as exons 2-3 fusion), then to search for SECRIs comprising three
sequential exons (such as exons 1-2-3 fusion), four sequential ex-
ons , and so on. For example, if intron 12 is spliced out before the
removal of introns 11 and 13, a SECRI comprising exons 12 and 13
is predicted to be amplified by a sense primer in intron 11 and an
antisense primer in intron 13.

We designed PCR primers as shown in Supp. Table S1. Sense
primers, ex1F to inl6F were used for amplification of exon 1 to
exon 17, respectively. Antisense primers, iniR to ex17R, were for
amplification of exon 1 to exon 17, respectively. To initiate cDNA
synthesis from nuclear RNA, we employed additional SCOT-specific
antisense primers, labeled in2R’ to ex17R’, that were located down-
stream from in2R to ex17R, respectively. Three separate cDNA syn-
thesis reactions were carried out using mixtures of either in2R’,
in3R/, indR/, in5R’, and in6R’ primers, of in7R’, in8R’, in9R’, in10R’,
and in11R’ primers, or of in12R’,in13R/, in14R’ in15R’,in16R’, and
ex17R’ primers. The cDNA products then served as templates for
PCR detection of various SECRIs using in2R, in3R, indR, in5R, and
in6R antisense primers, in7R, in8R, in9R in10R,and in1 1R antisense
primers, or in12R, in13R, in14R in15R, in16R, and ex17R antisense
primers, respectively.

All primers listed in Supp. Table S1, except for ex1F, ex11F, ex12F,
ex13F ex13R, ex14R, ex15R, ex15R’, ex17R, and ex17R’, were com-
plementary to intronic sequences. ex1F was placed upstream from
theinitiation codononexon 1. ex1 7R and ex1 7R/ were placed down-
stream from the termination codon on exon 17.

Nuclear RNA (2 pg) was reverse transcribed in 20 pl of 50 mM
Tris—HCl pH 7.5, 75 mM KCl, 3 mM MgCl,, 10 mM dithiothretiol,
0.5 mM dNTPs, the mixture of the above antisense primers (10 pmol
each) and 200 U of M-MLV reverse transcriptase (Life Tech.) at
37°C for 1 hr. One microliter of this cDNA solution served asa PCR
template. Specific exons were amplified using 30 pmol each of the
above sense and antisense primers for 35 PCR cycles. Each cycle
consisted of 1 min of denaturation at 94°C, 2 min of annealing at
60°C, and a 1-min extension at 72°C, The amplified fragments were
detected following electrophoresis on a 2% (w/v) agarose gel and
ethidium bromide staining. Sequences of amplified fragments were
confirmed by direct sequencing.

Bnalysis of Intron Removal Around Exons 11-14

Fibroblasts from a control and from the patient were grown to
near confluence in six-well tissue-culture plates in DMEM with 10%
FCS. The medium was then replaced by serum-free DMEM, and
5 pg/ml of Actinomycin D (Roche Diagnostics, Basel, Switzerland)
was added to halt transcription. Theincubation was terminated after
5, 10, 20, 40, or 60 min by adding 1 ml of ISOGEN solution. One
well of each cell line was left untreated to serve as a baseline control.
Total RNA using ISOGEN kit (Nippon Gene) from the different
timepoints was treated with Deoxyribonuclease, as described above.
cDNA synthesis reactions were carried out using a mixture of SCOT-
specific antisense primers in13R’, in14R’, and ex15R’ (Supp. Table
S1). To check for residual genomic DNA in the RNA preparation,
one PCR reaction was done without prior reverse transcription.

Results

Enzyme Assay and Immunoblot Analysis

SCOT activity in GS23’s fibroblasts (0.4 £ 0.9 nmol/min/mg pro-
tein, n = 7) was less than 10% of SCOT activity in control fibrob-
lasts (4.5 + 1.2 nmol/min/mg protein, n = 7), whereas acetoacetyl-

CoA thiolase activity in the presence of potassium ion (9.4 + 2.6
nmol/min/mg protein, n = 7) was similar to that of controls
(8.0 = 1.7 nmol/min/mg protein, # = 7). In immunoblot analy-
sis, SCOT protein was not detected in GS23’s fibroblasts, whereas
SCOT protein was clearly detected in control fibroblasts (data not
shown). These analyses thus confirmed SCOT deficiency in GS23.

Gene Mutations

Sequencing of the SCOT gene in GS23 revealed an apparent ho-
mozygosity for a G to A mutation at the fifth nucleotide of intron
13 (c.1248+5g>a) (Fig. 1A). No other mutations were detected by
sequencing of all exons and the exon~intron boundaries.

cDNA Analysis

We first performed RT-PCR using total RNA with CHX-untreated
fibroblasts. Amplification of the SCOT cDNA (c.-4 - 1586) from
control fibroblasts produced a single fragment with the expected size
of 1,590 bp (Fig. 1B, control CHX~, indicated by arrow 1). However,
in GS23, there were two faint shorter fragments of approximately
1,450bp (GS23 CHX-, indicated by arrow 2) and 1,100 bp (indicated
by arrow 3). Sequence analysis of these fragments revealed that the
1,450 bp fragment (indicated by arrow 2) lacked exons 12 and 13
(Fig. 1C), whereas the 1,100 bp fragment lacked exons 8-13. Because
skipping of exons 12 and 13 results in a frame-shift and skipping
of exons 8~13 does not, we reperformed RT-PCR using total RNA
from CHX-treated and nontreated fibroblasts to confirm that the
mRNA with skipping of exons 12 and 13 is a major transcript in
GS23.

When we inhibited NMD by treating fibroblasts with CHX, the
cDNA with skipping of exons 12 and 13 was amplified much more
abundantly than the cDNA with exons 8-13 skipping in case of G523
(Fig. 1B, GS23 CHX+), whereas no change was observed in the case
of a control (Control CHX+). On the basis of this experiment, we
concluded that the major transcript in GS23 had skipping of exons
12 and 13 and was subjected to NMD. On the contrary, mRNA
with skipping of exons 8-13 is in-frame, and should be a minor
transcript.

We considered that the mutatiorr at the splice donor site of intron
13 (c.1248+5g>a) caused exons 12 and 13 skipping instead of solely
exon 13 skipping. We tested a hypothesis that two exons were skipped
because the upstream intron 12 was rapidly removed, similar to the
model proposed by Takahara et al. (2002).

Analysis of RNA Intermediates Encompassing Exons 12
and 13

To test this hypothesis, we analyzed splicing of heteronuclear RNA
(hnRNA) in GS23 and control fibroblasts. As shown in Figure 2, a
fragment with exon 12-intron 12—exon 13 (intron 12 retained) was
detected in both controls and GS23, but a SECRI comprising exons
12 and 13 was clearly identified in only the two control fibroblasts
but hardly detected in GS23 fibroblasts. Amplification of hnRNA
using primers specific to exons 11 and 14 yielded no product in
control fibroblasts but did detect a SECRI comprising exons 11 and
14 lacking exons 12 and 13 (Fig. 2).

These results indicate that (1) the skipping of exons 12 and 13
in GS23 may not be associated with an initial fusion of exons 12
and 13; but that (2} this splice-site mutation may alter the order of
intron removal in SCOT RNA processing.
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Figure 1. Genomic DNA analysis and RT-PCR analysis. A: An appar-
ently homozygous point mutation from G to A was found at the fifth
nucleotide of intron 13 {c.1248+5g>a) in GS23 as indicated by the arrow.
B: RT-PCR analysis using RNAs from CHX-treated and CHX-untreated
fibroblasts. SCOT cDNA {c.-4 - 1586) was amplified and electrophoresed
-on a 3.5% (w/v) polyacrylamide gel. In a control, a fragment with the
expected size of 1,590 bp (indicated by arrow 1) was clearly detected. In
(G823, a fragment with the expected size was hardly detected; however,
two shorter fragments with the size of ca. 1,450 bp (indicated by arrow 2)
and 1,100 bp (indicated by arrow 3) were detected. Sequence analysis
of GS23's fragments revealed that the longer fragment had exons 12
and 13 skipping and the shorter one had skipping of exons 8-13, CHX:
cycloheximide. C: Exons 12 and 13 skipping identified in GS23's cDNA.

Determination of the Last Intron to be Spliced

Our strategy was to detect hnRNA-derived ¢cDNAs that had a
solitary intron, by definition, the last intron to be spliced; such
molecules would be capable of being amplified with primers from
that intron and a terminal exon, as described by Kessler et al. (1993).
We first detected such cDNAs using the common sense primer in
exon 1 (ex1F) and a series of antisense primers in introns 2-16
(in2R-in16R) and the antisense primer in exon 17 (ex17R). In con-
trol fibroblasts (Figs. 3A and 3C), SECRIs comprising exons 1 and 2,
exons 1-3, exons 1-7, exons 1-9, exons 1-11, and exons 1-17 were
detected. Secondly, we used a common antisense primer on exon 17
(ex17R) and a series of sense primers from ex1F to in15F. In the two
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controls, SECRIs comprising exons 16 and 17, exons 15-17, exons
14-17, exons 13-17, exons 12—17, and exons 1-17 were detected.
Intron 11 was the only possible solitary intron identified from both
directions. These results suggested that the SECRI comprising ex-
ons 12-17 was ligated to the SECRI comprising exons 1-11 and
that intron 11 removal was likely the final splicing event in controls.
In addition, the amplification using a combination of in11F and
ex17R produced a larger fragment including intron 12, as indicated
by arrow 2 in Figure 3A, which suggested that the removal of intron
12 was also a late event. These findings are in accord with the re-
sult that no SECRI spanning exons 11-14 was amplified in controls
(Fig. 2).

In the case of GS23 fibroblasts (Figs. 3Band 3D), the amplification
pattern using the ex1F primer and a series of antisense primers
from in2R to ex17R was similar to that of the control. However, the
amplification pattern using the ex17R antisense primer and a series
of sense primers from ex1F to in15F sense primers differed from
that of controls. Several different pathways are possible and it is
difficult to determine which pathway is the major one. Introns 7, 9,
and 11 are possible last introns to be spliced in GS23 fibroblasts. In
addition, a large sequence encompassing intron 11-exon 12-intorn
12—exon 13-mutated intron 13 could also be spliced out lastly.

Detection of SECRIs Flanked by Introns

We also amplified SECRIs flanked by introns. Figures 3E and
3F showed all such SECRIs detected by PCR (also see Supp.
Fig. S1). In controls, SECRIs in which intron 11 was spliced out
were not detected and products in which intron 12 was retained
were detected (Fig. 3E). In the case of GS23, SECRIs in which mu-
tated intron 13 was spliced out were not detected (Fig. 3F).

Comparison of Intron Removal Around Exons 11-14
Between Controls and GS23

According to the Kessler’s original method [Kessler et al., 1993],
several intron/exon primer pairs were used to amplify cDNA syn-
thesized from total RNA from fibroblasts treated with Actinomycin
D for different periods, although introns 11, 13, and 14 were too
long to amplify intermediates including these introns (Fig. 4A).

Control fibroblasts

When we placed primers in exon 11 (ex11F) and intron 12
(in12R), no PCR products were amplified, as expected from the
facts that intron 11 is too long (6,272 bp) to amplify and intron
11 is the last intron to be spliced in controls. When the primers
were placed in inton 11 (in11F) and exon 13 (ex13R}), the product
that retained intron 12 and a SECRI in which intron 12 was spliced
out were detected at 0 min. The former was no longer detectable
at 60 min but the latter was still detected at 60 min. When primers
were placed in exon 12 (ex12F) and intron 13 (in13R), the major
product retained intron 12 and the minor product was a SECRI in
which intron 12 was spliced out. Both disappeared by 60 min. When
primers were placed in intron 12 (inl12F) and exon 14 (ex14R), a
SECRI in which intron 13 was spliced out was detected at 0 min
and disappeared by 60 min. When primers were placed in exon 13
(ex13F) and intron 14 (in14R), a SECRI in which intron 13 was
spliced out was clearly detected at 0 min and decreased with time.
Lastly, when primers were placed in intron 13 (in13F) and exon 15
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Figure 2. Analysis of RNA intermediates encompassing exons 12 and 13. A: Positions of the SCOT-specific primers for analysis of RNA
intermediates encompassing exons 12 and 13, B: RT-PCR. cDNA was synthesized with isolated hnRNA using a mixture of SCOT-specific antisense
primers including 12R’, 13R’, and 14R’. PCR was done using the indicated primers. A fragment with arrow 1 was a SECRI in which intron 12 was
spliced out. A fragment with arrow 2 had skipping of exons 12 and 13. Fragments with arrow 3 had a retention of intron 12,

(ex15R), a SECRI in which intron 14 was spliced out was faintly
detected until 40 min in the control.

GS23 fibroblasts

Intermediates that retained intron 12 remained with similar
amounts for the full duration of the chase and no SECRIs in which
intron 12 was spliced out were detected, in either primer combina-
tions of in11F/ex13R or ex12F/in13R. The SECRIs in which intron
13 was spliced out were also not amplified in either combination
of in12F/ex14R or ex13F/in14R. The SECRI in which intron 14 was
spliced out was amplified with in13F and ex15R primers.

Discussion

We identified an apparently homozygous mutation ¢.1248+5g>a
in a SCOT-deficient patient. This mutation resulted in major aber-
rant mRNA with skipping of exons 12 and 13. It is well known
that, among donor splice-site mutations, changes at the G residue
at position 1 are most commonly described, followed by muta-
tions at position 5. Mutations at these 2 positions are thought to
significantly reduce the pairing of the donor splice site with the
complementary site in the small nuclear ribonucleoprotein particle
UlsnRNP [Kramer, 1996]. Buratti et al. (2007) summarized 346
aberrant splice donor sites that were activated by mutations in 166
human diseases. Point mutations leading to cryptic splice donor
site activation were most common in the first intron nucleotide,
followed by the fifth nucleotide. Substitutions at position +5 were
exclusively g>a transitions. In our case, the c.1248+5g>a mutation

accordingly resulted in a drastically reduced Shapiro and Senapathy
score [Shapiro and Senapathy, 1987] at the authentic splice donor
site of intron 13 from 79.0 (CT/gtaagt) to 64.6 (CT/gtaaat). Hence,
it is predicted that c.1248+5g>a should cause aberrant splicing such
as exon 13 skipping, but surprisingly, this mutation caused skipping
of both exons 12 and 13.

In RT-PCR analysis using RNA from CHX-treated and CHX-
untreated fibroblasts, we clearly showed that cDNA with skipping
of exons 12 and 13 was the major transcript and was subjected to

- NMD. Both the cDNA with exon 13 skipping and the cDNA with

exons 8-13 skipping should be minor and side transcripts because
the former was not detected even in the CHX-treated condition and
the latter is in-frame and had a relatively smaller amount than the
major cDNA with skipping of exons 12 and 13 in the CHX-treated
condition.

There are several reports of mutations at single-splice junctions
that result in the skipping of two or more exons [Fang et al., 2001;
Haire et al., 1997; Hayashida et al., 1994; Schneider et al., 1993;
Takahara et al., 2002; Yamada et al., 2007]. The splicing order of
introns can explain the events of aberrant splicing. Takahara et al.
(2002) analyzed the molecular basis of skipping of exons 5 and 6
of COL5A1 due to a splice acceptor site of intron 5 mutation, by
determination of the splicing order of introns 4, 5, and 6. They
suggested that the acceptor-site mutation of intron 5 leads to the
removal of the two downstream exons (exons 5 and 6}, because those
exons can be fused to a “single” exon, whereas the next downstream
intron {intron 6) and the mutation-bearing intron (intron 4) remain
in the transcript. Their finding could be applicable for a splice
donor-site mutation, as the removal of the upstream intron creates
a “single” exon that, if the next upstream intron is retained, allows
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Figure 3. Detection of large SECRIs including exon 1 or exon 17. A and B: Detection of large SECRIs including exon 1 or exon 17. All fragments
indicated by arrows and arrowheads were analyzed by direct sequencing. Fragments indicated by arrowhead without number had neither skipping
of any exon nor retention of any intron. Fragments with arrow 1 had skipping of exons 12 and 13, A fragment with arrow 2 had a retention of intron
12. A fragment with arrow 3 had exon 13 skipping. € and D: Schematic presentations of SECRIs identified. E and F. All SECRIs flanked by introns

which were detected (Supp. Fig. S1) are also schematically presented.

the skipping of the two exons upstream from the mutation site. We
initially hypothesized that our case had the same molecular basis

as described above. This outcome was actually reported in the case

of a splice-donor site in the neurofibromatosis type 1 gene [Fang
etal., 2001]. However, a SECRI comprising exons 12 and 13 was not
detected in GS23 fibroblasts, suggesting that this pathway was not a
major one.

Kessler et al. (1993) reported a method to determine the order
of intron removal using RT-PCR in ¢onjunction with appropriate
combinations of intron and exon primers for any small pre-mRNA
in vivo. Several reports determined the order of intron removal by
this method [Attanasio et al., 2003; Schwarze et al., 1999]. Kessler’s
original method requires amplification spanning one intron; for
example, amplification including whole intron 3 using 5’ primer in
exon 3 and 3’ primer in intron 4. However, SCOT gene (gene symbol
OXCT1I) includes 17 exons and spans more than 150 kb. Because all
introns except intron 12 were too long to amplify (1.2-33 kb), we
could not determine a precise splicing order of OXCT1 gene by this
original method.

Our strategy involved (1) detection of a possible last intron to
be spliced by amplification of SECRIs using combinations of sense
primer in exon 1 and antisense primer in each intron and using com-
binations of antisense primer in the last exon and sense primer in

6 HUMAN MUTATION, Vol. 00, No. 0, 1-8, 2013

each intron and (2) detection of any SECRIs comprising two, three,
four, five, six sequential exons, and so on using intronic primers
flanking adjacent exons or larger exon clusters (Fig. 3). This method
is less definitive than the original method. Because the method relies
on the analysis of steady-state RNA, we cannot rule out the possibil-
ity that some RT-PCR products may be side products or dead-end
molecules in nuclear RNA. Moreover, the failure to identify a SECRI
could be the consequence of at least two factors. The first would be
retention of a larger upstream or downstream intron and the second
would be the very rapid removal of the intron in which one primer
was placed. Hence, even though we could construct several potential
pathways of splicing, such pathways may not represent the major
pathway. Even with the above limitations, our strategy may provide
useful information on the molecular basis of splicing abnormality
in a Jarge gene such as SCOT gene.

We tried to assess order of removal of introns 11, 12, 13, and
14 in a dynamic fashion using actinomycin D treatment to halt
transcription and with primer setting according to the Kessler’s
original method, as performed in several reports [Attanasio et al.,
2003; Kessler et al., 1993; Schwarze et al., 1999]. As discussed above,
because introns 11, 13, and 14 are too long to amplify intermediates
including these introns, we could not determine the definite order
of intron removal. However, these results could be best explained
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Figure 4. Analysis of intron removal around exons 11-14 using Actinomycin D. A: PCR primer combinations used for the analysis of intron
removal. B: Total RNA was prepared from cultured fibroblasts after defined time intervals {0, 5, 10, 20, 40, and 60 min} of exposure to Actinomycin
D, treated with DNase, reverse transcribed, amplified with indicated primer pairs, and electrophoresed on 2% agarose gels. Amplified fragments

are indicated by arrowhead.

as follows: in control, intron 11 was the last intron to be spliced
and intron 12 removal was also rather slow and occurred after
intron 13 removal in the major pathway, although a minor pathway
in which intron 12 splicing occurred before intron 13 was also
present. In G823, since intron 13 was mutated, retention of intron
13 occurred for a long time. This halt of intronl3 splicing may
result in intron 12 retention and intron 11 retention. This “splicing
paralysis” [Schwarze et al. 1999} may be 2 molecular basis of two-
exon skipping. This splicing paralysis could be solved by skipping
of the whole intron 11-exon 12~intron 12—exon 13-mutated intron
13. The presence of all SECRIs detected, as shown in Figure 3, is
consistent with the above explanation.

According to recent studies, splicing occurs during transcription
(co-transcriptional splicing) and introns are removed in a general
5'-3 order. However, as in our case, splicing does not always oc-
cur as a linear process starting at 5" end of the primary transcript.

Many different factors can influence the order of splicing of SCOT
transcripts, including sequences at splice junctions, the length and
sequences of introns, the sequences of adjacent exons, and RNA
secondary structures. Supp. Table S2 summarizes the lengths of
introns and exons in the SCOT transcript, and Shapiro and Senap-
athy’s scores [Shapiro and Senapathy, 1987] of splice-site junctions.
This analysis did not reveal a definitive factor that would explain the
order of intron removal.

In summary, our study showed that (1) a single nucleotide sub-
stitution at the 5’ splice site of intron 13 (c.1248+5g>a) in GS23's
fibroblasts causes skipping of exons 12 and 13 predominantly, that
(2) the formation of SECRI comprising exon 12 and 13 was not the
cause of skipping of exons 12 and 13 in GS23’s fibroblasts, that (3)
the mutation resulted in retention of intron 13, thus causing the
retention of introns 12 and 11, and this “splicing paralysis” was the
molecular basis of two-exon skipping.
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Current status of hepatic glycogen storage disease
in Japan: clinical manifestations, treatments and
long-term outcomes

Jun Kido!, Kimitoshi Nakamura!, Shirou Matsumoto!, Hiroshi Mitsubuchi!, Toshihiro Ohura?,
Yosuke Shigematsu3, Tohru Yorifuji%, Mureo Kasahara®, Reiko Horikawa® and Fumio Endo!

Many reports have been published on the long-term outcome and treatment of hepatic glycogen storage diseases (GSDs)
overseas; however, none have been published from Japan. We investigated the clinical manifestations, treatment, and
prognosis of 127 hepatic GSD patients who were evaluated and treated between January 1999 and December 2009.

A characteristic genetic pattern was noted in the Japanese GSD patients: most GSD la patients had the g727t mutation, and

many GSD Ib patients had the W118R mutation. Forty-one percent (14/34) of GSD la patients and 18% (2/11) of GSD Ib

patients of ages >13 years 4 months had liver adenoma. Among subjects aged 10 years, 19% (7/36) of the GSD la patients

and none of the GSD Ib patients had renal dysfunction. The mean height of male GSD la patients aged > 18 years was

160.8 £ 10.6 cm (n=14), and that of their female counterparts was 147.8 + 3.80cm (n=9). Patients with hepatic GSDs
develop a variety of symptoms but can survive in the long term by diet therapy, corn starch treatment and supportive care.
Liver transplantation for hepatic GSDs is an important treatment strategy and can help improve the patients’quality of life.
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Keywords: adenoma; glycogen storage disease; g727t; height; hepatoceliular carcinoma; liver transplantation;

renal dysfunction; W118R

INTRODUCTION
Glycogen storage diseases (GSDs) are inherited metabolic diseases
caused by the deficiency of enzymes regulating glycogenolysis or
gluconeogenesis. As glycogen primarily accumulates in the liver and
muscle, the disorders of glycogen degradation affect the liver, muscles
or both. Hypoglycemia is the main symptom of hepatic GSDs,
whereas muscle weakness or elevated muscle enzyme is the main
symptom of myopathic GSDs. Hepatic GSDs, except for GSD IXa, are
autosomal recessive, and GSD IXa is an X-linked recessive disorder.
GSD Ia, GSD III and GSD IXa account for 80% of hepatic GSDs.
GSD Ia (Mendelian Inheritance in Man (MIM) no. 232200) is
caused by a deficiency of glucose-6-phosphatase (EC 3.1.3.9) in the
endoplasmic reticulum. GSD Ib (MIM no. 232220) is caused by a
deficiency of glucose-6-phosphate transporter, which leads to the
dysfunction of glucose-6-phosphatase in the endoplasmic reticulum.
GSD Ia is the most common GSD, and its frequency is 1/100 000 to
1/400 000 births in the general Caucasian population; GSD Ib is much
less frequent than GSD Ia. The manifestations of GSD Ia are
short stature, hypoglycemia, hepatomegaly, hyperlipidemia, hyperur-
icemia, hyperlactacidemia, hepatoadenoma, renal disorder and

hepatocellular carcinoma.®* Most GSD Ib patients have neutropenia
and neutrophil dysfunction in addition to these symptoms. GSD III
(MIM no. 232400) is caused by a deficiency of the debranching
enzyme, which consists of amylo-1,6-glucosidase (EC 3.2.1.33) and
oligo-1,4-1,4-glucantransferase (EC 2.4.1.25). The incidence of GSD
I has been reported to be 1 per 83000 live births in Europe and 1
per 100000 live births in North America.’ There are two major GSD
III subtypes: GSD IIla, which affects both the liver and muscle and
accounts for 80% of all GSD III cases, and GSD IIIb, which affects
only the liver and comprises approximately 15% of them.® The
manifestations of GSD III are similar to those of GSD Ia, and many
patients with GSD Illa have hypertrophic cardiomyopathy.”

GSD IV (MIM no. 232500) is caused by a deficiency of amylo-1,4
to 1,6-transglucosidase (EC 2.4.1.18), which leads to the absence of
branched glycogen. GSD IV, which is the most severe type of GSD,
represents 0.3% of all GSDs.® This disease rapidly progresses to
cirrhosis early in life and causes death between 3 and 5 years of age
because of liver failure.” If signs of GSD IV, such as cervical cystic
hygroma, are detected,® the patients are likely to die in the neonatal
period. The effective treatment for progressive GSD IV is liver
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transplantation.’® GSD VI (MIM no. 232700), which is rarer and
milder than the other hepatic GSDs, is caused by a deficiency of
glycogen phosphorylase (EC 2.4.1.1) in the liver. GSD IXa (MIM no.
306000) is caused by a deficiency of phosphorylase kinase o2
(PHKA2)—a subunit of phosphorylase kinase (EC 2.7.11.19), which
consists of four subunits, namely, o, B, v and 8. The clinical course of
GSD IXa is benign, and most adult patients are asymptomatic.!! With
aging, clinical and biochemical abnormalities gradually disappear. The
other subtypes of GSD IX include subtypes caused by a deficiency of
phosphorylase kinase B, phosphorylase kinase v or 8, or muscle
phosphorylase kinase. The Fanconi-Bickel syndrome, GSD XI (MIM
no. 227810), is caused by a deficiency of glucose transport 2 and is
characterized by hepatorenal glycogen accumulation and proximal
renal tubular dysfunction.!2

The treatment for these hepatic GSDs comprises the prevention of
hypoglycemia. The basic treatment is the consumption of frequent
meals and uncooked cornstarch.!*15 Moreover, restriction of the
intake of sugars, such as fructose, galactose, sucrose and lactose, is
important mainly for GSD 1.

Complete blood glucose control by these measures is unlikely to
ameliorate complications, such as hyperuricemia and hyperlipide-
mia.'® GSD patients are administered allopurinol for hyperuricemia
and statin, fibrates or niacin formulations for hyperlipidemia.!”-!8
Administration of angiotensin-converting enzyme inhibitor or/and
angiotensin receptor blocker, which have a renoprotective effect, is
recommended for GSDs with possible renal complications.!® Gene
therapy can be an effective as a radical treatment measure for
GSDs2%?! However, the definitive treatment of GSDs is only liver
transplantation.?2-%5

Many reports have been published overseas on the long-term
outcome and treatment of GSD patients.!1725-28 However, no report
has yet been published on the long-term outcome of GSDs in Japan,
wherein GSD Ia with a mutation causing mild symptoms has been
detected in many cases. We studied the current status of clinical
manifestations, treatment, and long-term outcome of hepatic GSDs in
Japan.

MATERIALS AND METHODS

Study patients

In 2009, we sent a questionnaire to 928 Japanese institutions, including the
departments of pediatrics, endocrinology and metabolism, neonatology,
genetics, and transplant surgery, asking doctors if they had diagnosed or
provided medical care to hepatic GSDs patients. Each institution was the
medical center for a locality and had 300 or more beds. Of the 928 institutions,
668 (72%) responded. Of these 668 institutions, 97 had treated patients with
GSDs. A second questionnaire was then sent to these 97 institutions in 2009,
and responses were received from 53 (55%) of them. On the basis of the
received reports, 127 cases of GSDs diagnosed and treated between January
1999 and December 2009 were studied. We excluded patients who were not
definitely diagnosed and considered patients visiting multiple institutions as
single patients. The 127 cases of GSDs (types Ia, Ib, IIL, IV, VI, IXa and others)
were diagnosed on the basis of clinical manifestations, family history, enzyme
activity, metabolite analysis (75g OGTT test or/and glucagon test) and/or
DNA analysis. This study was approved by the ethical committee of the Faculty
of Life Science, Kumamoto University.

The definition of clinical manifestations of GSD applied in this study was
the same as that proposed by Smit et al.?’ In addition, we used the following
definitions. Hyperlactacidemia was defined as a blood lactate level
>2.2mmoll™. Hyperuricemia was defined by a history of receiving drugs
for hyperuricemia and/or blood uric acid level > 420 pmol I Hyperlipidemia
was defined by a history of medical treatment for hyperlipidemia, blood total
cholesterol level >5.9 mmoll™, or blood total triglyceride level > 1.7 mmol 1.
Mental retardation was diagnosed if the patient’s intelligence quotient was
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<70, as per standardized tests, such as the Wechsler Intelligence Scale for
Children and the Wechsler Adult Intelligence Scale. Proteinuria was defined by
protein levels >30mgdl™ in 1 spot urea test or >500 mgday™!. Renal
dysfunction was defined by blood creatinine levels > 90 pmol I\, Increased
susceptibility to infection was defined as a neutrophil count of < 1500/l and/
or hospitalization more than three times a year because of infection.

Statistical analysis

The age at onset of hepatic GSD patients was expressed in terms of the median
and interquartile range, and the age of onset was analyzed by the Mann—
Whitney U-test of IBM SPSS Statistics Version 19.2° A P-value of <0.05 was
considered statistically significant. The height of hepatic GSD patients was
expressed in terms of mean £s.d. values. Kaplan-Meier curves of estimated
survival rate were generated by SPSS.

RESULTS

Age at onset and methods for definitive diagnosis of hepatic GSDs
Table 1 indicates the age, onset age and methods used for definitive
diagnosis in each of the 127 cases of hepatic GSD. GSD Ib and GSD
IV patients manifested symptoms earlier than those with other types
of GSD (GSD Ia vs GSD Ib, P=0.001; GSD Ia vs GSD IV, P=0.022;
GSD Ia vs GSD Xla, P=0.002). Enzyme activity was measured in
50% (64/127) of the patients with GSDs, and genotype analysis was
performed in 50% (63/127); genotypes could be identified in 40%
(51/127) of the patients with GSDs. DNA analysis was performed in
the case of 52 patients with GSD Ia, 7 patients with GSD Ib, 1 patient
with GSD III, 1 patient with GSD VI, 5 patients with GSD IXa and 2
patients with GSD XI. Thereafter, identifiable mutations were
detected at a rate of 79% (41/52) in GSD Ia patients, 86% (6/7) in
GSD Ib patients, 40% (2/5) in GSD IXa patients and 100% (2/2) in
GSD XI patients. Of the GSD Ia patients with recorded identifiable
mutations, 81% (29/36) had g727t homozygote mutations and 17%
(6/36) had compound heterozygotes with g727t mutations. Of the
GSD Ib patients with recorded identifiable mutation, 83% (5/6) had
homozygote or compound heterozygote mutations of W118R. Eight
patients with GSD Ia, one patient with GSD IXa and one patient with
GSD XI were diagnosed by DNA-based and enzymatic analyses.

Clinical manifestations of hepatic GSD

Table 2 indicates the frequency of clinical manifestations in hepatic
GSD patients. In GSD Ia patients, growth retardation (78%; 51/65),
hypoglycemia (69%; 45/65), hyperuricemia (88%; 57/65) and hyper-
lipidemia (94%; 61/65) were observed at the frequency of >50%
(Table 2a). Convulsions (9%; 6/65), mental retardation (9%;
6/65), liver tumors (22%; 14/65), proteinuria (26%; 17/65), renal
dysfunction (11%; 7/65) and increased susceptibility to infection
(5%; 3/65) were not frequently observed (Table 2b). Of the 14 GSD Ia
patients with liver tumors, 4 had a single adenoma, 9 had 3 or more
multifocal adenomas and 1 patient had hepatocellular carcinoma with
multiple adenomas. Only one patient with GSD Ia developed acute
pancreatitis.

Height of hepatic GSD patients

Figures la-d show the height of male and female hepatic GSD
patients. The height of 56% (14/25) of the male GSD Ia patients aged
<18 years and 43% (6/14) of the male GSD Ia patients aged >18
years was below the third percentile. The mean height of male GSD Ia
patients aged >18 years was 160.8+10.6cm (n= 14; Figure la).
Fifty-seven percent (4/7) of the male GSD Ib patients, 50% (2/4) of
the GSD III patients aged < 18 years and 19% (6/ 32) of the male GSD
IXa patients had heights below the third percentile (Figures 1b and c).
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