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Abstract Cardiometabolic diseases encompass simple
monogenic enzyme deficiencies with well-established
pathogenesis and clinical outcomes to complex polygen-
ic diseases such as the cardiometabolic syndrome. The
limited availability of relevant human cell types such as
cardiomyocytes has hampered our ability to adequately
model and study pathways or drugs relevant to these
diseases in the heart. The recent discovery of induced
pluripotent stem (iPS) cell technology now offers a
powerful opportunity to establish translational platforms
for cardiac disease modeling, drug discovery, and pre-
clinical testing. In this article, we discuss the excitement
and challenges of modeling cardiometabolic diseases
using iPS cell and their potential to revolutionize trans-
lational research.
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Introduction

For 30 years, pluripotent stem cells have served as a pow-
erful model system of developmental biology. Beginning
with the establishment of murine embryonic stem (ES) cells
[1], followed by the first human ES cell line in 1998 [2], the
prospect of using pluripotent stem cells for translational
research has been a primary goal. The unique properties of
immortality and pluripotency, namely the ability to differ-
entiate into all somatic cell types that ES cells possess
provide tremendous opportunities for disease modeling,
drug discovery, and pre-clinical testing [3]. The break-
through of somatic cell reprogramming in mouse cells
by Takahashi and Yamanaka in 2006 [4] and then in
human cells in 2007 [5] was a seminal advance for
translational application of pluripotent stem cells. These
so called induced pluripotent stem cells (iPS cells) are
inherently patient and disease specific, bypassing the
technical, ethical, and political limitations of human
ES cell research, and a fundamental step towards
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regenerative cell-based therapies. Here we discuss the
opportunities to use iPS cell technology for modeling
cardiometabolic diseases.

Cardiometabolic Disease

Cardiometabolic diseases are characterized by metabolic
disruptions that harm cardiac function. Cardiometabolic
syndrome generally refers to the complex interaction of
cardiovascular risk factors, anchored by insulin resis-
tance, obesity, dyslipidemia, and hypertension first de-
scribed in 1988 as “Syndrome X [6] (Fig. 1). This
clinical syndrome is a well-established predictor of pre-
mature cardiovascular outcomes with significantly in-
creased morbidity and mortality [7-9]. The confluence
of cardiovascular and metabolic pathology captured by
this syndrome is perhaps the ultimate goal of in vitro
cardiometabolic disease modeling. Although type 1 dia-
betes was an early interest using iPS cells as a disease
model [10, 11] (Table 1), the complexity of recapitulat-
ing the full complement of phenotypes expected in this
disease is presently prohibitive with the tools currently
available for in vitro differentiation and manipulation.
The use of well-defined co-culture systems consisting of
multiple relevant cell types and factors may be needed to
overcome these challenges. Since the field of human disease
modeling with iPS cells is at its infancy, we have chosen, in
this article, to focus specifically on cardiometabolic diseases
with simple Mendelian genetics and well-defined pathophys-
iology as they illustrated the utility of disease-specific iPS
cells in phenotype and pathway discovery. In particular, we
describe how monogenic diseases such as glycogen storage
diseases and neutral lipid storage diseases may be amenable to
in vitro modeling given their cell autonomous cardiac
phenotypes.

Fig. 1 An overview of
common mechanisms in
cardiometabolic disease

Inflarnmatlor

Traditional risk factors:

Age
Sex

Family history

Lifestyle

General Considerations for iPS Cell Cardiac Disease
Modeling

Whether a particular cardiometabolic disease is amenable to
iPS cell-based modeling depends on the available protocols
to derive the cell type of interest and the available assays to
assess the disease-relevant phenotype. Thus far, the most
significant barrier to finding novel disease pathway through
iPS cell disease modeling is the efficiency of generating
highly pure and phenotypically mature cells by in vitro
differentiation, including the defined subtypes of mature
human cardiomyocytes (e.g., atrial, ventricular, or pacemak-
er cells). To achieve this, the development of more efficient,
reproducible, specific, and complete differentiation proto-
cols will be required [ 12~14]. Some of the known barriers to
efficient in vitro differentiation include incomplete reprog-
ramiming, epigenetic memory of parental cell type [15, 16],
or variability intrinsic to pluripotent cells [17]. These issues
must be fully understood before we can fully utilize iPS
technology for translational research.

Beyond the efficiency of in vitro differentiation, the
disease of interest must be carefully selected based on the
known genetic and epigenetic factors that control the clini-
cal characteristic of the disease manifestation. These clinical
characteristics dictate whether the disease phenotype would
manifest appropriately, particularly since iPS cells generally
mimic cells from early embryogenesis and development. In
general, monogenic diseases are easier to recapitulate than
polygenic diseases, although complex diseases such as fa-
milial Parkinson’s disease [18] and schizophrenia [19] have
recently been described with in vitro phenotypes that mimic
their clinical surrogates in animal models.

Since the generation of fully mature cell types from iPS
cells has been generally challenging, diseases that present
late in life may be particularly difficulty to model with iPS
cells. For example, current protocols for deriving cardio-
myocytes from iPS cells tend to yield immature cells with
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Table 1 Reported cardiometabolic diseases modeled with iPS cells

Disease Defect (gene) Clinical phenotype

iPS-derived
differentiated cell type

In vitro phenotype

Notes

Type 1 diabetes Unknown, Insulin resistance, altered
[10, 11] multifactorial paracrine signaling
GSD type la (von Glucose-6- Hypertrophic
Gierke disease) [48] phosphatase cardiomyopathy,
(G6PC) hyperlipidemia
GSD type II (Pompe  Lysosomal Hypertrophic
disease) [51] acid a-1, 4- cardiomyopathy,
glucosidase arrhythmia,

(GAA) pre-excitation,
hypotonia, muscle
weakness, respiratory
distress

Familial Low-density Hyperlipidemia,
hypercholesterolemia  lipoprotein accelerated
[48] receptor (LDLR)  artherosclerosis

Insulin
producing
B-cell-like cells

Hepatocyte-like
cells

Skeletal muscle
cells

Hepatocyte-like
cells

Insulin resistance,
altered paracrine
signaling

Intracellular glycogen
accumulation,
increased lactate
production, altered
paracrine signaling

Lysosomal
accumulation
of glycogen

Lipid and glycogen
accumulation,
aggregation of
misfolded ;-
antitrypsin

In vitro phenotype
correlates with
clinical phenotype.
Cardiovascular
phenotypes unknown.

In vitro phenotype
correlates with
clinical phenotype.
Cardiovascular
phenotypes unknown.

In vitro phenotype

correlates with
clinical phenotype.
Cardiovascular
phenotypes unknown,
but likely similar.

In vitro phenotype
correlates with
clinical phenotype.
Cardiovascular
phenotypes unknown.

fetal-like morphology, gene expression profiles [20], ion
channel expression [21], and electrophysiological function
[22]. While some features such as calcium handling [23]
may become progressively more similar to mature adult
cells with prolonged culturing in vitro [24] or in vivo [25],
the full manifestation of adult phenotypes has not been
demonstrated thus far. Until this issue of maturation is
addressed, the ideal diseases for iPS cell-based modeling
should exhibit clinical phenotypes during fetal or early
postnatal stages of development. One possible exception to
this may be found in diseases occurring later in life but
exhibit phenotypes that can be de-repressed during in vitro
culturing. In this case the disease expression may manifest
earlier and more robustly than predicted based on clinical
information.

While pluripotent stem cells are theoretically able to dif-
ferentiate into any somatic cell as demonstrated by murine
tetraploid complementation studies and human teratoma
assays, the currently available protocols are robust for only a
subset of specific cell types such as neurons, cardiomyocytes,
hematopoietic cells, endothelial cells [26-28], and, to a lesser
extent, hepatocytes [29-32]. Fortunately, spontaneously beat-
ing cardiomyocytes have been generated from pluripotent
stem cell-derived blastocyst-like clusters (the so-called em-
bryoid bodies) for more than 30 years [33, 34]. A wide range
of protocols now exist for efficient and cardiac-specific dif-
ferentiation. Many of these conditions mimic embryonic de-
velopment by modulating master signaling pathways
including WNT [35], BMP/activin [36] and FGF [37]

@ Springer

(reviewed in [38]). Small molecules [39] and transgenic se-
lection [40, 41] have also been shown to further increase the
efficiency and quality of derived cardiomyocytes.

iPS Cell-Based Modeling of Cardiometabolic Diseases

Cardiometabolic diseases are well suited for iPS cell-based
disease modeling when they exhibit readily assayable phe-
notypes in vitro. The relevant disease phenotype that is
expected from clinical presentation, whether molecular or
functional, should be sufficiently robust to overcome inher-
ently “noisy” background from the known heterogeneity in
the system. Furthermore, the ease of phenotypic assay is
also an important consideration given the broad interest
from investigators to perform drug screening and validation
using iPS cells. A summary of the cardiometabolic diseases
that may be amenable to in vitro modeling with iPS cells is
provided (Table 1). Here, we also propose in detail two
cardiometabolic disease areas—glycogen storage and neu-
tral lipid storage diseases—that exhibit clinical and cellular
features particularly amenable to in vitro disease modeling
(Table 2).

Glycogen Storage Diseases

Glycogen storage diseases (GSD) are characterized by de-
fective glycogen catabolism or metabolism within many cell
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Table 2 Proposed cardiometabolic diseases for iPS cell modeling

Disease Defect (gene)

Clinical phenotype

Expected in vitro disease phenotype

Fabry disease [42, 43, 45]  X-linked lysosomal
hydrolase

a-galactosidase A (GLA)

Danon disease [46, 47] X-linked lysosome-
associated membrane

protein (LAMP2)

AMP-activated protein
kinase

Cardiac hypertrophy,
conduction system
disease [52, 53]

Adipose triglyceride lipase
(ATGL)

Neutral lipid storage
disease [55, 66]

Hypertrophic cardiomyopathy,
renal failure, rash,
neuropathy, arrhythmia

Hypertrophic cardiomyopathy,
arrhythmia, pre-excitation

Hypertrophic cardiomyopathy,
cardiac vasculopathy

Lysosomal accumulation of glycogen; increased
cytoplasmic vacuoles, cardiomyocyte
enlargement, high cytoplasmic to nuclear ratio,
pleomorphic nuclei; electrophysiological
abnormalities (early after depolarizations)

Hypertrophic cardiomyopathy,
muscle weakness,
arrhythmia, pre-excitation

Glycogen accumulation; increased cytoplasmic
vacuoles, cardiomyocyte enlargement, high
cytoplasmic to nuclear ratio, pleomorphic
nuclei; electrophysiological abnormalities (early
after depolarizations)

Triglyceride accumulation, cardiomyocyte
enlargement, suppression of fatty acid
oxidation, induction of glycolysis

types, including cardiomyocytes and hepatocytes. Of the 11
distinct GSD described, several have been reported to cause
hypertrophic cardiomyopathy and arrhythmia in patients with-
out sarcomere-protein mutations [42], including Pompe disease
(a recessively inherited lysosomal acid a-1, 4-glucosidase
[GAA] deficiency) [43, 44], Fabry disease (an X-linked lyso-
somal hydrolase a-galactosidase A [GLA] deficiency) [42, 43,
45], and Danon disease (an X-linked lysosome-associated
membrane protein [LAMP2] deficiency) [46, 47]. Clinical char-
acteristics, such as cardiomyocyte enlargement, high cytoplas-
mic to nuclear ratio, pleomorphic nuclei, increased cytoplasmic
vacuoles, and cardiac electrophysiogical dysfunction [43, 45],
may be assayed as in vitro surrogates of disease expression and
may be amendable to screening for drug discovery. Whether
these phenotypes track with clinically observed cardiovascular
manifestations, however, is currently not known. The cardio-
vascular phenotype may also depend on non-cardiac cell types,
such as hepatocytes, given that glycogen metabolism largely
occurs in the liver. Two iPS cell model of GSD have been
reported with recapitulation of disease phenotypes in hepato-
cytes and skeletal muscle (Table 1). The recapitulation of car-
diovascular phenotypes was not investigated in these studies
and remains an intriguing area for future research.

The first GSD to be modeled using iPS cells is GSD type la
(von Gierke disease) [48]. GSD type la is characterized by a
deficiency of glucose-6-phosphatase, the regulatory enzyme
that hydrolyzes glucose-6-phosphate to glucose and phos-
phate in the terminal steps of gluconeogenesis and glycogen-
olysis (Table 1). Abnormally elevated intracellular glycogen
and lipid and increased lactate production is typically ob-
served in hepatocytes from patients with GSD type la and
was recapitulated in diseased iPS cells. In addition, the hor-
monal responses from hepatocytes may also provide non-cell
autonomous interactions that enhance phenotype manifesta-
tion in cardiomyocytes. Although marked hyperlipidemia is

observed with GSD type la, its association with cardio-
vascular disease is not clear [49] and case reports have
not yielded consistent conclusions regarding its role in
cardiovascular complications of GSD type la [49, 50].

Pompe Disease

A murine iPS cell-based model of Pompe disease was de-
scribed recently that demonstrated severe accumulation of gly-
cogen in lysosomal vacuoles in skeletal muscle cells [51]
(Table 1). A similar phenotype in cardiomyocytyes is expected
but was not reported in this study. The development of a human
iPS cell system of Pompe disease would enable the pursuit of
translational applications such as drug screening and functional
validation. iPS cell-based models of other GSD with well-
established cardiac manifestations, such as Fabry, and Danon
disease, have yet to be described in the literature (Table 2).

AMP-Activated Protein Kinase

Mutations in AMP-activated protein kinase (AMPK) cause
inappropriate activation and accumulation of glycogen in
most cell types, particularly within the heart, which eventu-
ally leads to well-described cardiac hypertrophy and con-
duction system disease [52, 53] (Table 2). AMPK functions
to balance catabolic processes in order to meet the metabolic
needs of the cell and can be thought of as a cell-level
“energy gauge” [54]. At times of pathologic stress, such as
hypertrophy and ischemia, AMPK is activated to upregulate
maladaptive metabolic processes [53]. The cellular pheno-
type of cardiomyocyte glycogen accumulation can be
assayed in vitro with functional phenotypes expected in
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isolated ‘cardiomyocytes. There are currently no reported
iPS cell models of AMPK mutations. However, given the
general interest in modeling hypertrophic cardiomyopathy
in vitro, we anticipate a number of studies to be reported on
this cardiometabolic disease model in the near future.

Neutral Lipid Storage Disease

Neutral lipid storage disease (NLSD) is characterized by
excessive accumulation of neutral lipids in various cell
types, including cardiomyocytes [55] (Table 2). The disease
was first described in 1974-1975 as Chanarin-Dorfman
Syndrome, a rare autosomal recessive inborn error of neutral
lipid metabolism causing ichthyosis and typically accompa-
nied by mild myopathy, hepatic steatosis, ataxia, opthalm-
opathy (cataract, nystagmus, and strabismus), hearing loss,
and mild mental retardation [56, 57]. A clinically distinct
variant of NLSD without the dermatological hallmark of
* ichthyosis but instead with severe cardiomyopathy was de-
scribed [58], suggesting the presence of two separate clini-
cal entities. More recently, two genes have been identified to
cause these two forms of NLSD, one with ichthyosis
(NSLD-I) caused by a mutation in comparative gene
identification-58 (CGI-58/ABHDS5) [59, 60] and another
with myopathy (NSLD-M) caused by a mutation in the
patatin-like phospholipase domain-containing protein 2
(PNPLA2) gene encoding adipose triglyceride lipase
(ATGL) [61-63]. CGI-58 is a potent, insulin-dependent
activator of ATGL [62, 64], which hydrolyze triacylglycerol
(TAG) into diacylglycerol and free fatty acids. ATGL regu-
lates non-redundantly this rate-limiting step in the break-
down of cellular lipid droplets to provide free fatty acid for
cellular energy metabolism [65].

So far, a limited number of families worldwide have been
reported with NLSD-M [59, 66, 67]. In all cases, excessive
triglyceride accumulation was observed with patients often
developing life-threatening cardiomyopathy and cardiac
vasculopathy requiring heart transplantation. ATGL defi-
ciency leads to TG accumulation in both myocardium and
coronary arteries exhibiting triglyceride deposit cardiomyo-
vasculopathy [66]. Of the 24 ATGL-deficient patients (nine
men and 15 women) described so far, 14 of them carry
unique mutations. They are globally dispersed throughout
the United States, Europe, Africa, and Asia. All of these
patients harbor homozygous or compound heterozygous
ATGL mutations. All male patients suffered from adult-
onset severe heart diseases such as congestive heart failure
and fatal arrhythmias while six females out of 15 experi-
enced cardiovascular symptoms, suggesting that ATGL
mutations disproportionately affect men more severely than
women. Four patients with cardiac involvement were iden-
tified post-mortem and two status-post heart transplantation.

@ Springer

For the diagnosis of ATGL deficiency, the detection of lipid
deposition in peripheral leucocytes known as Jordans’
anomaly can be detected in blood smear before the devel-
opment of cardiac and skeletal myopathy and may, thus,
assist in screening individuals for NSLD-M. The phenotype
of AGTL heterozygote deficiency is not known yet.

NLSD-M is well suited for iPS cell disease modeling
given its known gene defect in PNPLA2 and with clear
and consistent manifestation in several energy-consuming
organs such as cardiac and skeletal muscle [68, 69]. As
expected, excessive intracellular TAG accumulation in mul-
tiple cell types, especially cardiac and skeletal myocytes is
observed clinically [67, 70]. ATGL-knockout mice exhibit a
similar phenotype, including massive fat accumulation in
the heart that leads to fatal cardiomyopathy [65]. Such
robust cellular phenotypes are likely to be expressed in vitro
for assay by a number of modalities including intracellular
lipid staining. Adaptation of a NLSD-M model for high
throughput screening by colorimeteric assay may yield nov-
el candidate therapeutics. These putative compounds can
then be validated on the same platform using functional
assays of high specificity, such as the suppression of fatty
acid oxidation and induction of glycolysis, as would be
predicted with normalization of intracellular TG levels and
correction of the NLSD-M phenotype. These in vitro phe-
notypes will thus serve as convincing surrogates of the
dominant clinical features of NLSD-M. Given the mono-
genic nature of this disease and the available family cohorts
worldwide, NLSD-M is well positioned for human disease
modeling using patient-specific iPS cell lines.

Conclusions

To be sure, human iPS cell models will not replace estab-
lished in vivo disease models but will rather complement
these platforms by providing human-based cell types that
faithfully recapitulate the disease phenotype of interest.
These models will be particularly important in studying
cardiac arrhythmia and conduction system diseases given
the cell intrinsic manifestation of human cardiac ion channel
electrophysiology. Cardiometabolic diseases, such as glyco-
gen storage disease and neutral lipid storage disease, are the
logical choices for proof-of-principle studies using iPS céll
technology. Establishment of such models will be a power-
ful platform on which drug discovery and functional vali-
dation studies can be based to accelerate development of
targeted therapeutics, an area of urgency given that cardio-
vascular complications cause significant morbidity and are
often life limiting.

Genome-wide association studies [34] and metabolomic
profiling [27, 51] have provided myriad candidate mediators
of cardiometabolic disease pathophysiology, diagnosis, and
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therapy that require pre-clinical confirmation in human-
based systems. Cardiometabolic diseases also present an
opportunity to explore gene and cell-based curative thera-
pies. Development of such therapeutics can first be evaluat-
ed using iPS cell models as demonstrated for sickle cell
anemia [71] and alphal-antitrypsin deficiency [72]. New
genome editing tools such as zinc-finger nucleases [73,
74] are exciting strategies for curative therapy that can be
validated and tested for safety in vitro prior to in vivo and
eventual clinical studies. Insight gained from such investi-
gation of basic cardiometabolic disease will inform the use
of the technology for more complex diseases, such as reca-
pitulating components of the metabolic syndrome.
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