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Chapter 9
Time-Course of Ventilation, Arterial and Pulmonary
CO, Tension During CO, Increase in Humans

Toru Satoh, Yasumasa Okada, Yasushi Hara, Fumio Sakamaki, Shingo Kyotani,
Takeshi Tomita, Noritoshi Nagaya, and Norifumi Nakanishi

Abstract A change of ventilation (VE), PaCO, (arterial CO, tension) and PVC'O2 (pulmonary arterial
CO, tension) with time was not evaluated precisely during exercise or CO, rebreathing in humans.
In this study, changes of these variables with time were fitted to exponential curves {y=Exp ( x/ T+A )+k}
and compared. When exercise pulmonary hemodynamics was examined in 15 cardiac patients to
decide therapies, we asked the patients to undergo CO, rebreathing using air with supplementation of
consumed O,. Arterial and pulmonary blood was drawn every minute. During exercise, T was 28.2+8.4
and 26.8+12.4, and A was 0.8020.50 and 0.50+0.90 in VE and PvCO,, respectively, with no statistical
differences. During CO, rebreathing, T was 18.6+5.8,41.8+38.0 and 21.6+9.7 and A was0.39+0.67,
1.64x1.35 and 0.17+0.83 in VE, PaCO, and PvCO,, respectively, with statistical difference of PaCO,
from other variables, suggesting that VE and PvCO, showed same mode of change according to time
but PaCO, did not.

Keywords Ventilation * PaCO, ¢ PvCO, ¢ CO, rebreathing

9.1 Introduction

A change of VE, PaCO, and PvCO, with time was not evaluated precisely during CO, increasing state
like exercise or CO, rebreathing in humans. Gelfand and Lambertsen (1973) studied time course of
ventilatory change by abruptly adding and removing CO, in inhaled air and reported that there were
three respiratory components with differing onset lag time ang time constant. We did a similar analysis
of PaCO, and PvCO, as well as VE during CO, rebreathing and exercise tests in 15 cardiac patients.
We performed exercise test with arterial and pulmonary arterial blood sampling to make therapeutic
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decisions for cardiac patients. Then we asked them to undergo CO, rebreathing test after explanatio
of the study purpose to elucidate CO, and ventilatory kinetics and know ventilatory control mechanic.
We fitted the plotting of PaCO,, PvCO, and VE with time, to exponential curve. Time constant and
fixed constant values of the resultant equations in each variable were calculated and compared each .
other to see the relation of PaCO,, PvCO, and ventilation. .

The results suggest that the fitted equation of VE with time was statistically different from the fitted
equation of PaCO, with time, but not from the fitted equation of PvCO, with time. Implication of our
results is that VE and PvCO, are changed identically, but it must await further study that this relation -
is a cause or a result. We report this result because it may add new insights to ventilation research in
terms of CO, kinetics.

9.2 Methods

9.2.1 Study subjects

The study subjects were 15 patients with cardiac disease, who underwent pulmonary hemodynamic
investigations in order to help determine their treatment plans. Eleven had mitral valvular heart disease
(4 dominant mitral stenosis, 4 dominant mitral regurgitation and 3 combined mitral stenosis and
regurgitation), 2 had dilated cardiomyopathy, and 2 had chronic pulmonary thromboembolism.
No patient had ventilatory disorder. Their age was 51+ 15 years (mean+S.D.). Eight patients were male
and seven were female. The purpose, protocol and risks of the present study were fully explained, and
written informed consent was obtained from each patient.

9.2.2 Protocol

The patients performed exercise on an upright cycle ergometer 4 h after their usual breakfast and
medication, with a Swan-Ganz catheter inserted via the right internal jugular vein into the pulmonary
artery and a fine arterial catheter inserted via the left radial artery. They pedaled at a speed of 55 rpm
without any added load for 1 min. Then the load was increased by 1 W/ 4 s (15 W/ min) to the symptom-
limited maximum. Continuous hemodynamic monitoring, including that of arterial and pulmonary
arterial pressures, and expired gas analysis (AE280, Minato Medical Instruments, Osaka) were performed
every 6 s throughout the period of exercise. Expired ventilation (VE) was measured by hot-wire
flowmeter. Arterial and pulmonary arterial blood samples were collected before exercise and every
minute during exercise for blood gas analysis. On the same day, 3 h after lunch, the subjects were
tested during CO, rebreathing using a bag containing 6 1 of air, with the same hemodynamic, expired
gas and blood gas analyses as during exercise. Oxygen consumption (VO,) was determined in advance
and an equal amount of O, was supplemented into the rebreathing bag to maintain a constant inspired
O, concentration throughout the rebreathing test.

9.2.3 Fitting to Exponential Curve

VE, PaCO, and PvCO, were plotted against time. As the relations resembled exponential curve, they were
fitted to y=Exp (x / T+A )+k. Figure 9.1 demonstrated a representative case during CO, rebreathing.
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Fig. 9.1 Representative example of fitting to exponential curve. VE, PaCO, and PvCO, were determined by averaging
forward and backward 5 values. In this example, VE was fitted to y=EXP(x/16.6+0.079)+ 16.4(R*=0.87), PatCO2 toy
=Exp(x/27.5+1.56)+33.5(R?=0.92) and PvCO, to y=Exp (x/19.3+0.114) +46.8(R?=0.93)

VE was determined by averaging forward and backward S values. In this example, VE was fitted to
y=Exp (x / 16.6+0.079)+16.4 (R*=0.87), PaCO, to y=Exp (x / 27.5+1.56)+33.5 (R?=0.92) and
PvCO, to y=Exp (x/19.3+0.1 14)+46,8 (R?2=0.93).

9.2.4 Analysis

T and A were calculated in 15 patients both during exercise. and CO, rebreathing. T as well as A in VE,
PaCO, and PvCO, were compared to each other during exercise and CO, rebreathing.

9.2.5 Statistics

Fitting was carried out by Deltagraph Pro 5.5.1 (SPSS Inc. and Red Rock Software Inc. USA).
Comparison of T as well as A in VE, PaCO, and PvCO, were done by student-¢ test. Values of p<0.05
were considered significant.

9.3 Results

9.3.1 Changes in Pulmonary Hemodynamics

VO,, Pa0, and arterial pH during exercise are shown in Table 9.1. PaO, did not change significantly,
as in healthy subjects. Arterial pH was only slightly lowered. Figure 9.2 depicts changes in PaCO,,
PvCO, and VE at rest, and at the RC point in exercise or at the maximal response in CO, rebreathing.
PaCO, did not change during exercise (38.3+3.7 to 39.5+5.4 mmHg), but was -markedly elevated
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Table 9.1 Patient characteristics during exercise

Rest RC point Peak exercise Statistics
MPA (mmHg) 21+9 50+ 17
PCW (mmHg) 12+6 3112
VO, (ml/min/kg) 183 x4
Pa0, (mmHg) 112+ 17 107 £ 22 ns
PH 7.37 £0.03 7.34 +0.05 p=0.02

RC point: respiratory compensation point, when end-tidal CO, concentration begins to decrease. Ventilation is linearly
related to CO, excretion until the RC point. PaO,: arterial O, partial pressure; mPA: mean pulmonary arterial pressure;
PCW: pulmonary capillary wedge pressure; VO,: oxygen consumption; pH: arterial blood pH; ns: not significant; PaO,
and pH at rest are compared with those at peak exercise by paired r-test

nunHg
I/min
70 5

60-

= = = CO: rebreathing

Exercise

Rest Max

Fig. 9.2 Mean changes in VE, PaCO, and PvCO, during exercises and CO,- breathing for 15 patients. Changes during
exercise are shown as solid lines. Changes during CO, rebreathing are shown as broken lines. PaCO,, PvCO, and VE
before both examinations are shown as at rest. Three variables at the RC point in exercise and at the maximal response
in CO, rebreathing are shown as at Max. See text for details. PaCO,; arterial CO, partial pressure; PvCO,: mixed venous
CO, partial pressure; VE: Ventilation

during CO, rebreathing (36.3+4.9 to 58.0+5.5 mmHg). PvCO, increased greatly during both exercise
(45.6+3.3 to0 61.9+8.2 mmHg) and CO, rebreathing (45.3+4.2 to 60.2+5.5 mmHg). VE increased
from 7.5+2.2 to 30.5+9.1 /min during exercise and from 11.5£4.0 to 31.4+6.7 I/min during CO,
rebreathing.

932 TandA

T and A in the fitting equation during exercise and CO, rebreathing are shown in Tables 9.2 (CO,
rebreathing) and 9.3 (Exercise). Fitting of 3 variables in all subjects was appropriate because second
power of fitness of fitting equations were more than 0.8.

Mean values of T as well as A for VE, PaCO, and PvCO, during CO, rebreathing are depicted in
Fig. 9.3. A and T for PaCO, were statistically different from A and T for VE and PvCO,,.

Mean values of T as well as A for VE and PvCO, during exercise are depicted in Fig. 9.4. Neither
was not statistically different during exercise. )
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Table 9.2 A and T of fitting equations in each variable during CO, rebreathing
A T —: not measured
Patient VE PaCO, PvCO, VE PaCO, PvCO,
1 1.52 14 1.56 30.6 34 48.1
2 0.29 2.8 -0.85 16.9 48.5 14.1
3 0.64 232 0.2 11.7 36.2 10.3
4 ~0.26 2.8 0.86 14.1 529 23.8
5 0.96 2.18 -1.35 17.6 255 10.2
6 0.99 2.59 -0.54 22.9 52.9 17.5
7 -0.72 1.39 0.15 11.6 27.8 19.9
8 0.22 0.41 0.61 24.1 17 20.5
9 1.5 2.2 1.1 27 44 30
10 -0.06 0.47 -0.03 194 17.7 21
11 -0.08 - 1.2 17.1 - 29.4
12 -0.1 -0.3 -0.3 10.7 1.7 14.2
13 0.47 3.8 0.07 20 159 23.5
14 0.02 ~-0.79 -0.36 16.6 16.5 19.9
15 033 1.83 0.02 17.7 40.0 225

Fig. 9.3 Mean values of

A and T in VE, PaCO,

and PvCO, during CO,
rebreathing. Mean values of
T as well as A in VE, PaCO
and PvCO, during CO,
rebreathing were depicted.
A and T in PaCO, were
statistically different from
A and T in VE and PaCO,

2

Table 9.3 A and T of fitting equations in each variable
during exercise '

A T

Patient  VE PVCO,  VE PvCO,
1 0.58 0.39 26.1 23.6
2 0.42 0.76 26 29

3 1.5 -0.03 334 244
4 1.34 13 444 566
5 1.6 0.94 36.9 32.8
6 1 0.25 18.2 16.8
7 053  -0.79 22.9 16.6
8 -058 -2 15.4 11.9
9 0.49 0.89 38.3 424
10 0.8 -03 17.6 10.8
1 0.86 0.94 29.7 30.5
12 0.59 0.7 30.2 25.5
13 1.2 027 26.1 20
14 0.41 137 2.2 357
15 1.1 0.7 35.5 34.5
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Fig. 9.4 Mean values of A T
and T in VE and PvCO,
during exercise. Mean values 1+ 45 =
of T as well as A in VE and j é(s) ;
PvCO, during exercise were 1 30
depicted. Both were not : 0 25
statistically different during ] ] %(5) j
exercise 4 1%) ;
0

9.4 Discussion

This is the first report to analyze changes in VE, PaCO, and PvCO, with time and to compare those
changes. VE and PvCO, showed the same mode of change but PaCO, did not.

9.4.1 Critique of Methods

We studied a diseased population and could be criticized regarding several points, if we extrapolate
our results to normal healthy humans. First, patients with heart disease may have additional ventilatory
stimuli such as hypoxia or acidosis during exercise. However, the cardiac patients we studied did not
show a significant reduction in PaO,, and demonstrated only a slight decrease in arterial pH. Second,
the study patients might have been unique and have had some specific characteristics that led to an
unusual conclusion. Among the 15 patients, four had moderate mitral regurgitation, and showed
nearly normal hemodynamics during exercise. The results obtained from these four subjects may be
representative of normal healthy humans. Other patients had apparently abnormal hemodynamic
responses during exercise, but each of them also showed a practically equal change to time between
PvCO, and VE during exercise and CO, rebreathing. Therefore, our results may be extended with
caution to the normal healthy population, but needs to be confirmed.

Another technical problem may be that the number of sample points for PvCO, is not sufficient to
fit with exponential equation time. However, most of the second power of correlation coefficients
for fitting equations were more than 0.9 and at least 0.8, and the present data are considered sufficient
for analysis.

9.4.2 Time Course of Respiratory Variants

We fitted the changes in ventilatory parameters (VE, PaCO, and PvCO,) to exponential equations and
compared the time constants and the other constants of the equations between the parameters. In their
pioneering work, Gelfand and Lambertsen (1973) confirmed the existence of three different modes of
ventilatory components by abruptly adding or stopping CO, inhalation. These three components were
a peripheral chemoreceptor in the carotid body, a fast central responder to CO, increase and a late
central responder. We obtained a different time-response equation of the respiratory variables from
Gelfand’s equation. This is because they inhaled stepwise increase in concentration of CO, gas
compared to our study in which CO, concentration was increased little by little by rebreathing the
expired air and the three components of the CO, response were not separated. The time constant would
be changed according to inhaled CO, concentration, individuals, or mode of inspired CO, increase.
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Our time constant of ventilation was about 20 s during CO, rebreathing, and about 30 s during exercise.
Gelfand’s time constant was 10 s for the fast-responding receptor and 89 s for the slow-responding
one. Our time constant was obtained by adding these three components, and is considered to be a reason-
able value. Our aim, however, was to compare the differences in time course of three ventilatory
variables, VE, PaCO, and PvCO,,.

9.4.3 Close Coupling of PvCO, and VE

The strong coupling of PvCO, and VE, but not PaCO, in the pattern of change according to time, suggests
two possibilities. One is that VE changes in proportion to PaCO, but another function intervenes
between the two variables, leading to a different pattern of changes in VE and PaCO, according to
time, and PvCO, is just the result of the VE change. Another possibility is that VE is determined
PvCO,, indicating PvCO, is an important stimulator of ventilation.

If PvCO, stimulates ventilation, we have to consider the existence of a venous chemoreceptor.
This CO,, chemoreceptor stimulates ventilation both during hypercapnic and eucapnic conditions
(CO, rebreathing and exercise). Such receptors exist either in the venous system or in the pulmonary
artery or pulmonary ventilatory system such as pulmonary stretch receptors (Mitchell et al. 1980;
Nilsestuen et al. 1981; Green et al. 1986) or upper airway (Forster et al. 1985). Fedde et al. (1982)
reported that pulmonary arterial chemoreceptors for ventilatory control exist in birds. Sheldon and
Green (1982) separated the systemic and pulmonary circulation in dogs, controlled CO, partial pressure
independently in each circuit, and measured VE. They demonstrated that respiratory output was augmented
by selectively elevating pulmonary arterial CO, partial pressure. However, the existence of venous
CO, chemoreceptors in mammals has not been proven. Cropp and Comroe (1961) and Sylvester et al.
(1973) opposed the theory of the existence of venous CO, chemoreceptors in dogs, because infusion
of CO,-equilibrated blood did not initiate ventilatory responses until the infused stimulus reached the
systemic arterial circulation. Orr et al. (1988) concluded that venous CO, chemoreceptors do not exist
in the anesthetized cat, on the basis that venous CO, loading did not induce respiratory augmentation
in the phrenic neurogram unless PaCO, was raised. ,

These reports support the former possibility that VE changes in proportion to PaCO, but another
function intervenes between the two variables, in view of the close coupling of PvCO, and VE, but not
PaCO,. PaCO, does not directly change ventilation, but some other intervening sensor exists between
the variables of PaCO, and VE. Further study on this issue is needed.

9.5 Summary

VE and PvCO, showed same mode of change according to time but PaCO, did not, suggesting that
VE and PvCO, are changed identically with time, but further studies are required to determine whether
this relation is a cause or a result. We report this result because it may add new insights to ventilation
research in terms of CO, kinetics.
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