite Mr. Yoji Arikura in the Cabinet Secretariat, Information Technology Policy Office, to
learn about "DOKODEMO My hospital, diabetic record” and the future plans. We also want to discuss how to develop and
spread "Minimum Data Set of Diabetes Mellitus” and "DOKODEMO My hospital, diabetic record", and how to colaborate
with other fields.

Keywords: diabetes mellitus,minimum data set, DOKODEMO My Hospital,standardization
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