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REPORT

The TRK-Fused Gene Is Mutated in Hereditary Motor and
Sensory Neuropathy with Proximal Dominant Involvement

Hiroyuki Ishiura,! Wataru Sako,3 Mari Yoshida,* Toshitaka Kawarai,3 Osamu Tanabe,35 Jun Goto,!
Yuji Takahashi,® Hidetoshi Date,? Jun Mitsui,! Budrul Ahsan,! Yaeko Ichikawa,! Atsushi Iwata,!
Hiide Yoshino,® Yuishin Izumi,3 Koji Fujita,3 Kouji Maeda,? Satoshi Goto,3 Hidetaka Koizumi,3
Ryoma Morigaki,3 Masako Ikemura,” Naoko Yamauchi,” Shigeo Murayama,® Garth A. Nicholson,?
Hidefumi Ito,© Gen Sobue,!! Masanori Nakagawa,!2 Ryuji Kaji,3* and Shoji Tsujil.213*

Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is an autosomal-dominant neurodegener-
ative disorder characterized by widespread fasciculations, proximal-predominant muscle weakness, and atrophy followed by distal
sensory involvement. To date, large families affected by HMSN-P have been reported from two different regions in Japan. Linkage
and haplotype analyses of two previously reported families and two new families with the use of high-density SNP arrays further defined
the minimum candidate region of 3.3 Mb in chromosomal region 3q12. Exome sequencing showed an identical ¢.854C>T (p.Pro285-
Leu) mutation in the TRK-fused gene (TFG) in the four families. Detailed haplotype analysis suggested two independent origins of the
mutation. Pathological studies of an autopsied patient revealed TFG- and ubiquitin-immunopositive cytoplasmic inclusions in the
spinal and cortical motor neurons. Fragmentation of the Golgi apparatus, a frequent finding in amyotrophic lateral sclerosis, was
also observed in the motor neurons with inclusion bodies. Moreover, TAR DNA-binding protein 43 kDa (TDP-43)-positive cytoplasmic
inclusions were also demonstrated. In cultured cells expressing mutant TFG, cytoplasmic aggregation of TDP-43 was demonstrated.
These findings indicate that formation of TFG-containing cytoplasmic inclusions and concomitant mislocalization of TDP-43 underlie
motor neuron degeneration in HMSN-P. Pathological overlap of proteinopathies involving TFG and TDP-43 highlights a new pathway
leading to motor neuron degeneration.

Hereditary motor and sensory neuropathy with proximal
dominant involvement (HMSN-P [MIM 604484]) is an
autosomal-dominant disease characterized by predomi-
nantly proximal muscle weakness and atrophy followed
by distal sensory disturbances.! HMSN-P was first described
in patients from the Okinawa Islands of Japan, where
more than 100 people are estimated to be affected.> Two
Brazilian HMSN-P-affected families of Okinawan ancestry
have also been reported.>*

The disease onset is usually in the 40s and is followed by
a slowly progressive course. Painful muscle cramps and
abundant fasciculations are observed, particularly in the
early stage of the disease. In contrast to the clinical presen-
tations of other hereditary motor and sensory neuropa-
thies (HMSNs) presenting with predominantly distal
motor weakness reflecting axonal-length dependence,
the clinical presentation of HMSN-P is unique in that it
involves proximal predominant weakness with widespread
fasciculations resembling those of amyotrophic lateral
sclerosis (ALS).® Distal sensory loss is accompanied later

in the disease course, but the degree of the sensory involve-
ment varies among patients. Neuropathological findings
revealed severe neuronal loss and gliosis in the spinal ante-
rior horns and mild neuronal loss and gliosis in the hypo-
glossal and facial nuclei of the brainstem, which indicates
that the primary pathological feature of HMSN-P is a motor
neuronopathy involving motor neurons, but not a motor
neuropathy involving axons.>* The posterior column, cor-
ticospinal tract, and spinocerebellar tract showed loss of
myelinated fibers and gliosis. Neuronal loss and gliosis
were found in Clarke’s nucleus. Dorsal root ganglia showed
mild to marked neuronal loss."” These observations
suggest that HMSN-P shares neuropathological findings
in part with those observed in familial ALS.®

Previous studies on Okinawan kindreds mapped the
disease locus to chromosome 3q." Subsequently, we identi-
fied two large families (families 1 and 2 in Figure 1A)
affected by quite a similar phenotype in the Kansai area
of Japan, located in the middle of the main island of Japan
and far distant from the Okinawa Islands. We mapped the
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Figure 1. Pedigree Charts and Linkage Analysis

(A) Pedigree charts of families 1 and 2 (Kansai kindreds) and families 3 and 4 (Okinawan kindreds) are shown. Squares and circles indicate
males and females, respectively. Affected persons are designated with filled symbols. A diagonal line through a symbol represents
a deceased person. A person with an arrow is an index patient. Genotypes of TFG c.854 are shown in individuals in whom genomic
DNA was analyzed. Individuals genotyped with SNP arrays for linkage analysis and haplotype reconstruction are indicated by dots.
(B) Cumulative parametric multipoint LOD scores on chromosome 3 of all the families are shown.

disease locus to chromosome 3q,” overlapping with the
previously defined locus, which strongly indicates that
these diseases are indeed identical.

In addition to the large Kansai HMSN-P-affected fami-
lies, we found two new Okinawan HMSN-P-affected

families (families 3 and 4 in Figure 1A) in our study. In
total, 9 affected and 15 unaffected individuals from
the Kansai area and four affected and four unaffected
individuals from the Okinawa Islands were enrolled in
the study. Written informed consent was obtained from
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Table 1. Clinical Characteristics of Patlents with HMSN-P from Families 1 and 2 from Kansai and Families 3 and 4 from Okinawa
Family 3 - Family 4

Familles 1 and 2 m-12 m-14 1-15 -4

Age at examination 405-50s 54 52 50 54

(years)

Age at onset (years) 375 £8 44 40 early 20s 41

Initial symptoms shoulder dislocation proximal leg weakness  painful cramps painful cramps painful cramps
and difficulty walking and fasciculation  and calf atrophy

Motor

Proximal muscle + + mild + +

weakness and atrophy

Painful cramps + + + + +

Fasciculations + + + + +

Motor ability bedridden after 10-20 unable to walk; only mild difficulty  walk with effort unable to walk;
years from disease onset ~ wheelchair climbing stairs wheelchair

Bulbar symptoms —t - - - -

Sensory

Dysesthesia + + mild + +

Decreased tactile + + - mild +

sensation

Decreased vibratory + mild mild mild +

sensation

Reflexes

Tendon reflexes diminished diminished diminished diminished diminished

Pathological reflexes - - - - -

Laboratory Tests and Electrophysiological Findings

Serum creatine kinase 270 = 101 TUNL 761 IU/1 not measured 625 TU/N 399 1U/1

level

Hyperglycemia 4/13 patients - - - +

Hyperlipidemia 3/13 patients + - + +

Nerve conduction study

motor and sensory
axonal degeneration

motor and sensory
axonal degeneration

not examined

not examined

motor and sensory
axonal degeneration

Needle electromyography

neurogenic changes
with fibrillation
potentials and positive
sharp waves

neurogenic changes
with fibrillation
potentials and positive
sharp waves

not examined

not examined

not examined

The clinical characteristics of the patients from families 1 and 2 were summarized in accordance with the previous studies.>¢

all participants. This study was approved by the institu-
tional review boards at the University of Tokyo and the
Tokushima University Hospital. Genomic DNA was ex-
tracted from peripheral-blood leukocytes or an autopsied
brain according to standard procedures.

The clinical presentations of the patients from the four
families are summarized in Table 1 and Table S1, available
online. Characteristic painful cramps and fasciculations
were noted at the initial stage of the disease in all the
patients from the four families. Whereas some of the
patients showed painful cramps in their 20s, the ages of
onset of motor weakness (41.6 = 2.9 years old) were quite
uniform. These patients presented slowly progressive, pre-
dominantly proximal weakness and atrophy with dimin-

ished tendon reflexes in the lower extremities. Sensory
impairment was generally mild. Indeed, one patient (III-4
in family 4) has been diagnosed with very slowly progres-
sive ALS. Although frontotemporal dementia (FTD) is an
occasionally observed clinical presentation in patients
with ALS, -dementia was not observed in these patients.
Laboratory tests showed mildly elevated serum creatine
kinase levels. Electrophysiological studies showed similar
results in all the patients investigated and revealed
a decreased number of motor units with abundant positive
sharp waves, fibrillation, and fasciculation potentials.
Sensory-nerve action potentials of the sural nerve were
lost in the later stage of the disease. All these clinical find-
ings were similar to those described in previous reports.™>*

322 The American Journal of Human Genetics 97, 320-329, August 10, 2012



To further narrow the candidate region, we conducted
detailed genotyping by employing the Genome-Wide
Human SNP array 6.0 (Affymetrix). Multipoint parametric
linkage analysis and haplotype reconstruction were per-
formed with the pipeline software SNP-HiTLink® and
Allegro v.2° (Figure 1A). In addition to the SNP genotyping,
we also used newly discovered polymorphic dinucleotide
repeats for haplotype comparison (microsatellite marker
1 [MS1], chr3: 101,901,207-101,901,249; and MS2, chr3:
102,157,749-102,157,795 in hg18) around TFG (see Table
S2 for primer sequences). The genome-wide linkage study
revealed only one chromosome 3 region showing a cumu-
lative LOD score exceeding 3.0 (Figure 1B), confirming the
result of our previous study.” An obligate recombination
event was observed between rs4894942 and 151104964,
thus further refining the telomeric boundary of the candi-
date region in Kansai families (Figure 2A). The Okinawan
families (families 3 and 4) shared an extended disease
haplotype spanning 3.3 Mb, consistent with a founder
effect reported in the Okinawan HMSN-P-affected fami-
lies,! thus defining the 3.3 Mb region as the minimum
candidate region.

We then performed exon capture (Sequence Capture
Human Exome 2.1 M Array [NimbleGen]) of the index
patient from family 3 and subsequent passively parallel
sequencing by using two lanes of GAIlx (100 bp single
end [[llumina]) and a one-fifth slide of SOLiD 4 (50 bp
single end [Life Technologies]). GAIlx and SOLiD4 yielded
2.60 and 2.76 Gb of uniquely mapped reads,'® respectively.
The average coverages were 29.0x and 26.8x in GAIlx and
SOLiD4, respectively (Table S3 and Figure S1). In summary,
175,236 single nucleotide variants (SNVs) and 25,987
small insertions/deletions were called.'* The numbers
of exonic and splice-site variants were 14,189 and 127,
respectively. In the minimum candidate region of 3.3 Mb,
only 11 exonic SNVs were found, and only one was novel
(i.e., not found in dbSNP) and nonsynonymous. Direct
nucleotide-sequence analysis confirmed the presence of
heterozygous SNV ¢.854C>T (p.Pro285Leu) in TRK-fused
gene (TFG [NM_006070.5)) in all the patients from families
3 and 4 (Figure 3A and Figure $S2'%). Intriguingly, direct
nucleotide-sequence analysis of all TFG exons (see Table
S4 for primer sequences) of one patient from each of
families 1 and 2 from the Kansai area revealed an identical
¢.854C>T (p.Pro285Leu) TFG mutation cosegregating with
the disease (Figure 1A and Figure 3A). The base substitution
was not observed in 482 Japanese controls (964 chromo-
somes), dbSNP, the 1000 Genomes Project Database, or
the Exome Sequencing Project Database. Pro285 is located
in the P/Q-rich domain in the C-terminal region of TFG
(Figure 3B) and is evolutionally conserved (Figure 3C).
PolyPhen predicts it to be “probably damaging.” Because
some of the exonic sequences were not sufficiently covered
by exome sequencing (i.e., their read depths were no
more than 10x) (Figure S1), direct nucleotide-sequence
analysis was further conducted for these exonic sequences
(Table S5). However, it did not reveal any other novel

nonsynonymous variants, confirming that c¢.854C>T
(p.Pro285Leu) is the only mutation exclusively present in
the candidate region of 3.3 Mb. All together, we concluded
that it was the disease-causing mutation.

Because we found an identical mutation in both
Kansai (families 1 and 2) and Okinawan (farmilies 3 and
4) families, we then compared the haplotypes with the
c.854C>T (p.Pro285Lleu) mutation in the Kansai and
Okinawan families in detail. To obtain high-resolution
haplotypes, we included custom-made markers, including
MS1 and MS2, and new SNVs identified by our exome
analysis, in addition to the high-density SNPs used in the
linkage analysis. The two Kansai families shared as long
as 24.0 Mb of haplotype, and the two Okinawan families
shared 3.3 Mb, strongly supporting a common ancestry
in each region. When the haplotypes of the Kansai and
Okinawan families were compared, it turned out that these
families do not share the same haplotype because the
markers nearest to TFG are discordant at markers 48.5 kb
centromeric and 677 bp telomeric to the mutation within
a haploblock (Figure 2B). Although the possibility of rare
recombination events just distal to the mutation cannot
be completely excluded, as suggested by the population-
based recombination map (Figure 2B), these findings
strongly support the interpretation that the mutations
have independent origins and provide further evidence
that TFG contains the causative mutation for this disease.

Mutational analyses of TFG were further conducted in
patients with other diseases affecting lower motor neurons
(including familial ALS [n = 18], axonal HMSN [n = 26],
and hereditary motor neuropathy [n = 3]) and revealed
no mutations in TFG, indicating that ¢.854C>T (p.Pro285-
Leu) in TFG is highly specific to HMSN-P.

In this study, we identified in all four families a single
variant that appears to have developed on two different
haplotypes. The mutation disrupts the PXXP motif, also
known as the Src homology 3 (SH3) domain, which might
affect protein-protein interactions. In addition, substitu-
tion of leucine for proline is expected to markedly alter
the protein’s secondary structure, which might substan-
tially compromise the physiological functions of TFG.

By employing the primers shown in Table S6, we ob-
tained full-length cDNAs by PCR amplification of the
cDNAs prepared from a cDNA library of the human
fetal brain (Clontech). During this process, four species
of cDNA were identified (Figure S3A). To determine the
relative abundance of these cDNA species, we used the
primers shown in Table S7 to conduct fragment analysis
of the RT-PCR products obtained from RNAs extracted
from various tissues; these primers were designed to
discriminate four cDNA species on the basis of the size of

‘the PCR products. The analysis revealed that TFG is ubiqui-

tously expressed, including in the spinal cord and dorsal
root ganglia, which are the affected sites of HMSN-P
(Figure S3B).

Neuropathological studies were performed in a TFG-
mutation-positive patient (IV-25 in family 1) who died of
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Figure 2. Haplotype Analysis and Minimum Candidate Region of HMSN-P

(A) Haplotypes were reconstructed for all the families with the use of SNP array data and microsatellite markers. Previously reported
candidate regions are shown as “Kansai 2007” and “Okinawa 2007.”%6 Because families 1 and 2 are distantly related, an extended shared
common haplotype was observed on chromosome 3, as indicated by a previous study.® A reassessment of linkage analysis with high-
density SNP markers revealed a recombination between rs4894942 and rs1104964 in family 2, thus refining the telomeric boundary
of the candidate region in Kansai families (designated as “Common haplotype shared between families 1 and 2). Furthermore, a shared
common haplotype (3.3 Mb with boundaries at 1516840796 and rs1284730) between families 3 and 4 was found, defining the minimum
candidate region.

isease haplotype in famifies 3 and 4 {Okinawa)
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A Kansai family, affected

(family 1, V-9)

Okinawan family, affected
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Unaffected
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Figure 3. Identification of Causative Mutation

(A) Exome sequencing revealed that only one novel nonsynonymous variant is located within the minimum candidate region. Direct

nucleotide-séquence analysis confirmed the mutation, c.854C>T
mutation cosegregated with the disease (Figure 1A).

(p.Pro285Leu), in TFG in both Kansai and Okinawan families. The

(B) Schematic representation of TFG isoform 1. The alteration (p.Pro285Leu) detected in this study is shown below.
(C) Cross-species homology search of the partial TFG amino acid sequence containing the p.Pro285Leu alteration revealed that Pro285 is

evolutionally conserved among species.

pneumonia at 67 years of age.® Immunochistochemnical
observations employing a TFG antibody (Table S8) re-
vealed fine granular immunostaining of TFG in the
cytoplasm of motor neurons in the spinal cord of neuro-
logically normal controls (n = 3; age at death = 58.7 =
19.6 years old) (Figure 4A). In the HMSN-P patient, in
contrast, TFG-immunopositive inclusion bodies were de-
tected in the motor neurons of the facial, hypoglossal,
and abducens nuclei and the spinal cord, as well as in
the sensory neurons of the dorsal root ganglia, but were
not detected in glial cells (Figures 4B-4D). A small number
of cortical neurons in the precentral gyrus also showed
TFG-immunopositive inclusion bodies (Figure 4F). Serial
sections stained with antibodies against ubiquitin or TFG
(Figure 4F) and double immunofluorescence staining
(Figure 4G) demonstrated that TEG-immunopositive inclu-
sions colocalized with ubiquitin deposition. Inclusion
bodies were immunopositive for optineurin in motor
neurons of the brainstem nuclei and the anterior horn of
the spinal cord,’ as well as in sensory neurons of the dorsal
root ganglia (data not shown). These data strongly indicate
that HMSN-P is a proteinopathy involving TFG.

Because HMSN-P and ALS share some clinical character-
istics, we then examined whether neuropathological
findings of HMSN-P shared cardinal features with those
of sporadic ALS.'3-16 Immunohistochemistry with a TDP-
43 antibody revealed skein-like inclusions in the remain-
ing motor neurons of the abducens nucleus and the
anterior horn of the lumbar cord (Figures 4H-4I). Phos-
phorylated TDP-43-positive inclusions were also identified
in neurons of the anterior horn of the cervical cord and
Clarke’s nucleus (Figures 4]J-4K). In contrast, TFG immu-
nostaining of spinal-cord specimens from four patients
with sporadic ALS (their age at death was 72.3 + 7.4 years
old) revealed no pathological staining in the motor
neurons (data not shown). Double immunofluorescence
staining revealed that many of the TFG-immunopositive
round inclusions in the HSMN-P patient were negative
for TDP-43 (Figure 4L), whereas a small number of
inclusions were positive for both TFG and TDP-43
(Figure 4M). In addition, to investigate morphological
Golgi-apparatus changes, which have recently been found
in motor neurons of autopsied tissues of ALS patients,'”
we conducted immunohistochemical analysis by using

(B) Disease haplotypes in the Kansai and Okinawan kindreds are indicated below. Local recombination rates, RefSeq genes, and the
linkage disequilibrium map from HapMap JPT (Japanese in Tokyo, Japan) and CHB (Han Chinese in Beijing, China) samples are shown
above the disease haplotypes. When disease haplotypes of the Kansai and Okinawan kindreds are compared, the markers nearest to TFG
are discordant at markers 48.5 kb centromeric and 677 bp telomeric to the mutation within a haploblock, strongly supporting the inter-
pretation that the mutations have independent origins.
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Figure 4. TFG-Related Neuropathological Findings

(A) TFG immunostaining (with hematoxylin counterstaining) of a motor neuron in the spinal cord of a neurologically normal control.
A high-power magnified photomicrograph (inset) shows fine granular staining of TFG in the cytoplasm. The scale bars represent 20 ym
(main panel) and 10 pm (inset).

(B-E) TFG-immunopositive inclusions of the neurons (with hematoxylin counterstaining) in the hypoglossal nucleus (B), anterior horn
of the spinal cord (C), dorsal root ganglion (D, arrows), and motor cortex (E, arrow) of the patient with the TFG mutation. The scale bars
represent 20 pym (B-D) and 50 pm (E).

(F and F') Serial section analysis of the facial nucleus motor neuron showing an inclusion body colabeled for TFG (F) and ubiquitin (F).
The scale bars represent 20 pm.

(G-G") Double immunofluorescence microscopy confirming colocalization of TFG (green) and ubiquitin (red) in an inclusion body of
a motor neuron in the hypoglossal nucleus. The scale bars represent 20 pm.

(H and I) TDP-43-positive skein-like inclusions in the motor neurons of the abducens nucleus (H) and anterior horn of the lumbar cord
(I). The scale bars represent 20 pm.

( and K) Phosporylated TDP-43-positive inclusion bodies in the cervical anterior hom (J) and Clarke’s nucleus (K). The scale bars repre-
sent 20 um.

(L-L") Round inclusions (arrows) positive for TFG (green) but negative for TDP-43 (red). The scale bars represent 20 pm.
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Figure 5. Formation of Cytoplasmic TDP-43 Aggregation Bodies
in Cells Stably Expressing Mutant p.Pro285Leu TFG

The coding sequence of TFG cDNA was subcloned into pBluescript
(Stratagene). After. site-directed mutagenesis with a primer pair
shown in Table §9, the mutant cDNAs were cloned into the BamHI
and Xhol sites of pcDNA3 (Life Technologies). Stable cell lines
were established by Lipofectamine (Life Technologies) transfec-
tion according to the manufacturer’s instructions. Established
cell lines were cultured under the ordinary cell-culture conditions
(37°C and 5% CO,) for 5~-6 days and were subjected to immuno-
cytochemical analyses. Neuro-2a cells stably expressing wild-
type TFG (A), mutant TFG (p.Pro285Leu) (B), and a mock vector
(C) are shown. TDP-43-immunopositive cytoplasmic inclusions
are absent in the cells stably expressing wild-type TFG or the
mock vector (A and C); however, TDP-43-immunopositive cyto-
plasmic inclusions were exclusively demonstrated in cells stably
expressing mutant TFG (p.Pro285Leu), as indicated by arrows
(B). Similar results were obtained with HEK 293 cells (not showmn).
Scale bars represent 10 um.

a TGN46 antibody. It revealed that the Golgi apparatus was
fragmented in approximately 70% of the remaining motor
neurons in the lumbar anterior horn. The fragmentation of
the Golgi apparatus was prominent near TFG-positive
inclusion bodies (Figures 4N—4R). In summary, we found
abnormal TDP-43-immunopositive inclusions in the
cytoplasm of motor neurons, as well as fragmentation of
the Golgi apparatus in HMSN-P, confirming the overlap-
ping neuropathological features between HMSN-P and
sporadic ALS.

To further investigate the effect of mutant TFG in
cultured cells, stable cell lines expressing wild-type and
mutant TFG (p.Pro2835Leu) were established from neuro-
2a and human embryonic kidney (HEK) 293 cells as previ-

ously described.'® Established cell lines were cultured
under the ordinary cell-culture conditions (37°C and 5%
CO,) for 5-6 days and were subjected to immunocyto-
chemical analyses. The neuro-2a cells stably expressing

- wild-type or mutant TFG demonstrated no distinct differ-

ence in the distribution of endogenous TFG, FUS, or
OPTN (data not shown). In contrast, cytoplasmic inclu-
sions containing endogenous TDP-43 were exclusively
observed in the neuro-2a cells stably expressing untagged
mutant TFG, but not in those expressing wild-type TFG
(Figure 5). Similar data were obtained from HEK 293 cells
(data not shown). Thus, the expression of mutant TFG
leads to mislocalization and inclusion-body formation of
TDP-43 in cultured cells.

TFG was originally identified as a part of fusion oncopro-
teins (NTRK1-T3 in papillary thyroid carcinoma,'® TEG-
ALK in anaplastic large cell lymphoma,®® and TFG/NOR1
in extraskeletal myxoid chondrosarcoma®!), where the
N-terminal portions of TFG are fused to the C terminus
of tyrosine kinases or a superfamily of steroid-thyroid
hormone-retinoid receptors acting as a transcriptional
activator leading to the formation of oncogenic products.
Very recently, TFG-1, a homolog of TFG in Caenorhabditis
elegans, and TFG have been discovered to localize in endo-
plasmic-reticulum exit sites. TFG-1 acts in a hexameric
form that binds the scaffolding protein Sec16 complex
assembly and plays an important role in protein secretion
with COPII-coated vesicles.?” It is noteworthy that muta-
tions in genes involved in vesicle trafficking®>?* (such
genes include VAPB, CHMP2B, alsin, FIG4, VPS33B,
PIP5K1C, and ERBB3) cause motor neuion diseases,
emphasizing the role of vesicle trafficking in motor neuron
diseases. Thus, altered vesicle trafficking due to the TFG
mutation might be involved in the motor neuron degener-
ation in HMSN-P. The presence of TFG-immunopositive
inclusions in motor neurons raises the possibility that
mutant TFG results in the misfolding and formation of
cytoplasmic aggregate bodies, as well as altered vesicle
trafficking.

An intriguing neuropathological finding is TDP-43-
positive cytoplasmic inclusions in the motor neurons;
these inclusions have recently been established as the
fundamental neuropathological findings in ALS.*'* Of
note, expression of mutant, but not wild-type, TFG in
cultured cells led to the formation of TDP-43-containing
cytoplasmic aggregation. These observations are similar

(M-M") An inclusion immunopositive for both TFG (green) and TDP-43 (red) is observed in a small number of neurons. The scale bars:

represent 20 pm.

() Normal Golgi apparatus in the neurons of the intact thoracic intermediolateral nucleus. The scale bar represents 20 ym.
(O and P) Fragmentation of the Golgi apparatus with small, round, and dlsconnected profiles in the affected motor neurons of the

lumbar anterior hommn. The scale bars represent 20 pm.

(Q-R") Immunohistochemical observations of the Golgi apparatus and TFG- unmunopos1t1ve inclusions employing antibodies against
TGN46 (red) and TFG (green), respectively. The scale bars represent 10 ym.

(Q) Normal size and distribution (red) in a motor neuron without inclusions.

(R-R”) The Golgi apparatus was fragmented into various sizes and reduced in number in the lumbar anterior horn motor neuron with
TFG-positive inclusions (green). The fragmentation predominates near the inclusion (arrow), whereas the Golgi apparatuses distant from

the inclusion showed nearly normal patterns (arrow head).
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to what has been described for ALS, where TDP-43 is
mislocalized from the normally localized nucleus to the
cytoplasm with concomitant cytoplasmic inclusions.
Cytoplasmic TDP-43 accumulation and inclusion forma-
tion have also been observed in motor neurons in familial
ALS with mutations in VAPB (MIM 608627) or CHMP2B
(MIM 600795).252¢ Furthermore, TDP-43 pathology has
been demonstrated in transgenic mice expressing mutant
VAPB.*” Although the mechanisms of mislocalization of
TDP-43 remain to be elucidated, these observations suggest
connections between alteration of vesicle trafficking and
mislocalization of TDP-43. Thus, common pathophysio-
logic mechanisms might underlie motor neuron degenera-
tions involving vesicle trafficking including TFG, as well as
VAPB and CHMP2B. Because TDP-43 is an RNA-binding
protein, RNA dysregulation has been suggested to play
important roles in the TDP43-mediated neurodegenera-
tion.?® Furthermore, recent discovery of hexanucleotide
repeat expansions in C9ORF72 in familial and sporadic
ALS/FTD (MIM 105550)?*3° emphasizes the RNA-medi-
ated toxicities as the causal mechanisms of neurodegener-
ation. Observations of TDP-43-positive cytoplasmic inclu-
sions in the motor neurons of the patient with HMSN-P
raise the possibility that RNA-mediated mechanisms
might also be involved in motor neuron degeneration in
HMSN-P.

In summary, we have found that TFG mutations cause
HMSN-P. The presence of TFG/ubiquitin- and/or TDP-43-
immunopositive cytoplasmic inclusions in motor neurons
and cytosolic aggregation composed of TDP-43 in cultured
cells expressing mutant TFG indicate a novel pathway of
motor neuron death.

Supplemental Data

Supplemental Data include three figures and nine tables and can
be found with this article online at http://www.cell.com/AJHG/.
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