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Extensive gene deletions in Japanese patients with Diamond-Blackfan anemia
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Fifty percent of Diamond-Blackfan ane-
mia (DBA) patients possess mutations in
genes coding for ribosomal proteins
(RPs). To identify new mutations, we in-
vestigated large deletions in the RP genes
RPL5, RPLT1, RPL35A, RPS7, RPS10,
RPS17, RPS19, RPS24, and RPS26. We
developed an easy method based on
gquantitative-PCR in which the threshoid
cycle correlates to gene copy number.
Using this approach, we were able to

diagnose 7 of 27 Japanese patients
(25.9%) possessing mutations that were
not detected by sequencing. Among these
large deletions, similar resulis were ob-
tained with 6 of 7 patients screened with a
single nucleotide polymorphism array. We
found an extensive intragenic deletion in
RPS19, including exons 1-3. We also
found 1 proband with an RPLS deletion,
1 patient with an RPL35A deletion, 3 with
RPS17 deletions, and 1 with an RPS19

deletion. In particular, the large deletions
in the RPL5 and RPS17 alleles are novel.
All patients with a large deletion had a
growth retardation phenotype. Our data
suggest that large deletions in RP genes
comprise a sizable fraction of DBA pa-
tients in Japan. In addition, our novel
approach may become a useful tool for
screening gene copy numbers of known
DBA genes. (Blood. 2012;119(10):
2376-2384)

Introduction

Diamond-Blackfan anemia (DBA; MIN# 105650) is a rare congeni-
tal anemia that belongs to the inherited BM failure syndromes,
generally presenting in the first year of life. Patients typically
present with a decreased number of erythroid progenitors in their
BM.! A main feature of the disease is red cell aplasia, but
approximately half of patients show growth retardation and congeni-
tal malformations in the craniofacial, upper limb, cardiac, and
urinary systems. Predisposition to cancer, in particular acute
myeloid leukemia and osteogenic sarcoma, is also characteristic of
the disease.?

Mutations in the RPSI9 gene were first reported in 25% of DBA
patients by Draptchinskaia et al in 1999.% Since that initial finding,
many genes that encode large (RPL) or small (RPS) ribosomal
subunit proteins were found to be mutated in DBA patients,
including RPL5 (approximately 21%), RPL1I (approximately
9.3%), RPL35A (3.5%), RPS7 (1%), RPS10 (6.4%), RPS17 (1%),
RPS24 (2%), and RPS26 (2.6%).*" To date, approximately half of
the DBA patients analyzed have had a mutation in one of these
genes. Konno et al screened 49 Japanese patients and found that
30% (12 of 49) carried mutations.? In addition, our data showed
that 22 of 68 DBA patients (32.4%) harbored a mutation in
ribosomal protein (RP) genes (T.T., K.T., R-W., and E.L, unpub-

lished observation, April 16, 2011). These abnormalities of RP
genes cause defects in ribosomal RNA processing, formation of
either the large or small ribosome subunit, and decreased levels of
polysome formation,*69-12 which is thought to be one of the
mechanisms for impairment of erythroid lineage differentiation.

Although sequence analyses of genes responsible for DBA are
well established and have been used to identify new mutations, it is
estimated that approximately half of the mutations remain to be
determined. Because of the difficulty of investigating whole allele
deletions, there have been few reports regarding allelic loss in
DBA, and they have only been reported for RPS19 and RPL35A.3613
However, a certain percentage of DBA patients are thought to have
alarge deletion in RP genes. Therefore, a detailed analysis of allelic
loss mutations should be conducted to determine other RP genes
that might be responsible for DBA.

In the present study, we investigated large deletions using our
novel approach for gene copy number variation analysis based on
quantitative-PCR and a single nucleotide polymorphism (SNP)
array. We screened Japanese DBA patients and found 7 patients
with a large deletion in an allele in RPL5, RPL35A, RPS17, or
RPS19. Interestingly, all of these patients with a large deletion had
a phenotype of growth retardation, including short stature and
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Table 1. Primers used for synchronized quantitative-PCR (s-q-PCR) of RPL proteins

Gene Primer name Sequence Primer name Sequence Size, bp
RPLS . CLB02F  CTCCCAAAGTGCTTGAGATTACAG 0z TIC gios
L5-05F AGCCCTCCAACCTAGGTGACA
LSA7F ' ° . TGAAGCCTTGCCCTAAAACATG
L5-19F ATTGTGCAAACTCGATCACTAGCT
L5:21F GTGCCACTCTCTTGGACARACTG
L5-28F TCCACTTTAGGTAGGCGAAACC
RPLI1. - L11-06F - GCACCCACATGGCTTAAAGG .
L11-20F GAGCCCCCTTTCTCAGATGATA
e CL1122F . TATGTGCAGATAAGAGGGCAGTCT
RPL19 LfQ-OZF TGGCCTCTCATAAAGGAAATCTCT
e L19-08F " TITGAAGGCAAGAAATAAGTTCCA
L19-16F GGTTAGTTGAAGCAGGAGCCTTT
, : L19-19F - GGACCAGTAGTTGTGACATCAGTTAAG
RPL26 L26-03F TCCAAAGAGCTGAGACAGAAGTACA
1.26-16F  TTTGAGAATGCTTGAGAGAAGGAA 1 26-16R
L26-18F ATGTTTTAATAAGCCCTCCAGTTGA 126-18R
S - L26-20F GGGCTTTGCTTGATCACTCTAGA 7 l%eooR
RPL35A L35A-01F TGTGGCTTCTATTTTGCGTCAT L35A-01R
GOl BEA07E. TTTCCGTICTGTCTATTGCTGTGT
L35A-17F GCCCACAACCTCCAGAGAATC L35A-17R
ST igBABE | TTAGGTGGGUTTTTCAGTCTCAA J5A-15F
RPL36 L36-02F CCGCTCTACAAGTGAAGAAATTCTG 1.36-02R
L0 L3e04F 0 TGCGTCCTGCCAGTGTIG © L36-04R AG
L36-17F CCCCTTGAAAGGACAGCAGTT L36-17R TTGGACACCAGGGAGAGACTT 114

Table 2. Primers used for s-g-PCR of RPS proteins

Gene Primer name Sequence Primer name Sequence Size, bps
RPS7  ST-11IF GCGCTGCCAGATAGGAAATC T CATA ‘
S7-12F ACTGGCAGTTCTGTGATGCTAAGT
CEMELGL eTHeE GTGTCTGTGCCAGAAAGCTTGA
RPS10 S10-03F CTACGGTTTTGTGTGGGTCACTT
LU e GBE GTTEGCCTGGAGTCGTGATTT
$10-17F AATGGTGTTTAGGCCAACGTTAC
RPST4 . S14-03F :,GAATTCCAAACCCT TCTGCAAA-
S14-05F ACCAGCCCTCTACCTCTTTT
S14:06F SCCTCTACCTCGCCARAG
" S14-09F GCCATCATGCCGAAACATACT
CUS14-93F | ATCAGGTGGAGCACAGGAAAAC
S14-15F GAAGTTTTAGTGAGGCAGAAATGAG
s LUB1819F L GATGAATTGTCCTTTCCTCCATTC
RPS15 S15-11F CTCAGCTAATAAAGGCGCACATG
i S S1BASF - GGTTGGAGAACATGGTGAGAAGT.
RPS17 $17-03F ~ ACTGCTGTCGTGGCTCGATT
s © §17-05F  GAAAACAGATACAAATGGCATGGT
S17-12F CTATGTGTAGGAGGTCCCAGGATAG
CS17-6F 0 TAGCGGAAGTTGTGTGCATIG
S17-18F TGGCTGAATCTGCCTGCTT
S17-20F GGGCCCTTCACAAATGTIGA
RPS19 $19-24F CCATCCCAAGAATGCACACA
: S19-28F - GACACACCTGTTGAGTCCTCAGAGT 819
S19-36F CTCTTGAGGGTGGTCTGGAAAT $19-36R
S19-40F ' GGAACGGTGTCAGGATICAAG S19a0m
S19-44F CTGAGGTTGAGTGTCCCATTTCT $19-44R
(S1967F ' CAGGGACACAGTGCTGAGAAACT ' 81g-57R
S19-58F CATGATGTTAGCTCCGTTGCATA S19-58R
$19:62F . GCAACAGAGCGAGACTCCATIT . . Slgb2R SCA(
$19-65F ACATTTCCCAGAGCTGACATGA 19-65R TCGGGACACCTAGACCTTGCT |
RPS24 . 0 SR417F CGACCACGTCTGGCTTAGAGT - 24-17R . CCTTCATGGOGCAACCAAGTC | L
$24-20F ACAAGTAAGCATCATCACCTCGAA $24-20R TTTCCCTCACAGCTATCGTATGG 105
U eoamdF T GGGARATGCTGTGTCCACATACT  ‘sp489R . 'CTGGTITCATEGCTCCAG d
RPS26 526-03F CGCAGCAGTCAGGGACATTT $26-03R AAGTTGGGCGAAGGCTTT)
D $26-05F . ATGGAGGCCGTCTAGTTTGGT =~ 826-058 | . TGCCTACGCTGAACCTIGCT -
RPS27A S27A-09F GCTGGAGTGCATTCGCTTGT © S27A-09R CACGCCTGTAATCCCCACTAA
S27A-12F . - CAGGCTTGGTGTGCTGTGACT =~ ' S27A12R .  ACGTGCATCTICCAGCTGCTT .
S27A-18F GGGTTTTTCCTGTTTGGTATTTGA S27A-18R AAAGGCCAGCTTTGCAAGTG
S27A22F - TTACCATATTGCCAGTCTTTCCATT . | 827A22R  TTCATATGCATTTGCACAAACTGT
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Figure 1. s-g-PCR can determine a large gene deletion in DBA. (A) Concept of the DBA s-g-PCR assay. The difference in gene copy number between a healthy sample and
that with a large deletion is 2-fold (i). When all genomic s-q-PCR for genes of interest synchronously amplify DNA fragments, a 2-fold difference in the gene copy number is
detected by a 1-cycle difference of the Ct scores of the s-q-PCR ampilification curves (ii). Also shown is a dot plot of the Ct scores (iii). (B) Results of the amplification curves of
s-q-PCR performed with a healthy person (i) and a DBA patient (patient 3; ii). The top panel shows the results of PCR cycles; the bottom panel is an extended graph of the PCR
cycles at logarithmic amplification. (C) Graph showing Ct scores of s-g-PCR. If all specific primer sets for DBA genes show a 1-cycle delay relative to each other, this indicates a
large deletion in the gene. Gene primer sets with a large deletion are underined in the graph. **P < .001.

small-for-gestational age (SGA), which suggests that this is a
characteristic of DBA patients with a large gene deletion in Japan.

Methods

Patient samples

Genomic DNA was extracted using the GenElute Blood Genomic DNA Kit
(Sigma-Aldrich) according to the manufacturer’s protocol. Clinical manifes-

tation of patients from a Japanese DBA genomic library are listed elsewhere
or are as reported by Konno et al.® The study was approved by the
institutional review board at the National Institute of Infectious Diseases
and Hirosaki University.

DBA gene copy number assay by s-q-PCR

For s-q-PCR, primers were designed using Primer Express Version 3.0
software (Applied Biosystems). Primers are listed in Tables 1 and 2.
Genomic DNA in water was denatured at 95°C for 5 minutes and
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immediately cooled on ice. The composition of the s-q-PCR mixture was
as follows: 5 ng of denatured genomic DNA, 0.4mM forward and
reverse primers, 1X SYBR Premix Ex Taq II (Takara), and 1X ROX
reference dye 11 (Takara) in a total volume of 20 pL (all experiments
were performed in duplicate). Thermal cycling was performed using the
Applied Biosystems 7500 fast real-time PCR system. Briefly, the PCR
mixture was denatured at 95°C for 30 seconds, followed by 35 cycles of
95°C for 5 seconds, 60°C for 34 seconds, and then dissociation curve
measurement. Threshold cycle (Ct) scores were determined as the
average of duplicate samples. The technical errors of Ct scores in the
triplicate analysis were within 0.2 cycles (supplemental Figure 1,
available on the Blood Web site; see the Supplemental Materials link at
the top of the online article). The sensitivity and specificity of this
method was evaluated with 15 healthy samples. Any false positive was
not observed in all primer sets in all healthy samples (supplemental
Figure 2). We performed direct sequencing of the s-q-PCR products. The
results of the sequence analysis were searched for using BLAST to
confirm uniqueness. Sequence data were obtained from GenBank
(http://www.ncbi.nlm.nih.gov/gene/) and Ensemble Genome Browser
(http://uswest.ensembl.org).

Genomic PCR

Genomic PCR was performed using KOD FX (Toyobo) according to the
manufacturer’s step-down PCR protocol. Briefly, the PCR mixture con-
tained 20 ng of genomic DNA, 0.4mM forward and reverse primers,
1mM dNTP, 1 X KOD FX buffer, and 0.5 U KOD FX in a total volume of
25 pL in duplicate. Primers are given in supplemental Figure 3 and
Table 2. PCR mixtures were denatured at 94°C for 2 minutes, followed
by 4 cycles of 98°C for 10 seconds, 74°C for 12 minutes, followed by
4 cycles of 98°C for 10 seconds, 72°C for 12 minutes followed by
4 cycles of 98°C for 10 seconds, 70°C for 12 minutes, followed by
23 cycles of 98°C for 10 seconds and 68°C for 12 minutes. PCR
products were loaded on 0.8% agarose gels and detected by LAS-3000
(Fujifilm).

DNA sequencing analysis

The genomic PCR product was purified by the GenElute PCR clean-up kit
(Sigma-Aldrich) according to the manufacturer’s instructions. Direct- se-
quencing was performed using the BigDye Version 3 sequencing kit.
Sequences were read and analyzed using a 3120x genetic analyzer (Applied
Biosystems).

SNP array-based copy number analysis

SNP array experiments were performed according to the standard protocol
of GeneChip Human Mapping 250K Nsp arrays (Affymetrix). Microarray
data were analyzed for determination of the allelic-specific copy number
using the CNAG program, as described previously.!* All microarray data
are available at the EGA database (www.ebi.ac.uk/ega) under accession
number EGAS00000000105.

Results

Construction of a convenient method for RP gene copy number
analysis based on s-g-PCR

We focused on the heterozygous large deletions in DBA-
responsible gene. The difference in copy number of genes
between a mutated DBA allele and the intact allele was 2-fold
(N and 2N; Figure 1 Ai). If each PCR can synchronously amplify
DNA fragments when the template genomic DNA used is of
normal karyotype, it is possible to conveniently detect a gene
deletion with a l-cycle delay in s-q-PCR analysis (Figure
1Aii-iii).
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Table 3. Summary of mutations and the mutation rate observed in
Japanese DBA patients

Gene Sequencing analysis
RPS19. i e e
RPL5 6

RPL1T 3

RPS17 ’1 )
RPS10 o
RPS26 1

RPL35A 0

RPS24 0

RPS14 0
Mutations, n (%) 22 (32.4%)
Totalanalyzed, N 1l g

To apply this strategy for allelic analysis of DBA, we prepared
primers for 16 target genes, RPL5, RPL1I, RPL35A, RPSIO,
RPS19, RPS26, RPS7, RPS17, RPS24, RPL9, RPLI9, RPL26,
RPL36, RPS14, RPS15, and RPS27A, under conditions in which
the Ct of s-g-PCR would occur within 1 cycle of that of the other
primer sets (Tables 1 and 2). At the same time, we defined the
criteria of a large deletion in our assay as follows. If multiple
primer sets for one gene showed a 1-cycle delay from the other
gene-specific primer set at the Ct score, we assumed that this
represented a large deletion. As shown in Figure 1Bii and 1Cii, the
specific primer sets for RPLS (L5-02, 1.5-05, L5-17, L5-19, and
L5-28) detected a 1-cycle delay with respect to the mutated allele
of patient 3. This assessment could be verified by simply confirm-
ing the difference of the cycles with the s-g-PCR amplification
curves.

Study of large gene deletions in a Japanese DBA genomic
DNA library

Sixty-eight Japanese DBA patients were registered and blood
genomic DNA was collected at Hirosaki University. All samples
were first screened for mutations in RPLS5, L11, L35A, S10, Si4,
8§17, S§19, and 526 by sequencing. Among these patients,
32.4% (22 of 68) had specific DBA mutations (Table 3 and data
not shown). We then screened for large gene deletions in 27 pa-
tients from the remaining 46 patients who did not possess
mutations as determined by sequencing (Table 4).

When we performed the s-g-PCR DBA gene copy number
assay, 7 of 27 samples displayed a 1-cycle delay of Ct scores:
1 patient had RPL5 (patient 14), 1 had RPL35A (patient 71), 3 had
RPS]17 (patients 3, 60, 62), and 2 had RPS79 (patients 24 and 72;
Figure 2 and Table 4). Among these patients, the large deletions in
the RPL5 and RPS17 genes are the first reported cases of allelic
deletions in DBA. From these results, we estimate that a sizable
number of Japanese DBA patients have a large deletion.

Based on our findings, the rate of large deletions was approxi-
mately 25.9% (7 of 27) in a category of unspecified gene mutations.
Such mutations have typically gone undetected by conventional
sequence analysis. We could not find any additional gene deletions
in the analyzed samples.

Confirmation of the gene copy number for DBA genes by
genome-wide SNP array

We performed genome-wide copy number analysis of the
27 DBA patients with a SNP array to confirm our s-g-PCR
results. SNP array showed that patient 3 had a large deletion in



Table 4. Characteristics of DBA patients tested

Patient Age at Sex Hb, g/dL Large deletion Large deletion Inheritance Malformations Response to first

no. diagnosis by s-q-PCR by SNP array steroid therapy
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62"t Sporadic Small ASD, short stature, SGA ‘ Responsé
poradic " Thumbanomalies, synostosis of radiusand 100 UNT o
helia Lange-like tace, cleft- S
underdescended testis, short
. stature, cerebellar hypoplasia, fetal -
L e i o ’ L : L o Gl hydrops e o
72% Oy M 2 RPS19 RPS19 Sporadic Thumb anomalies, flat thenar, testicular No

hypoplasia, fetal hydrops, short stature,
learning disability

Patients without a large deletion in RP.genes. . .1 =~
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ND indicates not detected; NT, not tested; CR, complete remission; ASD, atria! septal defect; and PFO, persistent foramen ovale.
*Status data of Japanese probands 3 to 63 is from a report by Konno et al.®
fLarge deletions of the parents of 5 DBA patients (3, 24, 60, 62, and 72) were analyzed by s-g-PCR, but there were no deletions in DBA genes in any of the 5 pairs of parents.
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Figure 2. Detection of 7 mutations with a large
deletion in DBA patients. Genomic DNA of 27 Japanese
DBA patients with unknown mutations were subjected to
the DBA gene copy number assay. (A) Amplification curve
of s-g-PCR of a mutation with a large deletion. The
deleted gene can be easily distinguished. (B) Ct score
(cycles) of representative s-g-PCR with DBA genomic
s-q-PCR primers. Results of the 2 gene-specific primer
pairs indicated in the graph are representative of at least
2 sets for each gene-specific primer (carried out in the
same run). “*P < .001;*P < .01
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chromosome 1 (chl) spanning 858 kb (Figure 3A); patient
71 had a large deletion in ch3 spanning 786 kb (Figure 3B);
patients 14, 60, and 62 had a large deletion in ch15 spanning
270 kb, 260 kb, and 330 kb, respectively (Figure 3C); and
patient 72 had a large deletion in ch19 spanning 824 kb (Figure
3D). However, there were no deletions detected in chl9 in
patient 24 (Figure 3D). Genes estimated to reside within a large
deletion are listed in supplemental Table 1. Consistent with
these s-g-PCR results, 6 of 7 large deletions were detected and
confirmed as deleted regions, and these large deletions con-
tained RPL5, RPL35A, RPSI7, and RPSI9 (Table 4 and
supplemental Table 1). Other large deletions in RP genes were
not detected by this analysis. From these results, we conclude
that the synchronized multiple PCR amplification method has a
detection sensitivity comparable to that of SNP arrays.
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Detailed examination of a patient with intragenic deletion in the
RPS19 allele (patient 24)

Interestingly, for patient 24, in whom we could not detect a large
deletion by SNP array at s-g-PCR gene copy number analysis,
2 primer sets for RPS19 showed a 1-cycle delay (RPS19-36 and
RPS19-40), but 2 other primer pairs (RPS19-58 and RPS19-62)
did not show this delay (Figure 4A). We attempted to determine
the deleted region in detail by testing more primer sets on
RPS19. We tested a total of 9 primer sets for RPS19 (Figure 4B)
and examined the gene copy numbers. Surprisingly, 4 primer
sets (S19-24, S19-36, S19-40, and S19-44) for intron 3 of RPS19
indicated a l-cycle delay, but the other primers for RPSI9
located on the 5'untranslated region (5'UTR), intron 3, or
3'UTR did not show this delay (S19-57, S19-58, S19-28,
S19-62, and S19-65; Figure 4B-C). These results suggest that
the intragenic deletion occurred in the RPS19 allele. To confirm
this deleted region precisely, we performed genomic PCR on
RPS19, amplifying a region from the 5'UTR to intron 3 (Figure
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Figure 3. Resuits of SNP genomic microarray (SNP-

chip) analysis. Genomic DNA of 27 Japanese DBA
patients with unknown mutations was examined using a
SNP array.. Six patients had large deletions in their
chromosome (ch), which included one DBA-responsible
gene. Patient 3 has a large deletion in chi (A), patient
71 has a deletion in ch3 (B), patients 14, 60, and 62 have
deletions in ch15 (C), and patient 72 has a deletion in
ch18 (D).
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4B). In patient 24, we observed an abnormally sized PCR
product at a Jow molecular weight by agarose gel electrophore-
sis (Figure 4D). We did not detect a wild-type PCR product from
the genomic PCR. This finding is probably because PCR tends
to amplify smaller molecules more easily. However, we did
detect a PCR fragment at the correct size using primers located
in the supposedly deleted region. These bands were thought to
be from the products of a wild-type allele. Sequencing of the
mutant band revealed that intragenic recombination occurred at a
homologous region of 27 nucleotides, from — 1400 to —1374 in the
5’ region, to +5758 and +5784 in intron 3, which resulted in the
loss of 7157 base pairs in the RPS19 gene (Figure 4E). The deleted
region contains exons 1, 2, and 3, and therefore the correct RPS19
mRNA could not be transcribed.

Genotype-phenotype analysis and DBA mutations in Japan

Patients with a large deletion in DBA genes had common
phenotypes (Table 4). Malformation with growth retardation
(GR), including short stature or SGA, were observed in all
7 patients. In patients who had a mutation found by sequencing,
half had GR (11 of 22; status data of DBA patients with
mutations found by sequencing are not shown). GR may be a
distinct phenotypic feature of large deletion mutations in
Japanese DBA patients. Familial mutations were analyzed
for parents for 5 DBA patients with a large deletion (patients
3, 24, 60, 62, and 72) by s-g-PCR. There are no large deletions
in all 5 pairs of parents in DBA-responsible genes. Four of
the 7 patients responded to steroid therapy. We have not
observed significant phenotypic differences between patients
with extensive deletions and other patients with regard to
blood counts, responsiveness to treatment, or other
malformations.

Discussion

Many studies have reported RP genes to be responsible for DBA.
However, mutations have not been determined for approximately
half of DBA patients analyzed. There are 2 possible reasons for this
finding. One possibility is that patients have other genes respon-
sible for DBA, and the other is that patients have a complicated set
of mutations in RP genes that are difficult to detect. In the present
study, we focused on the latter possibility because we have found
fewer Japanese DBA patients with RP gene mutations (32.4%)
compared with another cohort study of 117 DBA patients and 9 RP
genes (approximately 52.9%).* With our newly developed method,
we identified 7 new mutations with a large deletion in RPLS,
RPL35A, RPS17, and RPSI19.

The frequency of a large deletion was approximately 25.9%
(7 of 27) in our group of patients who were not found to have
mutations by genomic sequencing. Therefore, total RP gene
mutations were confirmed in 42.6% of these Japanese patients
(Table 5). Interestingly, mutations in RPS77 have been observed at
a high rate (5.9%) in Japan relative to that in other countries
(1%).>1516 Although the percentage of DBA mutations differs
among different ethnic groups,®'”!? a certain portion of large
deletions in DBA-responsible genes are likely to be determined in
other countries by new strategies.

In the present study, we analyzed patient data to determine
genotype-phenotype relations. To date, large deletions have
been reported with RPS19 and RPL35A in DBA patients.>6.13
RPS19 large deletions/translocations have been reported in
12 patients, and RPL35A large deletions have been reported in
2 patients.' GR in patients with a large deletion has been
observed previously with RPSI9 translocations,>!%2! but it
was not found in 2 patients with RPL35A deletion.® Interest-
ingly, all of our patients with a large deletion had a phenotype
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Figure 4. Result of s-g-PCR gene copy number assay A B
for patient 24. (A) Results of s-g-PCR gene copy number
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of GR, including short stature and SGA, which suggests that
this is a characteristic of DBA with a large gene deletion in
Japan. Our study results suggest the possibility that GR is
associated with extensive deletion in Japanese patients. Al-
though further case studies will be needed to confirm this
possibility, screening of DBA samples using our newly devel-
oped method will help to advance our understanding of the
broader implications of the mutations and the correlation with
the DBA genotype-phenotype.

Table 5. Total mutations in Japanese DBA patients, including large
gene deletions

Gene Mutation rate
RES1D L12(17.6%)
RPLS 7(10.3%)
AL s
RPS17 4 (5.9%)
RPSTO T :
RPS26 1 (1.5%)
APLISA. St (5%
RPS24 0
RPS14 o g
Mutations, n (%) 29(42.6%)
Ces

Totat analyzéd, N

+5758 +5784

RPS19intron3

Copy number variation analysis of DBA has been performed by
linkage analysis, and the RPS]9 gene was first identified as a
DBA-susceptibility gene. Comparative genomic hybridization ar-
ray technology has also been used to detect DBA mutations in
RPL35A, and multiplex ligation-dependent probe amplification has
been used for RPS19 gene deletion analysis.>®1322 However, these
analyzing systems have problems in mutation screening. Linkage
analysis is not a convenient tool to screen for multiple genetic
mutations, such as those in DBA, because it requires a high level of
proficiency. Although comparative genomic hybridization technol-
ogy is a powerful tool with which to analyze copy number
comprehensively, this method requires highly specialized equip-
ment and analyzing software, which limits accessibility for research-
ers. Whereas quantitative PCR-based methods for copy number
variation analysis are commercially available (TagMan), they
require a standard curve for each primer set, which limits the
number of genes that can be loaded on a PCR plate. To address this
issue, a new method of analysis is needed. By stringent selection of
PCR primers, the s--PCR method enables analysis of many DBA
genes in 1 PCR plate and the ability to immediately distinguish a
large deletion using the s-q-PCR amplification curve. In our study,
6 of 7 large deletions in the RP gene detected by s-g-PCR were
confirmed by SNP arrays (Figure 3). Interestingly, we detected
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1 large intragenic deletion in RPS79, which was not detected by the
SNP array. This agreement between detection results suggests that
the s-g-PCR copy number assay could be useful for detecting large
RP gene deletions.

In the present study, 7 DBA patients carried a large deletion in
the RP genes. This type of mutation could be underrepresented by
sequencing analysis, although in the future, genome sequencing
might provide a universal platform for mutation and deletion
detection. We propose that gene copy number analysis for known
DBA genes, in addition to direct sequencing, should be performed
to search for a novel responsible gene for DBA. Although at
present, it may be difficult to observe copy numbers on all
80 ribosomal protein genes in one s-q-PCR assay, our method
allows execution of gene copy number assays for several target
genes in 1 plate. Because our method is quick, easy, and low cost, it
could become a conventional tool for detecting DBA mutations.
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Rabbit antithymocyte globulin and cyclosporine as first-line therapy for children with acquired

aplastic anemia

Horse antithymocyte globulin (hATG) and cyclosporine have been
used as standard therapy for children with acquired aplastic anemia
(AA) for whom an HLA-matched family donor is unavailable.
However, in 2009, hATG (lymphoglobulin; Genzyme) was with-
drawn and replaced by rabbit ATG (rATG; thymoglobulin; Gen-
zyme) in Japan. Many other countries in Europe and Asia are facing
the same situation.! Marsh et al recently reported outcomes for
35 adult patients with AA who were treated with rATG and
cyclosporine as a first-line therapy.? Although the hematologic
response rate was 40% at 6 months, several patients subsequently
achieved late responses. The best response rate was 60% compared
with 67% in a matched-pair control group of 105 patients treated
with hATG. The overall and transplantation-free survival rates
appeared to be significantly inferior with rATG compared with
hATG at 68% versus 86% (P = .009) and 52% versus
76% (P = .002), respectively. These results are comparable to
those from a prospective randomized study reported by Scheinberg
et al comparing hATG and rATG.? Both studies showed the
superiority of hATG over rATG.23

We recently analyzed outcomes for 40 Japanese children
(median age, 9 years; range, 1-15) with AA treated using rATG and
cyclosporine. The median interval from diagnosis to treatment was
22 days (range, 1-203). The numbers of patients with very severe,
severe, and nonsevere disease were 14, 10, and 16, respectively.
The ATG dose was 3.5 mg/kg/day for 5 days. The median
follow-up time for all patients was 22 months (range, 6-38). At
3 months, no patients had achieved a complete response (CR) and
partial response (PR) was seen in only 8 patients (20.0%). At
6 months, the numbers of patients with CR and PR were 2 (5.0%)
and 17 (42.5%), respectively. After 6 months, 5 patients with PR at
6 months had achieved CR and 4 patients with no response at
6 months had achieved PR, offering a total best response rate of
57.5%. Two patients relapsed at 16 and 19 months without
receiving any second-line treatments. Two patients with no re-

sponse received a second course of rATG at 13 and 17 months, but
neither responded. Sixteen patients underwent hematopoietic stem
cell transplantation (HSCT) from alternative donors (HLA-
matched unrelated donors, n = 13; HLA-mismatched family do-
nors, n = 3). Two deaths occurred after rATG therapy, but no
patients died after HSCT. Causes of death were intracranial
hemorrhage at 6 months and acute respiratory distress syndrome at
17 months. The overall 2-year survival rate was 93.8% and the
2-year transplantation-free survival rate was 50.3% (Figure 1).

In our previous prospective studies with hATG, the response
rates after 6 months were 68% and 70%, respectively, with no
increases in response rates observed after 6 months.*’ Our
results support the notion that rATG is inferior to hATG for the
treatment of AA in children. First-line HSCT from an alternative
donor may be justified, considering the excellent outcomes
in children who received salvage therapies using alternative
donor HSCT.
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Figure 1. Kaplan-Meler estimates of overall survival (OS) and
transplantation-free survival (TFS) in 40 Japanese children with AA.
Survival was investigated using Kaplan-Meier methods. OS for all patients
with AA after rATG and cyclosporine as first-line therapy included patients
who later received HSCT for nonresponse to rATG. in the analysis of TFS
for all patients treated with rATG and CSA, transplantation was considered
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