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FIG 4 HuR does not affect ARF mRNA transcription, stability, nuclear export, or p19**F turnover. (A) The expression of ARF and Ink4a mRNA in control and
sh-HuR MEFs was analyzed by real-time PCR. mRNA in each sample was normalized to 18S rRNA. (B) Control or sh-HuR retrovirus-infected MEFs were treated
with actinomycin D for the indicated periods. Total RNA was extracted at each time point, and ARF and Ink4a mRNA levels relative to the 185 rRNA level were
analyzed by real-time PCR. (C) Nuclear and cytoplasmic fractions were prepared from control and sh-HuR MEFs. (Upper blot) Samples were analyzed by
immunoblotting using Lamin (for the nuclear marker) and a-tubulin (for the cytoplasmic marker) antibodies. (Lower blot) RNA was isolated from these
fractions. ARF and Ink4a mRNA levels were quantified by real-time PCR and normalized to the 18S rRNA level in each fraction, and the ratios of cytoplasmic
mRNA to nuclear mRNA were determined. (D) Wild-type MEFs infected with control or sh-HuR retroviruses were treated with cycloheximide (CHX) for the
indicated periods. Cell lysates were prepared, and p19**F levels were analyzed by immunoblotting. (E) The intensity of the p19**F band in each sample was
determined using Image] and plotted. (F) HuR does not affect Ago2 association with ARF mRNA in mouse cells. Lysates of MEFs expressing sh-SCR or sh-HuR
were immunoprecipitated using Ago?2 or a control antibody. RNA recovered from the immune complex was analyzed using real-time PCR. Error bars represent
SEM of results from triplicate samples.

HuR does not affect ARF mRNA or protein stability. The In human cells, HuR has been shown to destabilize Ink4a
above results indicate that, unlike in HDFs, HuR regulates the mRNA by recruiting RISC to it (25). We therefore wished to de-
expression of p19**¥ but not of p16'™** in MEFs. To gain insights  termine if this was also the case with ARF regulation in MEFs.
into how HuR regulates p19*"" expression, we first compared Lysates from sh-SCR and sh-HuR MEFs were immunoprecipi-
ARF mRNA levels in control and sh-HuR MEFs. Real-time PCR  tated using Ago2 antibodies, and RNAs recovered from immune
analysis revealed no increase in ARF or Ink4a mRNA levels in the  complexes were subjected to real-time PCR analysis for ARF. ARF
presence or absence of HuR (Fig. 4A), implying that HuR was not  mRNA was enriched in the Ago2 immune complex from sh-SCR
involved in the transcriptional regulation of these genes. We next  cells, suggesting that RISC is also involved in ARF mRNA regula-
checked whether HuR could affect the stability of these mRNAs.  tion (Fig. 4F). Nonetheless, we did not observe any decrease in the
Cells were treated with actinomycin D to block de novo mRNA  RISC-ARF mRNA interaction in HuR-depleted cells. Thus, unlike
synthesis, and the remaining mRNA was chased by real-time PCR.  in human cells, RISC is not involved in HuR-mediated ARF
Although HuR has been shown to negatively regulate Ink4a  mRNA regulation.
mRNA stability in human fibroblasts (25), there was no significant HuR translationally regulates p1 expression. Next, we
difference in the levels of stability of ARF mRNA in MEFs checked the possibility that HuR affects the translation of ARF
(Fig. 4B). Likewise, we observed no difference in the ratios of ~mRNA since it has been well established that HuR regulates the
cytoplasmic to nuclear ARF and Ink4a mRNA between these cells;  translation of its target mRNAs (13, 40). MEFs were infected with
therefore, it is unlikely that HuR regulates the nuclear export of  GFP or GFP fused to ribosomal protein L10a (GFP-L10a) together
these mRNAs (Fig. 4C). We also compared levels of protein sta-  with sh-SCR or sh-HuR retroviruses. Cytoplasmic lysates were
bility in these cells with a cycloheximide chase but did not observe  immunoprecipitated using GFP antibody to purify ribosome-
changes in p19*FF stability (Fig. 4D and E). mRNA complexes (32, 42). Immunoblotting confirmed that GFP-
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FIG 5 HuR regulates the translation of ARF mRNA. (A) Wild-type MEFs were infected with sh-SCR or sh-HuR retroviruses together with GFP or GFP-L10
retroviruses. Cytoplasmic lysates were immunoprecipitated using GFP antibody. Immunoblotting using GFP antibody indicated that equal amounts of GFP-L10
protein were immunoprecipitated. RNAs were extracted from immune complexes and subjected to real-time PCR analysis. Amounts of ARF or Ink4a mRNA in
each sample were normalized to 185 rRNA in the complex. Data are representative of three independent experiments. Error bars represent SEM of results from
triplicate samples. (B) Cytoplasmic lysates prepared from MEFs infected with sh-SCR or sh-HuR retroviruses were fractionated by sucrose density gradient
centrifugation. Samples were manually separated into 120 fractions, and the relative values of optical densities at 254 nm were plotted (graphs). Ten fractions
were pooled, and 28S and 18S rRNAs and ribosomal proteins (L10, L11, and S6) were visualized by ethidium bromide staining and immunoblotting, respectively.
(C) The amount of ARF or Ink4a mRNA in each fraction was analyzed using real-time PCR.

L10a proteins were specifically enriched in immunoprecipitated
complexes, and equivalent amounts of GFP-L10a were obtained
from control and sh-HuR cells (Fig. 5A). RNAs were then recov-
ered from immune complexes and subjected to real-time PCR
analysis. ARF mRNA was significantly enriched in the ribosome
complex in sh-HuR cells; the amount of ribosome-associated ARF
mRNA was more than five times higher than that of the control,
while no change in ribosome association with Ink4a mRNA was
observed under these conditions. To further validate the ARF
mRNA-ribosome association, cytoplasmic lysates were fraction-
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ated into polysome/nonpolysome fractions by sucrose gradient
sedimentation (Fig. 5B). RNAs were recovered from each fraction,
and ARF and Ink4a mRNAs were analyzed by real-time PCR. Asin
the GFP-L10a immunoprecipitation experiment (Fig. 5A), we ob-
served more ARF mRNA in the polysome fractions of HuR-de-
pleted cells than in the nonpolysome fractions (Fig. 5C). Together,
these results indicate that HuR specifically represses p19**F ex-
pression by inhibiting mRNA-ribosome association.

We next sought to investigate if HuR affects ARF mRNA local-
ization. To this end, ARF mRNA, including both its 5'- and its
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FIG 6 Loss of HuR relocalizes ARF mRNA to nucleoli. (A) DNA constructs for the expression of MS2-tagged ARF mRNA (full length or A5"UTR). CMVp,
cytomegalovirus promoter. (B) Sh-SCR- or sh-HuR-expressing ARF p53 DKO cells were transiently transfected with MS2-GFP-NLS plasmids. Where indicated,
cells were cotransfected with MS2-tagged ARF (full length or A5"UTR)-expressing plasmids. Three days later, cells were fixed in paraformaldehyde and stained
with DAPL Bars, 10 um (C) Sh-HuR-expressing ARF p53 DKO cells were transiently transfected with MS2-GFP-NLS together with MS2-tagged ARF (full
length)-expressing plasmids. Cells were stained using p19*F antibody and DAPI.

3'UTR, was conjugated to tandem MS2-binding sequences (MS2
tag in Fig. 6A) (43) and coexpressed with MS2-EGFP fusion pro-
tein with a nuclear localization signal (MS2-EGFP-NLS) in ARF
and p53 double-knockout (DKO) MEFs expressing sh-SCR or sh-
HuR (30). In the absence of ARF mRNA, the GFP signal was ob-
served only in the nucleus, irrespective of HuR status (Fig. 6B). In
cells expressing MS2-tagged ARF mRNA, the GFP signal was also
observed in the nucleus, indicating that the majority of ARF
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mRNA remains in the nucleus. Interestingly, we observed that
ARF mRNA (full length) specifically accumulated in a subnuclear
compartment when HuR was depleted. This subnuclear compart-
ment represented nucleoli, since the GFP signal colocalized with
p19*%F (Fig. 6C). Thus, HuR also regulates the nuclear trafficking
of ARF mRNA, which may contribute to translational regulation
(44).

HuR associates with ARF mRNA in living cells. Since our re-
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sults suggest that HuR regulates the translation of ARF mRNA, we
next sought to determine if HuR associates with ARF mRNA.
Wild-type MEFs were infected with control (GFP) or HA-HuR
expression retroviruses, and HA-HuR complexes were immuno-
precipitated using HA antibody. As previously reported, B-actin,
c-myc, and p53 mRNAs were specifically enriched in HuR com-
plexes (Fig. 7A) (16, 20, 26). Under these conditions, we could not
detect ARF mRNA in the HuR immune complex. We performed
similar experiments with endogenous HuR proteins and failed to
detect binding of HuR to ARF mRNA (Fig. 7B). We next em-
ployed a UV cross-linking and immunoprecipitation (CLIP) as-
say, which is a more sensitive method to detect protein-RNA in-
teraction. MEFs were irradiated with UV to covalently cross-link
protein-RNA complexes prior to lysate preparation and immuno-
precipitated using HuR or control antibodies. Although we could
not detect the HuR and ARF mRNA interaction with the standard
RNA immunoprecipitation protocol (Fig. 7A and B), ARF mRNA
was slightly enriched in HuR immune complexes following UV
cross-linking (Fig. 7C). Hence, it is likely that ARF mRNAs form
an extremely fragile or transient complex in living cells, unlike
other HuR ligands.

HuR regulates the translation of ARF mRNA through its
5"UTR. To find the region responsible for HuR in ARF mRNA, we
expressed exogenous ARF mRNA that included the open reading
frame (ORF) and both the 5'- and 3’ UTRs (full-length ARF), the
ORF and 5'UTR (A3'UTR ARF), or the ORF and 3'UTR
(A5'UTR ARF) in NIH 3T3 cells (ARF and Ink4a null) expressing
sh-SCR or sh-HuR. These cells expressed comparable amounts of
exogenous ARFmRNA (Fig. §A). Under these conditions, p19™**F
levels were increased in the absence of HuR expression, and this
effect was more prominent in full-length ARF mRNA cells and in
A3'UTR cells than in A5"UTR cells (Fig. $B). p19**F expression
from A5'UTR ARF mRNA was also slightly increased in HuR-
depleted cells. However, this likely reflects the larger amount of
ARF mRNA in these cells (Fig. 8A), since the effect of HuR knock-
down was diminished when p19**F levels were normalized to ARF
mRNA levels in each sample (Fig. 8C). Consistently with the
above results, we observed more ribosome association with full-
length and A3'UTR ARF mRNAs than with A5'UTR mRNA in the
absence of HuR (Fig. 8D). Furthermore, CLIP analysis revealed
that the 5'UTR is required for HuR association (Fig. 8E). To-
gether, these results strongly suggest that HuR regulates the trans-
lation of ARF mRNA through its 5'UTR. Consistently with this
notion, ARF mRNA localized to nucleoli irrespective of HuR sta-
tus when the 5'UTR was deleted (Fig. 6B, lowest panels). How-
ever, this region by itself did not respond to HuR when it was
conjugated to the luciferase reporter (data not shown), suggesting
that the ORF region also contributes to regulation or that there are
more-stringent requirements for the RNA secondary structure.
We also performed similar experiments using full-length Ink4a
mRNA or Ink4a mRNA lacking both the 5" and 3'UTRs (ORE).
Consistently with the above results indicating that HuR does not
increase p16™™** levels in MEFs and that ARF mRNA does not
share the 5'UTR with Ink4a, knockdown of HuR did not affect
p16"™5*® expression from these mRNAs, further confirming that
the effect of HuR is specific to ARF in this locus (Fig. 9).

Nucleolin interacts with ARF mRNA in nucleoli and is re-
quired for p19*** expression in HuR knockdown cells. We next
sought a possible mediator of p19**F expression in HuR knock-
down cells. The nucleolar RNA-binding protein nucleolin has
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FIG 7 HuR weakly associates with ARF mRNA in living cells. (A) Lysates of
(wild-type) MEFs expressing HA-tagged HuR proteins were immunoprecipi-
tated using HA antibody. RNA extracted from the immune complex was ana-
lyzed by real-time PCR. Error bars represent SEM (n = 3). (B) Lysates pre-
pared from wild-type MEFs were immunoprecipitated using control (IgG) or
HuR antibodies. RNAs were extracted from immune complexes and subjected
to real-time PCR analysis. p53, c-myc, and B-actin were used as positive con-
trols. (C) Lysates were prepared from UV-cross-linked MEFs and immuno-
precipitated using control or HuR antibodies. RNAs were recovered from the
immune complex following proteinase K treatment and analyzed by real-time
PCR for ARF mRNA levels. Error bars represent SEM of results from triplicate
samples.
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FIG 8 HuR regulates p19**F expression through the 5'UTR of ARF mRNA. (A) NIH 3T3 cells expressing sh-SCR or sh-HuR were transfected with plasmids
bearing full-length ARF, including the 5'- and 3'UTRs (full length), ARF lacking the 3'UTR (A3'UTR), or ARF lacking the 5’UTR (A5'UTR) together with GFP
expression plasmids. Three days later, total RNA was extracted and exogenous ARF expression was analyzed by real-time PCR. Values were normalized to GFP
mRNA levels in each sample. (B) The cells from panel A were analyzed by immunoblotting for expression of p19**F and GEP. (C) p194*F levels in panel B were
quantified using Image], and the p19*"F level and ARF mRNA level in each sample were calculated. (D) NIH 3T3 cells expressing sh-SCR or sh-HuR were
transfected with ARF expression plasmids (full length, A3'UTR, or A5'UTR) together with GFP-L10 plasmids. Three days later, cytoplasmic lysates were pre-
pared and immunoprecipitated using GFP antibody to purify RNA-protein complexes, including GFP-L10. RNAs were recovered from immune complexes and
subjected to real-time PCR analysis for ARF mRNA. Values were normalized to input signals in each sample. (E) 293T cells were transfected with ARF expression
plasmids that express full-length or mutant ARF mRNA thatlacks the 5'UTR (A5'UTR) together with HA-HuR expression plasmids. Forty-eight hours later, cells
were subjected to UV cross-linking and immunoprecipitated using control or HA antibodies. Recovered RNA was analyzed by real-time PCR. Error bars

represent SEM of results from triplicate samples.

been shown to bind to several mRNAs involved in the cellular
stress response, and the binding of nucleolin enhances the
translation of their target mRNAs (45). Moreover, microarray
analysis of mRNA in the nucleolin complex has revealed that
CDKN2A (Ink4a and ARF) mRNA physically associates with
nucleolin in HeLa cells (45). Because ARF mRNA localized to
nucleoli upon HuR depletion, we tested if nucleolin interacts
with the nucleolar ARF mRNA in HuR knockdown cells. While
no ARF mRNA was detected in the nucleolin complex of con-
trol cells, it was significantly enriched in the absence of HuR
expression (Fig. 10A). The interaction of nucleolin with ARF
mRNA does not require 5'UTR; therefore, relocalization of
ARF mRNA to the nucleolus seems sufficient for the interac-
tion (Fig. 10B). Thus, HuR impedes the nucleolar localization
of ARF mRNA by binding to its 5'UTR, thereby inhibiting the
interaction of ARF mRNA with nucleolin. Next, we examined
whether nucleolin is required for p19*** expression in HuR
knockdown cells. For this purpose, siRNA targeting nucleolin
mRNA was transfected into sh-SCR- or sh-HuR-expressing
MEFs. Although the effect of siRNA on nucleolin level was
limited, p19***¥ induction was suppressed to basal levels in
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HuR knockdown cells (Fig. 10C), suggesting that nucleolin is
required for p19**F induction in HuR-depleted cells.

Loss of HuR inhibits adipocytic differentiation in a p19***-
dependent manner. A recent report by Minamino and colleagues
has shown that senescence in adipose tissue results in decreased
insulin sensitivity, thereby leading to type 2 diabetes mellitus (46).
Hence, we investigated whether HuR-mediated p19**F regulation
had any effect on adipocyte function. To this end, we first tested
whether loss of HuR could affect adipocyte differentiation in vitro.
Wild-type MEFs expressing sh-SCR or sh-HuR were differenti-
ated into adipocytes in the presence of insulin, dexamethasone,
and 3-isobutyl-1-methylxanthine (IBMX). Oil Red O staining re-
vealed that HuR depletion suppressed adipocytic differentiation
in wild-type MEFs (Fig. 11A). It has been reported that HuR di-
rectly binds to C/EBP mRNA to regulate its expression (47). We
therefore checked if HuR depletion affected the expression of
genes required for adipocyte differentiation. As shown in Fig. 11B,
C/EBPP expression was slightly diminished in HuR-depleted
cells. Nonetheless, levels of expression of its downstream C/EBPa
and PPARy genes were still comparable to those in control cells,
suggesting that defects in adipogenesis in the absence of HuR were

Molecular and Cellular Biology
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FIG 9 HuR does not affect Ink4a translation. (A) NIH 3T3 cells expressing
sh-SCR or sh-HuR were transfected with plasmids bearing full-length Ink4a,
including its 5'- and 3'UTRs (full length), or Ink4a lacking its 5'- and 3'UTRs
(ORF) together with GFP expression plasmids. Three days later, RNAs were
extracted and the expression of exogenous Ink4a mRNA was analyzed by real-
time PCR. Values were normalized to GFP expression levels in each sample.
(B) The expression of p16™*** and GFP was analyzed by immunoblotting. (C)
p16"* Jevels were quantified and normalized to Ink4a expression levels. Er-
ror bars represent SEM of results from triplicate samples.

not attributed to altered expression of adipocyte-related genes. We
then checked whether the adipocyte phenotype was dependent on
ARF. In sharp contrast, HuR knockdown had virtually no effect on
adipocyte differentiation in ARF knockout MEFs (Fig. 11C).

Given that p19*%F activates the p53-dependent cell cycle
checkpoint, we were prompted to check the possibility that p19**F
affects clonal expansion during the initial stage of adipogenesis.
Cells were stimulated to differentiate and were pulse-labeled with
5-ethynil-2'-deoxyuridine (EdU) to assess cell cycle reentry. EAU
staining showed a significant reduction in cell cycle reentry in
HuR-depleted wild-type MEFs (Fig. 11D). In contrast, S-phase
entry was not affected by sh-HuR in the absence of ARF (Fig. 11E).
These results suggest that defective adipogenesis in HuR-depleted
cells can be attributed to p19**"-dependent cell cycle arrest or
senescence.

Adipose-specific HuR knockout accelerates age-dependent
insulin resistance. Our above results indicated that the loss of
HuR enhanced the translation of ARF mRNA, thus inducing
p19**F-dependent cellular senescence, and that HuR may affect
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FIG 10 Nucleolin associates with ARF mRNA and mediates the p19**F in-
duction in HuR knockdown cells. (A) Lysates prepared from MEFs expressing
sh-SCR or sh-HuR were immunoprecipitated using control (IgG) or nucleolin
antibodies. RNAs were recovered from the immune complexes and analyzed
by real-time PCR. (B) NIH 3T3 cells expressing sh-SCR or sh-HuR were tran-
siently transfected with ARF (A5"UTR or full length)-expressing plasmids to-
gether with Flag-tagged nucleolin-expressing plasmids. Two days later, lysates
were prepared and immunoprecipitated using control or Flag tag (M2) anti-
bodies. RNAs in the immune complexes were analyzed by real-time PCR.
Error bars represents SEM of results from triplicate samples. (C) MEFs (P2)
expressing sh-SCR or sh-HuR were transfected with siRNA targeting nucleolin.
Two days later, lysates were prepared and the expression of the indicated pro-
teins was analyzed by immunoblotting. Lamin A/C was used as a loading
control.

adipocyte function through p19*%". To explore the impact of
HuR-mediated translational regulation of the ARF gene in vivo,
we generated adipose tissue-specific HuR knockout mice (HuR"";
AP2-CRE) (Fig. 124 and B) (10). ARF mRNA levels were low in
the adipose tissue of young animals (1 to 3 months old) of both
genotypes but significantly increased in older animals (6 to 9
months old) (Fig. 12C), which is consistent with previous reports
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FIG 11 Adipogenesis is impaired in HuR-depleted wild-type MEF. (A) Wild-type MEFs were infected with sh-SCR or sh-HuR retroviruses. Selected cells were
stimulated to differentiate them into adipocytes in the presence of insulin, 3-isobutyl-1-methylxanthine (IBMX), and dexamethasone for 10 days and stained
with Oil Red O. Bars, 50 wm. (B) Wild-type MEFs with sh-SCR or sh-HuR were cultured in adipocyte differentiation medium for the indicated periods. The
expression of C/EBPa, -, -8, and PPARYy were analyzed by immunoblotting. (C) ARF-null MEFs with sh-SCR or sh-HuR were stimulated to differentiate them
for 10 days and stained with Oil Red O. Bars, 50 pm. (D and E) Wild-type (D) and ARF-null (E) MEFs expressing sh-SCR or sh-HuR were stimulated to
differentiate them for 0, 1, and 2 days. Cells were pulse-labeled with EdU for 45 min and stained for EdU. EdU-positive and -negative cells in microscopic fields
were counted. Data are representative of two independent experiments. Error bars represent SEM of results from five microscopic fields.

indicating that ARF expression increases in many tissues as ani-
mals age (48). p19”**F was still hardly detectable in the adipose
tissue of older HuR™" mice (Fig. 12D). However, we detected
p19*%F in a certain population of older HuR™"; AP2-CRE mouse
adipose tissue (Fig. 12E and F). Changes in SA--Gal activity were
difficult to detect; however, PAI-I levels were significantly in-
creased in HuR knockout adipose tissue (Fig. 12G). We subse-
quently tested if HuR loss in adipose tissue affected insulin-medi-
ated glucose homeostasis, which is one of the major functions of
this tissue. There was little difference in insulin sensitivity among
both genotypes when animals were at a young age; however, in
older animals, adipose-specific HuR deletion significantly acceler-
ated insulin resistance (Fig. 13A). Similar results were obtained by
the glucose tolerance test (Fig. 13B). So far, we have not been able
to confirm that this effect is ARF dependent, because ARF-null
animals develop tumors by this age (49). However, the timing of
the onset of insulin resistance correlates well with that of p19***
appearance in adipose tissue. Hence, these results suggest that
HuR is required to repress p19**F expression in adipose tissue,
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thereby inhibiting adipose senescence, which can lead to insulin
resistance.

DISCUSSION

Our data show that HuR is downregulated in senescent mouse
fibroblasts and that decreases in HuR contribute to senescence-
associated growth arrest. It has been shown that HuR levels de-
cline in human diploid fibroblasts during cellular senescence (22);
therefore, the role of HuR in cellular senescence is likely to be
evolutionally conserved. How HuR expression is controlled dur-
ing senescence is unclear, but in human cells, it is attributed, at
least in part, to increased expression of miR-519 during senes-
cence (24). Whether HuR is regulated by miRNA in mouse senes-
cence is unknown, but we did not observe a significant change in
HuR mRNA levels in senescent MEFs (data not shown). There-
fore, such posttranscriptional regulation may also contribute to
the control of HuR levels in mouse cells.

Although HuR is implicated in senescence in both human and
mouse cells, the mechanisms underlying them are different. The

Molecular and Cellular Biology
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mRNA was analyzed by real-time PCR. (D) Lysates were prepared from the adipose tissue of HuRY® and HuR"%; AP2-CRE mice. Expression of the indicated
proteins was analyzed by immunoblotting. CDK4 was used as a loading control. Testis lysate from ARF™'~ and ARF*™'* animals was used as the negative and
positive controls for p1 9ARF respectively. (E) Frozen sections of adipose tissuie of HuR™ and HuR™; AP2-CRE mice (9 months old) were immunostained using
p19A”Fand HuR antibodies. Sections were counterstained with DAPL. Bars, 20 jum. (F) Rates of p19**F-positive cells in panel E were plotted. WAT, white adipose
tissue. (G) PAI-1 mRNA levels were analyzed using real-time PCR.

p16™42_Rb pathway plays pivotal roles in cell cycle arrest during
cellular senescence in human cells. In contrast, it has been well

mal conditions in which cells express sufficient amounts of HuR
protein, p19**F expression is suppressed, thereby protecting cells

established that the p19**F-p53 pathway is essential and that
p16™4 is dispensable in the senescence of mouse cells. Consis-
tently with these concepts, our results show that loss of HuR leads
to increased expression of p19™*F, but not p16'"“?, levels in MEFs.
We further demonstrated that senescence caused by HuR loss can
be abrogated by either ARF or p53 deletion. Therefore, under nor-
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from undergoing p53-dependent replicative senescence. Addi-
tionally, it has been proposed that HuR positively regulates the
expression of Mdm?2, which is a major E3 ligase for p53 protein,
and is negatively regulated by p19**F (50). Thus, HuR suppresses
P53 activity by modulating the expression of multiple targets in-
tegrated into the p53 pathway. Although we do not formally ex-
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FIG 13 Adipose-specific HuR deletion accelerates age-dependent insulin re-
sistance. Insulin tolerance tests (A) and glucose tolerance tests (B) were per-
formed with HuR" and HuR"?; AP2-CRE mice.

clude the possibility that p16'™** is also involved, it is conceivable
that the p19**F-p53 pathway is a major target of HuR to control
the life span of mouse cells.

In human cells, HuR directly associates with ARE in the 3'UTR
of Ink4a mRNA (25). This region is shared by ARF mRNA; there-
fore, it is possible that HuR also regulates p14*" expression in
human cells. Unlike in human cells, in MEFs, the loss of HuR has
no influence on p16'™%** levels, while p19**¥ is increased. Consis-
tently with these results, HuR associates with the 5"UTR of ARF
mRNA, which is not shared by Ink4a. However, the interaction of
HuR with ARF mRNA is weak and observed only after UV-medi-
ated cross-linking. Therefore, it is likely that HuR forms a much
more fragile complex with ARF mRNA than with other mRNAs.
Alternatively, the effect of HuR may be indirect; HuR may target
another factor(s) that regulates p19°*" expression. In this regard,
it is worthy of note that HuR regulates the translation of B-catenin
and Jun-B mRNAs by modifying the stability of linc-p21 RNA
(51). This could be clarified by identifying ARF mRNA-interact-
ing molecules. Additionally, HuR has been proposed to recruit
RISC to human Ink4a mRNA independently of miRNA, thereby
destabilizing it (25). Although the involvement of miRNA needs
to be further clarified, it is possible that RISC-mediated regulation
may also be involved in mice, since deletion of dicer-I causes
p19**¥-p53-dependent cellular senescence (52). Furthermore, we
detected ARF mRNA in the Ago2 complex. Nonetheless, the in-
teraction of Ago2 and ARF mRNA was not decreased upon HuR
depletion, implying that RISC is not involved in HuR-mediated
ARF regulation.

HuR exclusively affects translation in p1 expression. Loss
of HuR enhances ribosome association with ARF mRNA. This
translational activation is associated with the nucleolar accamu-
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FIG 14 Model for ARF regulation by HuR and nucleolin. In the presence of
HuR, ARF mRNA binds to HuR through the 5'UTR, and the mRNA localizes
mainly to the nucleoplasm. The HuR-bound ARF mRNA is less efficiently
translated. In the absence of HuR, ARF mRNA localizes to the nucleolus, where
it associates with nucleolin (NCL). The nucleolin association facilitates ribo-
some binding, thereby enhancing the translation.

lation of ARF mRNA. We found that ARF mRNA associates with
nucleolin, which is required for p19**F induction in HuR-de-
pleted cells. Nucleolin associates with numerous mRNAs and
shuttles between the nucleolus and the cytoplasm. The influences
of nucleolin on target mRNA differ depending on the target tran-
script. A recent report by Abdelmohsen and colleagues demon-
strated that nucleolin is required for ribosome binding and sub-
sequent translation of its target mRNA (45). Consistently with our
results, they also observed CDKNZ2A, as well as both ARF and
Ink4a, among the nucleolin-associated mRNAs. Together with
these observations, our data suggest that HuR-associated ARF
mRNA is retained in the nucleoplasm and is not efficiently trans-
lated upon nuclear export (Fig. 14). However, in the absence of
HuR, ARF mRNA localizes to the nucleolus, where it associates
with nucleolin. As nucleolin enhances ribosome recruitment to its
target mRNA (45), p19**F synthesis is increased under these con-
ditions. Interestingly, p53 mRNA also accumulates in the nucleoli
upon DNA damage, when p53 mRNA translation is increased
(44). Hence, nucleolar localization of mRNA may reflect general
aspects of stress-dependent mRNA translation. It has recently
been shown by Miceli and colleagues that oncogenic Ras activates
the transcription of the ARF gene, as well as the translation of ARF
mRNA through mTORCI (53). In this context, it is noteworthy
that mTORCI activity can affect the binding of HuR to ornithine
decarboxylase mRNA (54). Therefore, it would be interesting to
see if mMTORC1 and HuR cooperate in ARF mRNA regulation.
Cellular senescence is known to be involved in metabolic dis-
orders as well as cancers. Among these, senescence in adipose tis-
sue is associated with insulin resistance (46). HuR has also been
shown to function in adipocytes by regulating C/EBP3 expression
(55, 56). Our results reveal that, although C/EBP may be affected
by HuR status, it has little effect on adipogenesis, which is consis-
tent with a previous report that C/EBPB-null MEFs are capable of
undergoing adipogenesis (57). Instead, the function of HuR in
adipogenesis depends largely on ARF, as HuR knockdown had
virtually no effect on adipogenesis in ARF-null MEF or 3T3-L1
cells, in which the p53 pathway was inactivated by mdm2 amplifi-
cation (Fig. 11 and data not shown) (58). Impaired adipogenesis is
observed with concomitant reductions in clonal expansion during
the initial stage of adipogenesis, which is alleviated in an ARF-null
background. Hence, it is likely that adipogenic failure in HuR-
depleted MEFs is attributed largely to p19*"". There were no ab-
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normalities in the shapes and sizes of adipose tissues in adipose-
specific HuR knockout mice. However, these mice revealed
progressive insulin resistance with age. The reason why this phe-
notype was not observed in young animals can be explained by
differences in the levels of ARF mRNA among these animals. In
young mice, increased translation by HuR loss does not lead to
expression of sufficient amounts of p19**¥ because of low ARF
mRNA levels. However, in older animals, larger amounts of ARF
mRNA and an increased rate of translation synergistically induced
p19**F in adipose tissue. SA-B-Gal activity was not as strong as in
cultured cells, and we failed to quantitatively detect an increase in
enzyme activity. Nonetheless, the senescence program is likely ac-
tivated in those cells, since PAI-I was significantly induced. It
should be further clarified whether the phenotype is completely
dependent on p19**F or whether other adipocyte-related factors
are involved. Also, it would be interesting to see if HuR is linked to
metabolic disorders, such as type 2 diabetes mellitus. In this re-
gard, it is noteworthy that there was strong linkage between the
human ARF and Ink4a loci and the disease (59-61).

HuR is deregulated in many types of cancers (40), and there is
no doubt that cellular senescence is a central tumor-suppressive
mechanism in mammals. Hence, it is plausible that deregulated
HuR activity and expression leads to an uncontrolled senescence
program, thereby allowing cells to bypass senescence. This can be
achieved by suppressing the activity of the p16'™***-Rb pathway
and the p19***-p53 pathway in humans and mice, respectively.
Moreover, HuR is downregulated in aged human tissues, which
may contribute to an age-associated phenotype, such as decreased
insulin sensitivity. Our data demonstrate a novel function of HuR
in the maintenance of the cellular replicative life span and will lead
to further understanding of the mechanism and biological roles of
cellular senescence.
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Juvenile myelomonocytic leukemia (JMML)
is a rare pediatric myeloid neoplasm char-
acterized by excessive proliferation of
myelomonocytic cells. Somatic muta-
tions in genes involved in GM-CSF signal
transduction, such as NRAS, KRAS,
PTPN11, NF1, and CBL, have been identi-
fied in more than 70% of children with
JMML. In the present study, we report

2 patients with somatic mosaicism for
oncogenic NRAS mutations (G12D and
G12S) associated with the development
of JMML. The mutated allele frequencies
quantified by pyrosequencing were vari-
ous and ranged from 3%-50% in BM and
other somatic cells (ie, buccal smear cells,
hair bulbs, or nails). Both patients experi-
enced spontaneous improvement of clini-

cal symptoms and leukocytosis due to
JMML without hematopoietic stem cell
transplantation. These patients are the
first reported to have somatic mosaicism
for oncogenic NRAS mutations. The clini-
cal course of these patients suggests that
NRAS mosaicism may be associated with
a mild disease phenotype in JMML.
(Blood. 2012;120(7):1485-1488)

Introduction

Juvenile myelomonocytic leukemia (JMML) is a rare myeloid
neoplasm characterized by excessive proliferation of myelomono-
cytic cells. Somatic mutations in genes involved in GM-CSF signal
transduction, such as NRAS, KRAS, PTPNI11, NF1, and CBL, have
been identified in more than 70% of children with JMML.!® The
term “‘somatic mosaicism” is defined as the presence of multiple
populations of cells with distinct genotypes in one person whose
developmental lineages trace back to a single fertilized egg.*
Somatic mosaicism of various genes, including some oncogenes,
has been implicated in many diseases. For example, somatic
mosaicism for HRAS mutations is found in patients with Costello
syndrome.™” Whereas germline mutations in causative genes (ie,
PTPNII, NRAS, NF1, and CBL) are found in JMML patients,8-!!
the presence of somatic mosaicism for these genes has never been
reported. In the present study, we describe 2 cases of JMML in
which the patients display somatic mosaicism for oncogenic NRAS
mutations (G12D and G128S).

Study design

Written informed consent for sample collection was obtained from
the patients’ parents in accordance with the Declaration of Hel-
sinki, and molecular analysis of the mutational status was approved

by the ethics committee of the Nagoya University Graduate School
of Medicine (Nagoya, Japan).

Patient 1. A 10-month-old boy had hepatosplenomegaly and
leukocytosis (72.1 X 10%L) with monocytosis (13.3 X 10%L; Table
1). The patient’s BM contained 7% blasts with myeloid hyperpla-
sia. Cytogenetic analysis revealed a normal karyotype and colony
assay of BM mononuclear cells (BM-MNCs) showed spontaneous
colony formation but GM-CSF hypersensitivity assay was not
tested. The diagnostic criteria for JMML, as developed by the
European Working Group on Myelodysplastic Syndrome in Child-
hood, was fulfilled,'? and the patient was treated with IFN-« and
6-mercaptopurine. His clinical and laboratory findings gradually
resolved without hematopoietic stem cell transplantation. How-
ever, 11 years after the diagnosis of JMML, the patient developed
thrombocytopenia (7.6 X 10°/L) and BM findings showed trilin-
eage dysplasia with low blast count compatible with refractory
anemia. The patient did not have any physiologic abnormalities,
such as facial deformity, and there was no family history of
malignancy or congenital abnormalities.

Patient 2. A 10-month-old boy had anemia, hepatospleno-
megaly, and leukocytosis (31.8 X 10%L) with monocytosis
(6.4 X 10%/L; Table 1). The patient’s BM exhibited myeloid
hyperplasia and granulocytic dysplasia with 5% blasts. Cytogenetic
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Table 1. Patient characteristics

BLOOD, 16 AUGUST 2012 - VOLUME 120, NUMBER 7

Patient 1 Patient 2
Age, mo 10 : 10
Sex Male Male
Liver, cm 12 5
Spleen, cm 8 10
WBCs, X 10%/L 721 31.8
Monocytes, % 18.5 20
Blasts, % 4 ; ! 2
Hb, g/dL 8.9 54
Platelets, x 109/L 59 100
HbF, % 2.1 1.7
BM blasts, % ! 7 : 5
Karyotype 46,XY [20/20] 46,XY [20/20]
Monosomy 7 (FISH) Negative Negative
Spontaneous colony formation Positive Positive
Gene mutation ‘ NRAS, G12D 35G > A NRAS, G128 34G > A
Treatment IFN-a-2b, 6-MP None
Observation period, mo 231 103
Outcome Alive Alive
Fraction of mutant alleles, % (pyrosequencing) E
Nail (whole) 24 12.5 (average)
Nail (left hand) ND 26
Nail (right hand) ND 13
Nait (left foot) ND 8
Nail (right foot) ND 3
Buccal smear cells 43 21
Hair bulbs 5 ND
Family studies
Father Wild-type Wild-type
Mother Wild-type Wild-type
Sibling ND Wild-type

Hb indicates hemoglobin; 6-MP, 6-mercaptopurine; and ND, not done.

analysis revealed a normal karyotype. Colony assay of BM-MNCs
showed spontaneous colony formation and GM-CSF hypersensitiv-
ity. Although the diagnostic criteria for IMML were fulfilled,'? the
patient’s clinical symptoms and leukocytosis improved spontane-
ously within a few months without cytotoxic therapy or hematopoi-
etic stem cell transplantation. The patient has remained healthy and
has experienced no hematologic or physiologic abnormalities. The
most recent follow-up examination was conducted when the patient
was 8 years of age.

Detailed methods for experiments are described in supplemen-
tal Methods (available on the Blood Web site; see the Supplemental
Materials link at the top of the online article).

Results and discussion

DNA sequencing for JMML-associated genes (ie, NRAS, KRAS,
PTPNII, and CBL) was performed (Figure 1 and Table 1). In
Patient 1, the NRAS G12D mutation was identified in BM-MNCs at
the time of diagnosis of both JIMML and MDS. We identified the
same G12D mutation in DNA derived from buccal smear cells and
nails of both hands; however, the sequence profile of the nails
showed a low signal for the mutant allele compared with signal of
blood cells. In Patient 2, the NRAS G12S mutation was identified in
DNA from BM-MNCs, buccal smear cells, and nails of the left
hand. However, the sequence profiles of buccal smear cells and
nails of the left hand showed a low signal for the mutant variant. No
mutation was detected in DNA from the PB-MNC:s of the patient’s
parents or sibling.

We used pyrosequencing to quantify the fraction of mutated
alleles in DNA samples from different somatic tissues (Figure 1 and
Table 1). The frequency of mutated alleles varied by tissue type as
follows. For Patient 1: BM-MNCs, 50%; nails, 24%; buccal smear
cells, 43%; and hair bulbs, 5%. For Patient 2: buccal smear cells,
21%; nails of left hand, 26%; nails of right hand, 13%; nails of left
foot, 8%; and nails of right foot, 3%. We cloned the PCR product of
NRAS exon 2 from the nails of Patient 1 and picked up 15 clones.
The clones were sequenced. Four of the 15 clones (27%) contained
the mutant allele, which is consistent with the results of pyrosequenc-
ing analysis (24% mutant allele). Because the confirmed detection
level by pyrosequencing technique was above 5%, results with a
low percentage (< 5%) of mutant allele (ie, hair bulbs in Patient 1)
should be interpreted with caution.!3-14

We diagnosed 2 JMML patients as having somatic mosaicism of
NRAS mutations: G12D for Patient 1 and G128 for Patient 2. The
diagnoses were based on negative familial studies and mutational
allele quantification analyses that showed diversity in the chimeric
mutational status of different somatic tissues. Although DNA from
buccal smear cells might be contaminated with WBCs, we also
identified mutations in DNA from the nail tissue, which is known to
be a good biologic material without contamination from hematopoi-
etic cells, in both patients. These data suggest that a portion of the
NRAS-mutated somatic cells were derived from one cell that
acquired the mutation at a very early developmental stage.
Although both somatic and germline mutations of RAS pathway
genes (ie, PTPNII, NRAS, NF], and CBL) are found in some
JMML patients, >3 somatic mosaicism for these genes has never
been reported. To the best of our knowledge, the present study is
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Figure 1. Direct sequencing and quantitative muta-
tional analysis of NRAS in JMML patients. NRAS
mutations are detected by direct sequencing and quanti-
fied by pyrosequencing. Direct sequencing identified
oncogenic NRAS mutations: for Patient 1, G12D,
35G > A for Patient 2, G123, 34G > A) in BM-MNCs at
diagnosis of JMML and in the nails and buccal smear
cells. Quantification by pyrosequencing revealed that the
fractions of mutated allele varied among different tissue

Patient 1
(NRAS G12D, 35G>A)

SOMATIC MOSAICISM FOR NRASMUTATIONS INJMML 1487

Patient 2
(NRAS G128, 34G>A)

/
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types. For Patient 1: BM, 50%; nail, 24%; and buccal

smear, 43%. For Patient 2: BM, 48%; left-hand nail,

26%; and buccal smear, 21%.
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Nail

CAGGTIGG
i
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the first report of JMML patients with somatic mosaicism of
mutations in RAS pathway genes.

Germline RAS pathway mutations are often associated with
dysmorphic features similar to Noonan syndrome or its associated
diseases. Correspondingly, IMML patients with germline NRAS or
CBL mutations exhibit characteristic dysmorphic features.»!0 Al-
though our patients did not show any dysmorphic or developmental
abnormalities, they should receive careful medical follow-up,
especially for the occurrence of other cancers, because of the
oncogenic nature of the mutations.

In general, JMML is a rapidly fatal disorder if left untreated.®
However, recent clinical genotype-phenotype analyses have re-
vealed heterogeneity in their clinical course. We and other research-
ers have reported that patients with PTPN]] mutations have a
worse prognosis than patients with other gene mutations, including
NRAS and KRAS.'>'6 Both of the JMML patients in the present
study with somatic mosaicism of oncogenic NRAS mutations have
had a mild and self-limiting clinical course. We analyzed nails of
other 3 JMML patients with RAS mutations who experienced
aggressive clinical course and none showed somatic mosaicism

(data not shown). In analogy to the mild phenotype of JMML
patients with germline mutations in PTPNII, we speculate that
JMML patients with somatic mosaicism of RAS genes might have
a mild clinical course. We are planning to confirm these observa-
tions in larger cohort.
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Novel splicing-factor mutations in juvenile myelomonocytic

leukemia

Leukemia (2012) 26, 1879-1881; doi:10.1038/leu.2012.45

Myelodysplastic syndromes (MDS) and myelodysplastic/myelopro-
liferative neoplasms (MDS/MPN) are heterogeneous groups of
chronic myeloid neoplasms characterized by clonal hematopoi-
esis, varying degrees of cytopenia or myeloproliferative features
with evidence of myelodysplasia and a propensity to acute
myeloid leukemia (AML)." In recent years; a number of novel gene
mutations, involving TET2, ASXL1, DNMT3A, EZH2, IDH1/2, and
¢-CBL, have been identified in adult cases of chronic myeloid
neoplasms, which have contributed to our understanding of
disease pathogenesis.>~” However, these mutations are rare in
pediatric cases, with the exception of germline or somatic
¢-CBL mutations found in 10—-15% of chronic myelomonocytic
leukemia (CMML) and juvenile myelomonocytic leukemia (JMML),®
highlighting the distinct pathogenesis of adult and pediatric
neoplasms.

Recently, we reported high frequencies of mutations, involving
the RNA splicing machinery, that are largely specific to myeloid
neoplasms, showing evidence of myeloid dysplasia in adult.’®
Affecting a total of eight components of the RNA splicing
machinery (U2AF35, U2AF65, SF3A1, SF3B1, SRSF2, ZRSR2, SF1
and PRPF40B) commonly involved in the 3’ splice-site (3'SS)
recognition, these pathway mutations are now implicated in the
pathogenesis of myelodysplasia.’® To investigate the role of the
splicing-pathway mutations in the pathogenesis of pediatric
myeloid malignancies, we have examined 165 pediatric cases
with AML, MDS, chronic myeloid leukemia (CML) and JMML for

mutations in the four major splicing factors, U2AF35, ZRSR2, SRSF2,
and SF3B1, commonly mutated in adult cases.

Bone marrow or peripheral blood tumor specimens were
obtained from 165 pediatric patients with various myeloid
malignancies, including de novo AML (n=93), MDS (n=28),
CML (n=17) and JMML (n=27), and the genomic DNA (gDNA)
was subjected to mutation analysis (Supplementary Table 1). The
status of the RAS pathway mutations for the current JMML series
has been reported previously (Supplementary Table 2).'''2
Nineteen leukemia cell lines derived from AML (YNH-1, ML-1,
KASUMI-3, KG-1, HL60, inv-3, SN-1, NB4 and HEL), acute monocytic
leukemia (THP-1, SCC-3, J-111, CTS, P31/FUJ, MOLM-13, IMS/MI
and KOCL-48) and acute megakaryoblastic leukemia (CMS and
CMY) were also analyzed for mutations. Peripheral blood gDNA
from 60 healthy adult volunteers was used as controls. Informed
consent was obtained from the patients and/or their parents and
from the healthy volunteers. We previously showed that for
U2AF35, SRSF2 and SF3B1, most of the mutations in adult cases
were observed in exons 2 and 7, exon 1, and exons 14 and 15,
respectively.'® Therefore, we confirmed mutation screening to
these 'hot-spot’ exons. In contrast, all the coding exons were
examined for ZRSR2, because no mutational hot spots have been
detected. Briefly, the relevant exons were amplified using PCR and
mutations were examined by Sanger sequencing, as previously
described.’® The Fisher's exact test was used to evaluate the
statistical significance of frequencies of mutations for U2AF35,
SF3B1, ZRSR2 or SRSF2 in adult cases and pediatric cases. This
study was approved by the Ethics Committee of the University of
Tokyo (Approval number 948-7).

a U2AF35
“E, S34F Q157R
: S34Y Q157P
A\
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Figure 1.

221aa
6 bp in-frame deletion
$170, K171 deletion

Novel U2AF35and SRSF2 mutations detected in JMML cases. (a) Left panel: sequence chromatogram of a heterozygous mutation at

R156 in N-terminal zinc-finger motifs of U2AF35 detected in a JMML case JMML 4) is shown. Mutated nucleotides are indicated by arrows.
Right panel: illustration of functional domains and mutations of U2AF35. Red arrow heads indicate hot-spot mutations at S34 and Q157
detected in the adult cases.’® Blue arrow head indicates the missense mutation at R156. (b) Left panel: sequence chromatogram of a 6-bp
in-frame deletion (c.518-523delAAGTCC) in SRSF2 detected in JMML 17 is shown. Mutated nucleotides are indicated by arrows. Right panel:

illustration of functional domains and mutations of SRSF2. Red arrow head indicates hot-spot mutation at P95 frequently detected in the adult

cases.'® Blue arrow head indicates a 6-bp in-frame deletion leading to deletion of S170 and K171.
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No mutations were identified in the 28 cases with pediatric
MDS, which included 13 cases with refractory anemia with excess
blasts, 5 with refractory cytopenia of childhood, 2 with Down
syndrome-related MDS, 2 with Fanconi anemia-related MDS,
2 with secondary MDS and 4 with unclassified MDS. Similarly,
no mutations were detected in 93 cases with de novo AML or in
17 with CML, as well as 19 leukemia-derived cell lines.
Our previous study in adult patients showed the frequency of
mutations in U2AF35, SF3B1, ZRSR2 or SRSF2 to be 60/155 cases with
MDS without increased ring sideroblasts and 8/151 de novo AML
patients, emphasizing the rarity of these mutations in pediatric MDS
(P<5.0x 107% and AML (P<0.02) compared with adult cases. We
found mutations in two JMML cases, JMML 4 and JMML 17. JMML 4
carried a heterozygous U2AF35 mutation (R156M), whereas JMML 17
had a 6-bp in-frame deletion (c.518-523delAAGTCC) in SRSF2 that
resulted in deletion of amino acids S170 and K171 (Figure 1). Both
nucleotide changes found in U2AF35 and SRSF2 were neither
identified in the 60 healthy volunteers nor registered in the dbSNP
database (http://www.ncbi.nlm.nih.gov/projects/SNP/) or in the 1000
genomes project, indicating that they represent novel spliceosome
mutations in pediatric cases.

U2AF35 is the small subunit of the U2 auxiliary factor (U2AF),
which binds an AG dinucleotide at the 3’SS, and has an essential
role in RNA splicing.”® With the exception of a single A26V
mutation found in a case of refractory cytopenia with multilinage
dysplasia, all the U2AF35 mutations reported in adult myeloid
malignancies involved one of the two hot spots within the two
zinc-finger domains, S34 and Q157, which are highly conserved
across species, suggesting the gain-of-function mutations.” In
JMML 4, the R156M U2AF35 mutation affects a conserved amino
acid adjacent to Q157, suggesting it may also be a gain-of-
function mutation, leading to aberrant pre-mRNA splicing possibly
in a dominant fashion.

SRSF2, better known as SC35, is a member of the serine/
arginine-rich (SR) family of proteins.”® SRSF2 binds to a splicing-
enhancer element in pre-mRNA and has a crucial role not only in
constitutive and alternative pre-mRNA splicing but also in
transcription elongation and genomic stability.'* All mutations
thus far identified in adult cases exclusively involved P95 within
the intervening sequence between the N-terminal RNA-binding
domain and the C-terminal RS domain."® This region interacts with
other SR proteins, again suggesting that the P95 mutation may
result in gain-of-function.'® This proline residue is thought to
determine the relative orientation of the two flanking domains of
SRSF2, and a substitution at this position could compromise
critical interactions with other splicing factors necessary for RNA
splicing to take place. In contrast, the newly identified 6-bp
in-frame deletion in JMLL 17 results in two conserved amino acids,
$170 and K171, within the RS domain. Although it may affect
protein—protein interactions, the functional significance of this
deletion remains elusive.

JMML is a unique form of pediatric MDS/MPN characterized by
activation of the RAS/mitogen-activated protein kinase signaling
pathway; in 90% of cases, there are germ line and/or somatic
mutations of NF1, NRAS, KRAS, PTPN11 and CBLZ Although
JMML shares some clinical and molecular features with CMML,
its spectrum of gene mutations suggests that it is a neoplasm
distinct from CMML.'®> This was also confirmed by the current
results that the splicing-pathway mutations are rare in JMML,
whereas they are extremely frequent (~60%) in CMML.'
Although the two JMML cases carrying the splicing-pathway
mutations had no known RAS-pathway mutations, both the
pathway mutations frequently coexisted in CMMLZ2

To summarize, no mutations of SF3B1, U2AF35, ZRSR2 or
SRSF2 are found in pediatric MDS and AML. In our study, except
for ZRSR2, mutations were examined focusing on the reported
hot spots in adult studies, raising a possibility that we may
have missed some mutations occurring in other regions. However,

Leukemia (2012) 18791898

these hot spots represent evolutionally conserved amino
acids and have functional relevance, it is unlikely that the
distribution of hot spots in children significantly differs from adult
cases and as such, we could safely conclude that mutations of
SF3B1, U2AF35, ZRSR2 and SRSF2 are rare in myeloid neoplasms in
children. Finally, mutations of U2AF35 and SRSF2 may have some
role in the pathogenesis of JMML, although further evaluations
are required.
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