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5. Persistent EBV Infection in Humanized Mice

EBYV infection in immunocompetent hosts is mostly asymptomatic and EBV-infected lymphoblastoid
cells with potential to unlimited proliferation are efficiently removed by the virus-specific CTL
because they express highly immunogenic proteins such as EBNAs 3A, 3B, and 3C. In EBV latency in
humans maintained by T-cell immunosurveillance, EBV reside in memory B cells where all viral
protein expression is shut down, rendering them invisible to CTL. Persistent infection reminiscent of
EBV latency in humans was reproduced in hu-NOG mice inoculated with low doses of the virus.
Majority of hu-NOG mice inoculated with EBV of less than 10" TDsy remained normal and survived
for more than six months without apparent signs of diseases [30]. EBV DNA was detected in the
peripheral blood only transiently for the several weeks following infection. When these mice were
sacrificed more than six months post-infection, no macroscopic pathological changes were observed,
yet a low number of EBER-positive cells were found in the tissues of spleen and lymph nodes. These
cells were shown CD20-positive, but their morphology, with rather large cytoplasm, was not consistent
with that of resting memory B cells [30]. RT-PCR analysis of RNA obtained from the spleen or liver
of these persistently infected mice showed the expression of EBNA1, EBNA2, LMP1, and LMP2A,
being consistent with the presence of latency III cells (Yajima ef al. unpublished results). Thus,
persistent EBV infection in hu-NOG mice did not appear to recapitulate all aspects of EBV latency in
humans. Since a number of deficiencies have been observed in the functions of B cells in humanized
mice [105], reproduction of bone fide EBV latency in memory B cells may require more sophisticated
humanized mice. Nevertheless, it is an interesting question how immune responses are involved in the
induction and maintenance of this persistent EBV infection in hu-NOG mice. Interestingly, EBV DNA
level in the peripheral blood fluctuated in a few persistently infected mice and there the rise in EBV
DNA level was immediately followed by the increase in CD8" T cells and subsequent decline of EBV
DNA level, suggesting an effective T-cell control of EBV-infected cells [52]. Trials to disrupt this
persistent infection by immunosuppressive measures and induce EBV-associated LPD are underway.
Cocco and others characterized EBV gene expression, surface marker expression, and hypermutation
of immunoglobulin variable region in a single cell level in lymphoid tissues of humanized BRG mice
infected with EBV [29]. They could identify EBV-infected cells of all three types of EBV latency
(1, II, and III) in specific correlations with the location in the tissue and presence of hypermutation.
Thus, the exact route by which EBV establishes latent infection in memory B cells, which is at present
unclear, may be clarified in experiments using humanized mice.

6. Characterization of EBV Mutants in Humanized Mice

Among the nine EBV proteins and the two sets of untranslated RNAs expressed in immortalized
lymphoblastoid cells, EBNA2, EBNA3A, EBNA3C and LMP1 have been shown to play essential
roles in the process of transformation, whereas knocking-out of the EBNA3B gene by homologous
recombination did not affect the in vitro transforming ability of the virus [67]. Virus replication was
not affected either. Nevertheless, as EBNA3B is well conserved in fresh clinical EBV isolates, a
critical role for EBNA3B in the life cycle of EBV had been supposed. Recent work by White and
others demonstrated that an EBV mutant with its EBNA3B gene knocked out induces more aggressive
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LPD in hu-NSG mice, suggesting that EBNA3B functions as a tumor suppressor gene [82]. B cells
infected with this mutant virus secreted less T-cell chemoattractant CXCL10 and thereby escaped
T-cell mediated killing. EBNA3B may thus help the host to control EBV-induced lymphoproliferation
so that the virus should not give a life-threatening harm to the host. These findings were possible only
in In vivo experiments with humanized mice and points to an important area for their application,
namely /n vivo characterization of virus mutants.

BZLF1 is an immediate-early gene of EBV and acts as a switch from the latent to lytic cycle of
EBV infection. Knocking-out of BZLF gene did not affect the virus’ ability to transform B cells
in vitro and the involvement of BZLF1 in lymphomagenesis was not expected until experiments with
humanized mice became feasible. Ma and others prepared an EBV recombinant with the BZLF1 gene
knocked-out and that with enhanced BZLF1 expression and compared the efficiency of lymphoma
genesis in BLT NSG mice [62,63]. The results clearly indicated that BZLF1 enhances lymphoma
genesis by inducing abortive lytic infection.

There are a number of EBV genes such as BHRF1 (encoding an Bcl-2-like anti-apoptotic
protein) [107], BXLF1 (encoding EBV thymidine kinase) [108], BCRF1 (encoding viral IL-10) [109],
loss-of-function mutants of which exhibited no or only minor phenotypic alteration in ir vitro studies.
Examination of these EBV mutants in humanized mice may reveal critical roles for these genes in
EBYV life cycle and pathogenesis.

7. Mouse Xenograft Models of EBV-Associated T/NK-Cell LPD

Although B cells are the major target of EBV, in a group of diseases termed EBV-associated T/NK-
cell LPDs, including CAEBV and EBV-HLH, the virus is mainly found in T or NK cells proliferating
oligoclonally or monoclonally. CAEBYV is characterized by prolonged IM-like symptoms, unusual
patterns of antibody responses to EBV, and elevated EBV DNA load in the peripheral blood [110-112]. In
the WHO classification of lymphomas [113], CAEBV corresponds largely with the systemic EBV"
T-cell lymphoproliferative diseases of childhood. Although monoclonal proliferation of EBV-infected
cells implies malignant nature of the disease, chronic clinical time course and absence of morphological
atypia in proliferating cells contradicts this notion, and the pathogenesis of this disease is largely
unresolved. Overproduction of cytokines by EBV-infected T or NK cells and reacting T cells and
macrophages is thought to be responsible for systemic inflammatory symptoms in CAEBV. Although
it is still not possible to transform human T and NK cells in vitro with EBV to establish immortalized
cell lines, the nature of these diseases strongly suggests that in a specific condition EBV can infect
T and NK cells and induce their proliferation. EBV infection of T and NK cells has not been
reproduced so far in humanized mice and recapitulation of EBV-associated T/NK LPD in mice
required xenotransplantation of PBMC derived from patients. Imadome and others transplanted PBMC
isolated from patients with CAEBV and EBV-HLH to NOG mice and succeeded in reproducing major
features of these diseases including systemic monoclonal proliferation of EBV-infected T or NK cells
and hypercytokinemia [99]. Many features were common to CAEBV and EBV-HLH model mice, but
the findings of hemorrhagic lesions and extreme hypercytokinemia were unique to the latter model.
Importantly, these models revealed an essential role of CD4" T cells (whether or not infected with
EBV) in the In vivo proliferation of EBV-infected T and NK cells and depletion of CD4" T cells by
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administrating OKT-4 antibody just following transplantation of PBMC effectively prevented the
engrafiment of EBV-infected cells [99]. Furthermore, administration of OKT-4 antibody after
engraftment of EBV-infected cells reduced peripheral blood EBV DNA load to undetectable level
(Imadome and others, unpublished results). These results suggest therapeutic approaches targeting
CD4" T cells may be possible.

8. Future Directions
8.1. Further Analyses on EBV Pathogenesis

EBYV is implicated in a variety of diseases (Table 2) and only a minor fraction of them have been
recapitulated in humanized mice. Efforts to reproduce the remaining diseases in humanized mice need
to be made. Recognition of erosive arthritis resembling RA in humanized mice rationalizes a search for
lesions and symptoms of other autoimmune diseases in EBV-infected humanized mice. By varying
conditions for EBV infection in humanized mice, including viral dose, viral strain, route of
inoculation, timing of infection after transplantation of HSC, as well as modifying the protocol for
preparing humanized mice, recapitulation of additional EBV-associated diseases may be possible. As
various environmental and host factors are thought to be involved in the pathogenesis of EBV-associated
diseases, humanized mice may be a powerful tool for testing the effects of such cofactor candidates in vivo.
For example, the effects of supposed cofactors for endemic Burkitt lymphoma such as malaria
infection and euphorbia plants might be tested in humanized mice. Host genetic factors may be also
evaluated in humanized mice; for diseases such as RA in which HLA polymorphism has an influence
on pathogenesis, preparing humanized mice with HSC with high-risk polymorphisms may enhance
pathogenesis. Similarly, primary immunodeficiency with specific susceptibility to EBV may be reproduced
by preparing humanized mice with HSC derived from patients.

8.2. Oral EBV Transmission

EBV is transmitted orally via saliva and initial steps of infection take place in oropharyngeal
epithelium and lymphoid tissues just adjacent the epithelium. EBYV inoculation to humanized mice so
far, however, employed only intravenous or intraperitoneal routes and therefore critical early events in
EBV infection may not have been reproduced there. Preliminary trials of oral inoculation of EBV to
hu-NOG mice have not been successful (Yajima e al. unpublished result). Since no human epithelial
cells are present in humanized mice, this result suggests that replication in epithelial cells is an
essential step in primary EBV infection. Since oral transmission is a critical initial step in primary
EBYV infection that may direct later stages of EBV infection in the host, it is highly desirable that this
natural route of transmission is reproduced in humanized mice.

8.3. Innate Immune Responses to EBV

Human EBV infection is usually asymptomatic and the symptoms of IM appear only after long
incubation period of 3—7 weeks. It is therefore extremely difficult to find individuals currently having
acute primary EBV infection in a period suitable for analysis of innate immune responses. In this
context, the humanized mouse may be an ideal tool and critical early innate responses to EBV might
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be revealed in humanized mice. Although not analyzing early events following infection, one study
using NOD/scid mice with human fetal thymus xenograft focused on innate immune responses to EBV
and demonstrated a role of EBV-induced CD8" NKT cells in the suppression of tumorigenesis by
EBV-associated Hodgkin lymphoma and nasopharyngeal carcinoma cells [114].

8.4. Improving Humanized Mice

Efforts to overcome various limitations in the current humanized mouse models are underway. For
example, engraftment of human cells has been improved by introducing human SIRPa transgene to
immunodeficient mouse strains or introducing murine CD47 gene to human HSC, thereby avoiding
rejection by murine macrophages through improved SIRPa-CD47 signaling [115,116]. Because
murine cytokines and growth factors are generally poorly cross-reactive with human receptors,
supplementation of human equivalents either by direct injection, introduction of transgenes, or knock-
in recombination is expected to improve reconstitution of human immune system components. Indeed,
supplementation of human cytokines such as GM-CSF, IL-4, M-CSF, IL-7, IL-15, and EPO has been
reported to improve the development and/or maintenance of certain human immune system
components [117]. These improved protocols, as well as introduction of human MHC transgenes
described above, will eventually realize humanized mice with the capacity of immune responses
comparable to those in humans. Evaluation of vaccine candidates, including that for EBV, may
become feasible with these improved humanized mice.
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Abstract We report the case of a female patient with
chronic active Epstein—Barr virus infection (CAEBV)
accompanied by hemophagocytic syndrome (HPS). On
admission, she presented with severe liver dysfunction and
disseminated intravascular coagulation with elevation of
serum IL-6, TNF-a, and IFN-y levels. Plasma exchange
(PE) followed by immunochemotherapy with prednisolone,
cyclosporine A, and VP16 was performed. PE decreased
serum cytokine levels dramatically and improved liver
function. Following immunochemotherapy, CAEBV
became inactive. Four months after discharge, however,
CAEBV relapsed with HPS, and serum cytokine levels
were extremely elevated again. There was no response to
immunochemotherapy, and the patient died 1 day after
admission. We examined the cytokines in five additional
untreated-CAEBYV patients and determined that they were
elevated above the normal level in all patients. These
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results suggest that inflammatory cytokines may have roles
in the development of CAEBV, and that their depletion can
be an effective treatment for this disease.

Keywords Chronic active Epstein—Barr virus infection -
IL-6 - TNF-a - IFN-y - Hemophagocytic syndrome

Introduction

Chronic active Epstein—Barr virus infection (CAEBV) is a
relatively rare lethal disorder characterized by sustained
infectious mononucleosis-like symptoms accompanied by
clonal proliferation of EBV-infected cells which are T or
NK cells [1]. Since the disease ultimately progresses to
lymphoma or leukemia, CAEBYV is classified as one of the
mature T- and NK-cell neoplasms, according to the World
Health Organization (WHO) classification of hematopoi-
etic neoplasms [2]. In addition, CAEBYV also has aspects of
severe inflammatory diseases with fever, lymphadenopa-
thy, liver damage, vasculitis, and hemophagocytic syn-
drome (HPS), which can result in death [3]. To manage and
treat CAEBV, therefore, it is necessary to control severe
inflammation.

Inflammatory cytokines such as IL-6, TNF-o, and IFN-y,
which induce inflammation itself, were elevated in EBV-
associated HPS [4, 5]. They were also increased in CAEBV
at the disease onset irrespective of accompanying HPS and
suspected to contribute to disease development [6]. There
has been, however, no report that monitored them during
the clinical course of CAEBV. Here, we examined the
serum levels of these cytokines longitudinally in a CAEBV
patient treated by plasma exchange (PE) and immunoche-
motherapy. Using the results, we discuss the role of the
cytokines in the disease.
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Case report

A 64-year-old female was transferred to our hospital for
high fever, liver dysfunction, and disseminated intravas-
cular coagulation (DIC). She suffered from unexplained
skin eruptions and edema for several years and with sore
throat and low grade fever for more than 3 months before
admission. A few days prior to admission, she developed
general fatigue, high fever, and severe liver dysfunction
with jaundice. On admission, she presented with pancyto-
penia and lymphadenopathy. Her anti-EBV antibodies

Fig. 1 a Analysis of peripheral
blood mononuclear cells by
flow cytometry at disease onset.
b—d Specimen of the bone
marrow. b May-Giemsa staining
showing severe
hemophagocytosis (x400).

¢ Anti-CD8 antibody staining.

CD8

The infiltration of CD8-positive
cells is detected (x200). d In
situ hybridization of EBER. The
infiltration of EBER-positive
cells is detected (x200)

CD5

@_ Springer

were 1:160 for anti-VCA-IgG and 1:10 for anti-EA-
DRIgG. Anti-VCA-IgM was undetectable, and the titer of
anti-EBNA was 1:40. EBV DNA copy number in periph-
eral blood (PB) was elevated to 2.3 x 10° copies/ug DNA.
The flow cytometry analysis of the PB mononuclear cells
(PBMCs) was shown in Fig. 1a. T cells mainly consisted of
CD4- and CD8-positive cells with expression of CD2 as
well as CDS5. To determine the phenotype of the EBV-
infected cells, PBMCs were examined according to the
methods described in the previous report [7] and were
found to be CD8-positive lymphocytes. The clonal
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proliferation of the EBV-infected cells was detected by
Southern blot analysis for EBV-terminal repeat. Bone
marrow revealed CD8-, and EBV-positive lymphocytic
infiltration and hemophagocytosis (Fig. 1b—d). According
to the diagnostic criteria of CAEBV [8] and HPS [9], we
arrived at a diagnosis of CAEBV accompanied by HPS.
Her clinical course is shown in Fig. 2. PE was performed
for liver dysfunction and hemophagocytosis followed by
immunochemotherapy comprising prednisolone, cyclo-
sporine A, and VP16 [10]. After PE, AST, ALT, and Fer-
ritin were drastically decreased and immunochemotherapy
made her disease inactive by resolving fever and improving
DIC. After her disease became inactive, she was discharged
from the hospital. While preparing hematopoietic stem cell
transplantation (HSCT), we gave her the same immuoche-
motherapy monthly. However, HPS relapsed 4 months after
discharge and she died due to severe liver damage and DIC.

Fig. 2 The clinical course of
the present patient. CyA
cyclosporine A, PSL

During the course, we sequentially examined serum IL-6,
TNF-¢, and IFN-y levels. As shown in Fig. 2, they were
markedly increased at disease onset, decreased drastically
after PE. The cytokines revealed fulminant increase at the
relapse, whereas EBV-DNA in the peripheral blood
decreased rather than increased. We also examined the
cytokine levels in other patients with an active CAEBV
disease but without HPS (Table 1). Their EBV-infected
cells were T- or NK-cell. As shown in the table, the levels
were abnormally high in these patients, but they were not as
high as those of the present case.

Discussion

Although CAEBYV is classified as a lymphoid malignancy
according to the WHO classification, it has many features

relapse
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Table 1 The serum concentration of the inflamatory cytokines at the onset in chronic active Epstein—Barr virus infection patients

Case number ~ Age/gender EBV copy number of the = The EBV-infected cells  IFNy (EIA) (IU/ml) IL6 (pg/ml)  TNF-« (pg/ml)
PB (copies/pg DNA)
1 25/F 7.0 x 10* CD4 10.2 66.7 2.4
2 40M 1.7 x 10° CD4 0.7 28.4 3.0
3 64/F 1.0 x 10 CD4 2.7 16.0 55
4 23/F 8.6 x 10* CD56 6.0 161.0 7.2
5 48/F 3.2 x 10* CD356 0.7 16.9 3.4
Present case 64/F 23 x 10° CD8 133.0 48.3 20.7

EBYV Epstein—Barr virus, PB peripheral blood, EIA enzyme immunoassay, M male, F' female

that are atypical of lymphoma, such as poor dysplasia of
EBV-infected cells, low incidence of solid tumors, and low
respbnse to cell cycle-dependent chemotherapy. In addi-
tion, we recently found that EBV-infected cells did not
establish disease when transplanted alone into NOD/Shi-
scid/IL-2Ry-null strain mice [11], whereas many cancer
cells can successfully engraft in this context. On the other
hand, CAEBYV has aspects of inflammatory disease: fever
and polyclonal gammopathy are characteristic findings and
may be accompanied by an autoimmune disease [12—15].
In addition, some CAEBV patients develop HPS, a severe
inflammatory condition that can be lethal. Thus, control of
inflammatory conditions is an indispensable part of the
CAEBYV treatment.

In this study, we demonstrated that serum IL-6, TNF-«,
and IFN-y levels, which can induce inflammation, were
elevated in CAEBV patients irrespective of EBV-infected
cell phenotypes and accompanying HPS. Cohen et.al [6]
previously reported that serum IL-6, TNF-«, and IFN-y
levels at the onset were elevated in CAEBYV patients in the
USA. However, the main phenotype of EBV-infected cell
in the report was B cell (11/19), and the number of T- or
NK-cell type which is dominant in Japan was only 4. Our
report demonstrated that IL-6, TNF-«, and IFN-y levels
were also elevated in CAEBV of T- or NK-cell type.
Furthermore, these cytokines decreased with successful
treatment and increased again with disease relapse in the
present case. They may parallel the clinical course and play
roles in development of CAEBV. On the other hand, EBV-
DNA copy number at the relapse was lower than that in
remission. Kimura et al. [16] reported that elevated EBV-
DNA copy number in the PBMCs was useful for diagnosis
of CAEBV. However, there has been no report regarding
the titer and the disease gravity in CAEBYV. Our result
suggests that they do not parallel each other. Further study
should be added to evaluate the relation between the
cytokines or EBV-DNA in PB and the disease status.

In vitro, EBV-infected T or NK cells secrete inflamma-
tory cytokines. Roncella et al. [17] detected transcription of

@ Springer

IL-6, TNF-c,, and IFN-y in EBV-positive gamma—delta T
cell lymphoma cells. Lay et al. [4] also reported that TNF-«
and IFN-y are elevated in the sera of EBV-positive T cell
lymphoma patients, as well as in the supernatant of EBV-
infected T cell lines, and contribute in combination to the
development of phagocytotic activities of co-cultured
monocytic cell line, U937. Kanno et al. [18] showed that
TNF-o is synthesized and secreted by the EBV-positive
NK-cell lines SNK1 and SNK6, and regulates their adhe-
sion to endothelial cells. Based on these observations, we
suggest that IL.-6, TNF-«, and IFN-y are produced by EBV-
positive cells and may be important contributors -to the
development and severity of CAEBYV disease.

The optimal chemotherapy for CAEBV has not been
established. Currently, the only effective strategy to erad-
icate the infected cells is stem cell transplantation [19];
however, this is not a trivial procedure and not all patients
are candidates for this treatment. It is strongly needed to
identify an optimal treatment for CAEBYV, especially for
cases with multiple organ failure due to severe inflamma-
tion or HPS as seen in the present case. The effect of PE on
CAEBY has not been discussed up to date. In the present
case, PE decreased the levels of cytokines and had effects
on HPS as well as on CAEBV. These results also indicated
that depletion of cytokines was effective for control of the
disease. Neutralizing antibodies or inhibitors are available
for the cytokines which were elevated in the present case.
The in vitro study by Lay et al. demonstrated that anti-
TNF-o antibody suppressed phagocytotic activities of
U937 cells induced by EBV-infected T cell line [17].
Actually some case reports have indicated that TNF-o-
inhibitors, such as infliximab or etanercept, might be
effective for control of HPS [20, 21]. Further study should
be added to clarify roles of the cytokines and to develop the
possibility of anti-cytokine treatment in CAEBV.
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| CASE REPORT

Recurrence of Chronic Active Epstein-Barr Virus Infection
from Donor Cells after Achieving Complete Response
Through Allogeneic Bone Marrow Transplantation
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Abstract

We report the case of a 35-year-old woman with chronic active Epstein-Barr virus (EBV) infection
(CAEBV). She underwent allogeneic bone marrow transplantation (BMT) from an unrelated male donor and
achieved a complete response. However, her CAEBV relapsed one year after BMT. EBV-infected cells prolif-
erated clonally and revealed a 46XY karyotype. In addition, the infecting EBV strain differed from that de-
tected before BMT. These findings indicated that her disease had developed from donor cells. This is the first
report of donor cell-derived CAEBV that recurred after transplantation, suggesting that host factors may be

responsible for the development of this disease.

Key words: chronic active Epstein-Barr virus infection, bone marrow transplantation, systemic lupus erythe-

matosus

(Intern Med 51: 777-782, 2012)
(DOI: 10.216%/internalmedicine.51.6769)

Introduction

Epstein-Barr virus (EBV) can be detected not only in B-
cell tumors but also in T and NK-cell tumors, which are
known as EBV-positive T/NK-cell lymphoproliferative dis-
eases (EBV-T/NK-LPDs). EBV-T/NK-LPDs comprise extra-
nodal NK/T-cell lymphoma nasal type (ENKL), aggressive
NK-cell leukemia, and chronic active EBV infection
(CAEBYV). CAEBYV is a rare disorder accompanied by the
clonal proliferation of EBV-infected cells (1). Its T-cell in-
fecting type is designated as “EBV-positive T-cell lym-
phoproliferative disease of childhood” in the WHO classifi-
cation revised in 2008 (2). However, adult-onset cases have
been reported (3, 4).

The pathogenesis of CAEBV is assumed to be due to the

EBV infection of T or NK cells followed by their immor-
talization and expansion. However, the mechanisms respon-
sible for the clonal expansion of infected cells remain un-
clear.

We report here the case of CAEBV in a female patient. In
spite of achieving a complete response (CR) after bone mar-
row transplantation (BMT), CAEBV recurred. At recurrence,
the infected cells were clonally proliferating donor cells, and
the infecting virus differed from that originally causing the
disease. We describe her clinical course and discuss the pos-
sible pathological mechanism responsible for the recurrence.

Methods

The detection and isolation of infected cells (5) and se-
quence analysis for perforin (6) were performed as de-
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scribed previously. For the sequence analysis of the variable
region of impl, the genomic DNA extracted from infected
cells was amplified by PCR. The following primers were
used: 5-AAGGGAGTGTGTGCCATTAAG-3 (fwd) and 5-A
CCCCCACTCTGCTCTCAA-3 (rev); their nucleotide posi-
tions in B95.8 (Genbank No.V01555) were 168052-168073
and 168619-168601, respectively. The conditions for PCR
reactions were as follows: 94C for 5 minutes, 94C for 15
seconds, 60°C for 30 seconds, and 72°C for 60 seconds; 35
cycles. The amplicon was directly sequenced using the same
primers. The ethics commitiee of Tokyo Medical and Dental
University Hospital approved this study, and written in-
formed consent was obtained from the patient.

Case Report

A 35-year-old woman developed fever and cervical lym-
phadenopathy and was transferred to our hospital. She had
systemic lupus erythematosus (SLE) for the previous 13
years and was receiving prednisolone (PSL) at 5 mg/day.
Her anti-EBV antibodies on admission were 1:20,480 for
anti-VCA-IgG and 1:1,280 for anti-EA-DRIgG, which were
extremely elevated. Anti-VCA-IgM was undetectable, and
the titer of anti-EBNA was 1:40. EBV DNA copy numbers
in peripheral blood (PB) were elevated to 1x10’ copies/ug
DNA.

EBV-positive T-cell lymphoproiiferative disease was diag-
nosed by cervical lymph node biopsy (Fig. 1A). Infiltrating
cells were positive for CD8, Granzyme B, and EBER
(Fig. 1B-D). In addition, activated CD8" cells were in-
creased in the PB (Fig. 1E). These cells were EBV-positive;
they were clonally similar to those in the lymph node,
which involved a TCRJBI gene rearrangement (Fig. 1F-H).

Chemotherapy was administered followed by BMT as de-
scribed by Koyama et al (7). The donor was a 29-year-old
unrelated male. His HLA type was A2 (0207) / A26 (2602),
B46 (1501) / B62 (4601), and DR14 (1403) / DR14 (1406).
The patient’s type was A2 (0207) / A26 (2602), B46 (1501)
/ B62 (4601), and DR14 (1401) / DR14 (1401). Their sero-
logic HLA types were identical, whereas the DNA types
displayed disparities in 2 HL.A-DR alleles.

The conditioning regimen for transplantation comprised
fludarabine (37.5 mg/m’ intravenously, once daily from days
-6 to -2), melphalan (60 mg/m® intravenocusly, once daily
from days -6 to -5), and total body irradiation (4 Gy in 2
fractions on day -1). Cyclosporine (3 mg/kg, from day -1)
and short-term methotrexate (5 mg, 10 mg, and 10 mg on
days 1, 3, and 6, respectively) were administered for the
prophylaxis of acute graft-versus-host disease. Engraftment
was confirmed 1 month after BMT, and the EBV genome in
PB became undetectable after 2 months and remained so for
nearly 12 months.

Although graft-versus-host disease had not developed, ad-
ministration of low-dose corticosteroid (hydrocortisone, 10
mg/day) was continued to compensate for her endogenous
cortisol deficiency due to the long-term administration of

PSL. One year later, her EBV DNA level began to increase
and reached 1.7x10* copies/ug DNA. Three years after
BMT, it was 1.0x10° copies/ug DNA, and the number of
CD8-positive cells had increased among her PB mononu-
clear cells (PBMC; Fig. 2A).

Infected cells in PB were investigated again; these were
identified as CD8-positive T cells. Their clonality was con-
firmed by detecting a TCRJBI gene rearrangement, which
revealed a difference from the original (Fig. 1I). EBV-
infected cells (Fig. 2B) and a lymphoblasioid cell line
(LCL) established from the patient’s PBMC soon after en-
graftment (Fig. 2C) had XY karyotype, confirming that
these were donor cells. Furthermore, sequence analysis of
the variable region of Impl/ showed that the infecting virus
differed from that detected in CDB8-positive cells before
BMT and was identical to that detected in LCL (Fig. 2D).
Although we did not examine whether the donor was sero-
positive for EBV, the virus obtained from LCL might have
been of donor origin.

Liver dysfunction developed gradually 4 years after BMT.
Liver biopsy was performed, and a significant sinusoidal in-
filtration of atypical cells (CD8- and EBV-positive) was de-
tected (Fig. 3A-C). Her PBMC retained the 46XY karyotype
(Fig. 3D) and mainly comprised activated CD8-positive
cells. In addition, CD4-positive cells were detected
(Fig. 3E).

The EBV DNA copy numbers, the chimerisms of nucle-
ated cells and lymphocytes, and the percentage of CD4- and
CD8-positive cells in peripheral blood are summarized in
Table 1. The chimerism maintained the donor type during
the clinical course. An abnormal XXYY clone suggesting
donor origin appeared 4.5 years after BMT as the disease
progressed. From these results, the diagnosis of CAEBY,
which developed from donor cells infected with a different
virus, was confirmed.

Discussion

The mechanisms responsible for CAEBYVY development
have not been elucidated. Some investigators reported that
EBV-infected T or NK cells could be detected during pri-
mary infection (8, 9), indicating that EBV could infect these
cells under a high level of viral load. However, some factors
leading to disease development may exist because CAEBV
shows a marked geographic preference for East Asia. Al-
though the strains identified in the present patient before
and after BMT were not identical, the relationship between
strains and disease development needs to be investigated. In
addition, a patient’s genetic background may be involved. In
our patient, recurtence after BMT underlines the importance
of non-hematological factors for disease development.

According to Ohshima et al, following infection with
EBV, T, or NK cells can undergo poly-, oligo-, or monoclo-
nal expansion, resulting in CAEBYV (10). For the expansion
of EBV-infected T or NK cells, suppression of cytotoxic T-
cell (CTL) activity may play an important role. Sugaya et al



