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ABSTRACT

Classification of the individuals’ genotype data is important in various kinds of biomedical
research. There are many sophisticated clustering algorithms, but most of them require
some appropriate similarity measure between objects to be clustered. Hence, accurate inter-
diplotype similarity measures are always required for classification of diplotypes. In this
article, we propose a new accurate inter-diplotype similarity measure that we call the
population model-based distance (PMD), so that we can cluster individuals with diplotype
SNPs data (i.e., unphased-diplotypes) with higher accuracies. For unphased-diplotypes, the
allele sharing distance (ASD) has been the standard to measure the genetic distance between
the diplotypes of individuals. Te achieve higher clustering accuracies, our new measure
PMD makes good use of a given appropriate population model which has never been utilized
in the ASD. As the population model, we propose to use an hidden Markov model (HMM)—
based model. We call the PMD based on the model the HHD (HIT HMM-based Distance).
We demonstrate the impact of the HHD on the diplotype classification through compre-
hensive large-scale experiments over the genome-wide 8930 data sets derived from the
HapMap SNPs database. The experiments revealed that the HHD enables significantly more
accurate clustering than the ASD.

Key words: algorithms, statistics, strings, suffix trees.

1. INTRODUCTION

S INGLE NUCLEOTIDE POLYMORPHISMS (SNPs) are the most fundamental genetic polymorphisms in human
genomes (Kim and Misra, 2007), and classification of individuals with the individual SNPs data is very
useful in various kinds of biomedical research, especially in population genetics and genetic epidemiology
(Conrad et al., 2006; Jakobsson et al., 2008). Accurate classification of individual SNPs data will help study
of genotype variations, especially when different genotypes prevail in different populations or subgroups.

There are various sophisticated clustering methods for general data (not limited for clustering SNPs
data), many of which (e.g., Ward’s method [Team RDC, 2007; Ward, 1963; Ward and Hook, 1963],

'Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto Japan.
2Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
3Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
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k-Medoid [Kaufman and Rousseuw, 1990], DBSCAN [Ester et al., 1996], and most of the phylogenetic
clustering algorithms such as the famous neighbor joining method [Saitou and Nei, 1987]) require ap-
propriate similarity measures between target objects. Designing accurate similarity measure for the objects
to be clustered is essential for these similarity-based clustering algorithms.

For SNPs data, there have been proposed various clustering algorithms for clustering haplotypes (i.e.,
haplotype-alleles, not diplotypes),1 and various types of similarity measures have been proposed for
haplotype data (Jin et al., 2010; Li and Jiang, 2005; Li et al., 2006).2 But the human genome is diallelic,
and in many cases we observe only the unordered (i.e., unphased) pair of alleles at each locus, instead of
ordered (i.e., phased) allele data, due to the high costs required for deciphering unphased allele data to
accurate phased ones. In this article, we call a phased pair of haplotypes a ‘‘haplotype-diplotype,”” and we
call an unphased pair of haplotypes a ‘‘unphased-diplotype.”

Much work has been done on clustering the unphased-diplotype data. They can be categorized into two
types: distance-based methods (Bowcock et al., 1994; Gao and Starmer, 2007) and statistics-based methods
(Falush et al., 2003; Pritchard et al., 2000). The distance-based methods utilize a distance measure between
two objects, while statistics-based methods are based on the statistical behavior of objects. In this article,
we focus on the distance-based clustering methods for unphased-diplotype data. Most previous distance-
based methods utilize a similarity measure called the allele sharing distance (ASD) (Gao and Martin, 2009;
Jakobsson et al., 2008; Mao et al., 2007; Witherspoon et al., 2007) (see Section 2.1.1). The ASD is a simple
and straightforward extension of the Hamming distance, and is the most standard and frequently used
similarity measure between a pair of unphased-diplotypes.

In genetic analysis, it is very important to consider properties of populations that are different among
genetically distinct populations (Beaty et al., 2005; Fallin et al., 2001; Witherspoon et al., 2007). It should
also be true with designing similarity measures for unphased-diplotypes. But the measure ASD does not
utilize any population information in obtaining the similarity values. Thus, in this article, we will first
propose a new similarity measure called the population model-based distance (PMD) for unphased-
diplotypes, which incorporates the population information from an appropriate population model. As the
model, we will propose to use an hidden Markov model (HMM)-based model predicted by a standard
HMM-based phasing software called HIT (Rastas et al., 2005). We call the PMD based on the model the
HHD (the HIT HMM-based distance). We will show the superiority of our new measure HHD over the
previous standard ASD through comprehensive experiments over the genome-wide HapMap data (Inter-
national HapMap Consortium, 2005).

The organization of this article is as follows. In Section 2, we describe previous work on which our
method is based. In Section 3, we describe our new measure. In Section 4, we compare the ASD and the
HHD through comprehensive experiments over large-scale HapMap data sets to evaluate the impact of the
HHD. In Section 5, we conclude.

1.1. Notations and definitions

We assume all SNPs are diallelic. We consider n diplotypes over m SNP loci from the same chro-
mosome. These loci are numbered 1,2, -- -, m in the physical order. A SNP-allele for a SNP locus is an
element in set S={1,0} where 1 and O denote the major and minor SNP-alleles, respectively. A
haplotype-allele is a sequence of SNP-alleles and is represented by a sequence in S™ (e.g., 10101 € S°).
A SNP-diplotype for a SNP locus is an unordered pair of SNP-allele in D=S8x%S(e.g., {0, 1} € D). An
unphased-diplotype is a sequence of SNP-diplotype and is represented by a sequence in
D™e.g., {1,0} — {0,0} — {1,0} — {1, 1} — {1, 0} € D°). Given unphased-diplotypes, the phasing prob-
lem is to find the most probable corresponding haplotype-allele pairs that could have generated the
unphased-diplotypes. A phased haplotype-allele pair is called a haplotype-diplotype (e.g., {10010,
00111}).

"There are also many algorithms proposed for clustering SNP loci (Yang and Tabus, 2007), instead of individuals,
but we do not deal with these problems in this article.

ZVarious inter-population distances have also been proposed (Cornuet et al., 1999), but we will not deal with these in
this article.

272



POPULATION MODEL-BASED MEASURE FOR DIPLOTYPE CLUSTERING 57

Founder1 FIG.1. The HMM model of the HIT. In the HMM, a set
g - : of nodes in a row corresponds to states of one founder (i.e.,
ancestor) haplotype-allele. A set of nodes in a column
‘ corresponds to states of one locus. Each node (except for
N the start and end nodes) emits 1 or 0 with some estimated
probabilities, which correspond to the major and minor
" } 4 ; © T gpnd| @alleles respectively. A path from the start node to the end
Start ™ i 7 ‘ node corresponds to a haplotype-allele. The HMM emits a
/ i haplotype-diplotype as an unordered pair of two paths

from the start node to the end node, randomly based on the
probabilities estimated for edges. The observers can only
Y see the unphased-diplotype that corresponds to the emitted
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2. PREVIOUS WORK

In this section, we describe previous work on which our work is based. In Section 2.1, we describe the
definitions of measures in previous work (e.g., the ASD). In Section 2.2, we describe the HIT algorithm on
which our new distance measure is based. In Section 2.3, we describe a clustering algorithm and an
evaluation method for clustering that we will use in the experiments in Section 4.

2.1. Previous measures for inter-individual genetic distances
2.1.1. Allele sharing distance. The most standard inter-diplotype distance is the ASD (Gao and
Martin, 2009; Jakobsson et al., 2008; Mao et al., 2007; Witherspoon et al., 2007), defined as follows. For

two unphased-diplotypes g, g € D™ (i.e., m is the number of SNP loci), the ASD between the diplotypes
g and g’ is defined as follows:

D(g €)= 5> " d(elf], ¢14), 0
=1

where g[£] denotes the £-th SNP-diplotype of unphased-diplotype g, and d(g[£],g'[£]) is the number of SNP-
alleles which are not shared between g and g’ at the ¢-th locus.

2.1.2. Haplotype similarity measure. The most common and simplest measurement for the simi-
larity between DNA sequences, including the haplotype-allele data, is the hamming distance (Cover and
Thomas, 1991; Isaev, 2004; Lesk, 2005; Li and Jiang, 2005; Tzeng et al., 2003). For a haplotype-allele
h € 8" (where m is the length of h), let h[k] denote the SNP-allele at the k-th locus of h. The hamming
distance between two haplotype-alleles h and b’ is defined as

s(h, W) ="y I(mlk], W'[K]), @
k=1
where I(a, b) = 0 if a = b and I(a, b) = 1 otherwise. As the hamming distance is length-dependent, we
define the following A(h, h') as a length-independent distance between haplotype-alleles h and h':
h, b’
A(h,h)= L—l 3
m
2.2. HIT algorithm

The Haplotype Inference Technique (HIT) algorithm (Rastas et al., 2005) is an HMM-based algorithm
for phasing unphased-diplotypes. The algorithm utilizes the HMM (Rabiner and Juang, 1986). The HMM
of the HIT is designed to simulate multiple set of ancestors (i.e., founders).? The HMM is trained from a set

3According to Rastas et al. (2005), the optimal number of ancestors is around 7 for most cases. Thus, we also use the
HMM model with 7 ancestors in the experiments in Section 4.
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of unphased-diplotypes in an unsupervised way with the EM algorithm (Durbin et al., 1998). Figure 1
shows the HMM model used in the HIT. The HIT algorithm phases an unphased haplotype-diplotype by
heuristically finding the haplotype-diplotype with the highest emission probability from the HMM.

2.3. Clustering methods

In this section, we describe the clustering method and the method for evaluating the results, which we
will use in Section 4.

2.3.1. Ward’s method. We use Ward’s minimum variance algorithm (Team RDC, 2007; Ward,
1963; Ward and Hook, 1963), which is a widely used hierarchical clustering method, to infer clusters based
on the ASD or the HHD in Section 4.* Given n items I, L, - - -, I,, a distance matrix {wy} where wy
denotes the distance between I; and I;, and some fixed positive integer k (k < n), the Ward’s method clusters
the n items into k clusters by the following n — k — 1 steps.” At first the algorithm considers 7 clusters each
of which contains only 1 item, i.e., C; ={{l1}, {l2}, -- -, {I,}}. Then the algorithm reduces the number of
clusters one by one in each step as follows. In the m-th step of the algorithm, two clusters are merged into a
cluster to minimize } ccc, | 21, rec Wi %/IC|, where C; denotes the set of clusters before the i-th step of the
algorithm. This bottom-up approach is repeated until |G| =

2.3.2. How to evaluate the clustering results. To evaluate the clustering results, we use the
classification error rate (CER) (Gao and Starmer, 2007). The CER is the rate of elements that are assigned
to incorrect clusters in clustering results. To know the assignment is correct or not, we need to know the
labels of each cluster, but Ward’s algorithm does not assign any labels onto the output clusters. In the
experiment, we use the minimum CER among all the possible assignments of the population labels, to
evaluate the clustering results.

3. NEW UNPHASED-DIPLOTYPE DISTANCE MEASURES

In this section, we first propose in Section 3.1 a new measure for the distance between two unphased-
diplotypes, the PMD. The PMD is a general concept of distance measures, and we will give an example of
the PMD which we call the HHD in Section 3.2. In Section 3.3, we discuss the properties of the proposed
measures.

3.1. Population model-based distance

Before defining our new measure called the PMD, we first extend the haplotype similarity measure
described in Section 2.1.2 so that we can deal with the distances between two haplotype-diplotypes instead
of haplotype-alleles, as follows. Let a = {h;, h,} and &’ = {h], h}} be haplotype-diplotypes to be com-
pared, where hy, hy, hi, ), € §”. We define the distance between haplotype-diplotypes a and a’ as

H(a, d)= mi {A(hl,h/)‘;A(hz,hz), A(hl,h;);—A(hg,h’)},

where A is the haplotype similarity measure defined in Section 2.1.2. But we cannot compute this value for
unphased-diplotypes, as we cannot know the actual haplotype-diplotypes. To enable it, we extend the above
haplotype-diplotype distance H for unphased-diplotypes by utilizing some given population model M as
follows.

For any unphased-diplotype, we can enumerate corresponding haplotype-diplotype candidates.® For
example, there are four haplotype-diplotype candidates for unphased-diplotype {1, 0} — {1, 0} — {1, 0},
ie., {111,000}, {110, 001}, {101, 010}, and {011, 011}. For unphased-diplotypes g, g’ € D", let ¢; = {h;,
hp} (1 <7< M) and ¢ = {hj;, hj,} (1 <j < M) be the i-th and the j-th candidate haplotype-diplotypes for

)

“We used the statistical software, R, to implement this algorithm.
5The ASD or the HHD values will be used as w;; in Section 4.
SPhasing is the process of finding the most probable haplotype-diplotype, utilizing some population information.
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4 5NPloci

v v v v

FIG. 2. Haplotype-diplotype examples on which we
can observe difference between the ASD and the PMD.

T, Homologous
chromosomes

g and g/, respectively. M and M’ are the numbers of haplotype-diplotype candidates for g and g/,
respectively.

If we were given a population model M, we can compute the probability Prob(c|g, M) that a haplotype-
djplotype candidate ¢ is correct for the unphased-diplotype data g. Let p;=Prob(ci|g, M) and
p Prob(c’ |g’, M) be the conditional probabilities of the candidate haplotype-diplotypes ¢; and ¢ ! under
the model M Then the PMD a4 between two haplotype-diplotypes g and g’ is defined as follows

M

PMD (g, g’)=ZZH(c,,c> a4, (5)

i=1j=

where g;=p;/(32_, pr) and q=p;/( Zk 1Py)- ¢; and g are the normahzed predicted conditional
probabilities of the candidate haplotype diplotypes c¢; and c respectlvely Note that the PMD is the
expected value of the distance between candidate haplotype diplotypes, H(c;, c! ), under the population
model M.

3.2. HIT HMM-based Distance

To compute the PMD in Section 3.1, we need an appropriate model for the population. In the following,
we propose an example of the PMD that we call the HHD.® To define the HHD, we propose to use the
HMM model used in the HIT algorithm (Rastas et al., 2005) (described in Section 2.2) as the population
model for the PMD as follows.

The HMM defined in the HIT algorithm can be considered as a predicted population model. Thus, we
first train the HMM from all the unphased-diplotype data that are in our hand, and then we define the HHD
as follows. Let M”* denote the HMM model obtained with the HIT. Then we define the HHD as

HHD(g, g') = PMD+(g, ). (6)

Note that the probability of each haplotype-diplotype candidate is computed as the conditional emission
probability of the candidate from the HMM, which can be computed by the forward algorithm (Durbin
et al., 1998) for the HMM.

3.3. Discussions on the PMD

3.3.1. The PMD and the multiple founder hypothesis. In many regions (especially in important
regions) of the human genome, the haplotype-alleles of the majority in populations can be categorized into
a small number of types (Bhatia et al., 2010; Cirulli and Goldstein, 2010), which suggest that only a small
number of founder (or ancestral) haplotype-alleles spread over the population on those regions. This

"Note that S p =S¥ pi =1 and there is no need to normalize the probabilities if we enumerate all the
candidates. But we need to normalize them in case we ignore the candidates with very small probabilities. When we
compute the HHD (which will be introduced in Section 3.2), we ignore candidates with very small probabilities.

8We also introduce other simpler examples of the PMD in Section 3.3.1.
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TABLE 1. DISTANCES BETWEEN THE INDIVIDUALS IN FIGURE 2

(1) ASD (2) H=PMD p, (3) PMD 4,
a b c a b c a b c
a 0 0.25 0.25 a 0 0.25 0.5 a 0 0.301 0.450
b — 0 0.25 b — 0 0.5 b — 0 0.500
c e e 0 c — — 0 c — — 0

hypothesis of the existence of (a few but) multiple founder haplotype-alleles is very important and effective
for various kinds of research, for example, the design of the experiments of linkage disequilibrium mapping
(Chung et al., 2008; Gonzalez et al., 1999; Haiman et al., 2003) and the evolutionary history analysis of
populations (Ahmad et al., 2002; Gaudieri et al., 1997).

The PMD well refiects the existence of the founder haplotype-alleles. In the example given in Figure 2,
there are three individuals with haplotype-diplotypes a = {1011, 0110}, & = {1101, 0110}, and ¢ = {1111,
1000}, but we assume that we know only the unphased-haplotypes, i.e., {1,0} — {1, 0} — {1, 1} - {1, 0},
{1,0} — {1, 1}-{1,0} — {1,0} and {1, 1} — {1,0} — {1, O} — {1, O}, respectively. We can easily see that
the ASD between any two of these three individuals is 0.25 (Table 1(1)), and therefore we cannot cluster
these three individuals based on the ASD.

The distance between two sequences are often measured by the number of point mutations between them
(i-e., we consider two sequences to be very distant to each other if there are many mutations between them).
We can define the number of mutations under the assumption of existence of multiple founder haplotype-
alleles (for details, see the Appendix). Table 2 shows the number under the assumption that there are two
founder haplotype-alleles. According to the table, the clustering result of the three individuals should be the
one in Figure 3, which cannot be obtained with the ASD. Note that the clustered individuals a and b share
the same haplotype-allele, i.e., 0110, which also supports the validity of the clustering result.

Unlike the ASD, the haplotype-diplotype distance H reflects the numbers in Table 2 very well. The H
value between individuals a and b is 0.25, which is the same value as the ASD, but H between a and ¢ and
H between b and ¢ are 0.5 (Table 1(2)), which enable us to cluster the individuals as in Figure 3. It means
the H values are more appropriate than the ASD values under the existence of the founder haplotype-
alleles, at least in this case.

But we cannot compute the real H values unless we know the real haplotype-diplotypes. Instead, we can
estimate them by computing the PMD if we are given some population model. Consider the two population
models given in Table 3, where haplotype frequencies in the population are given.” Under the model M,
we can phase any of the three individuals’ unphased-haplotypes correctly with 100% confidence, and the
resulting PMD 4, values are the same as the H values (Table 1(2)). But we cannot predict unphased-
haplotypes with such high confidence in many cases, as in the case of the population model M, where we
have multiple haplotype-diplotype candidates for each unphased diplotype (see Table 4 and Table 1(3)).

If we cluster the three individuals based on the H = PMD 4, values, we can obtain the same clusters as in
Figure 3. Furthermore, we can still get the same clusters even if we use the PMD 4, values instead. Thus,
we assume that the PMD is more suitable than the ASD under the multiple founder hypothesis, if we are
given an appropriate population model.

3.3.2. Influences of the linkage equilibrium. It is easy to imagine that the linkage equilibrium (LE)
and the linkage disequilibrium (LD) should affect the similarity measures. In fact, the variance of the
distribution of the ASD values among the individuals should converges to some value in ®(1/m) where m is
the number of the SNP loci in the region according to the central limit theorem, if the loci are independent
to each other. It means that the variance of the ASD values should be smaller on the regions of LE. The
PMD and its example HHD should also be influenced by the LE/LD. We compared the influences of the
LE/LD to the ASD and the HHD by checking distances on the LE/LD regions obtained from the HapMap
database (release 24) (International HapMap Consortium, 2005) as follows.

The population models could be represented by many other methods. For example, we consider HMM-based
models in Section 3.2.
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TABLE 2. NUMBER OF MUATIONS BETWEEN EACH INDIVIDUAL UNDER
THE ASSUMPTION THAT THERE ARE TwoO FOUNDERS

o

a b

a 0 2
—_ 0
c ——— m——

S BA

See Appendix how we obtain the number of mutaions for each pair of individuals.

We can determine whether a region is near to LE or to LD by counting the number of haplotype tagging
SNPs (htSNPs) (Carlson et al., 2004; Johnson et al., 2001; Ke and Cardon, 2003; Meng et al., 2003; Rinaldo
et al., 2005). The htSNPs are selected so that each SNP in the given region has a correlation larger than a
threshold with at least one of the htSNPs. Thus, the regions with many htSNPs can be considered to be near
the LE, and regions with few htSNPs can be considered to be near the LD.

We divided the set of SNPs in chromosome 1 into 658 blocks, each of which consists of 100 consecutive
SNPs. For each block B, we counted the number Az of htSNPs obtained by the software Tagger (de Bakker
et al., 2005) with the default settings. We selected 100 blocks with the 100 smallest hp values as the LD
regions and also selected 100 blocks with the 100 largest hp values as the LE regions.

For each of all these regions, we computed the ASD and the HHD measures among the 270 individuals
in HapMap (which are the same as the 270 individuals used in Section 4), and computed the variances
among the obtained 270 X 269/2 = 36315 distances of the ASD and of the HHD. Table 5 shows the
difference between the variances of the ASD and the HHD measures. According to the P-values in the
table, the HHD reflects the LD/LE effects more than the ASD.

4. APPLICATION TO HAPMAP DATA SETS
4.1. Data sets

In the experiments in Section 4.2, we will use the unphased-diplotype data sets of 22 autosomal chro-
mosomes and X chromosome derived from HapMap release 24 (International HapMap Consortium, 2005).
The data sets consist of unphased-diplotypes of 270 individuals: 90 Yoruba in Ibadan, Nigeria (YRI); 90
Utah residents with ancestry from northern and western Europe (CEU, from the CEPH diversity panel); and
90 Japanese in Tokyo, Japan, and Han Chinese in Beijing, China (CHB + JPT). There are 894,398 SNPs
that are genotyped for all the above 270 individuals, which we used for our experiments. We divided the
SNP set into 8,930 blocks, each of which consists of consecutive 100 SNPs, and we will perform com-
prehensive experiments against each of these blocks in Section 4.2.

4.2. Experimental results

In this section, we demonstrate the impact of incorporating the population information, by comparing the
clustering accuracies by the ASD and that by the HHD on the HapMap data described in Section 4.1.

FIG. 3. Clustering results for individuals in Figure 2
based on the numbers of mutations (Table 2),
H = PMD ,, distances (Table 1(2)), or PMD p4, distances
(Table 1(3)). On the other hand, the ASD distances
(Table 1(1)) cannot deduce this result.
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TABLE 3. PoPULATION MODEL EXAMPLES GIVEN AS HAPLOTYPE-ALLELE FREQUENCIES

Frequency in population

Haplotype-allele (i) My (i) My
1111 0.40 0.20
1110 0.00 0.07
1101 0.20 0.08
1011 0.25 0.10
0011 0.00 0.05
0110 0.10 0.30
0101 0.00 0.05
1100 0.00 0.05
1000 0.05 0.10
Others 0.00 0.00

Against each of the 8,930 blocks, we performed Ward’s clustering algorithm (see Section 2.3.1) based on
the ASD and also did the same based on the HHD, and compared the CERs (see Section 2.3.2) of their
results (Table 6). The difference of the results in relation to the number of htSNPs, i.e., hp (see Section
3.3.2), is also shown.

The mean of CERs based on the HHD (i.e., 0.3557) is better than that for the ASD (i.e., 0.3611). The
P-value of the t-test to see the difference between them is 0.004177, which means the CERs of the HHD is
significantly better than that of the ASD. The number of data sets where the HHD (or the ASD) shows
better performance than the ASD (or the HHD) are checked with the sign test. Among all the data sets, the
HHD is superior to the ASD on 4366 data sets and inferior to the ASD in 3696 data sets. The results of two
measures were the same in the other 868 data sets. The P-value of the sign test of all of these results is
8.98 - 10~ '* which means that the HHD is significantly superior to the ASD.

The CERs decrease with increasing hp for both the ASD and the HHD, but the differences of CERs
between the ASD and the HHD also increases as hp increase (Fig. 4). We call the result HDD’s success if
the HHD’s CER is lower than that of the ASD, and vice versa. The ratio of the HHD’s success increases
with increasing /5. The ratio of ASD’s success also increases with increasing /. The difference of ratios of
success between the ASD and the HHD is getting larger as hp increases. The ratio of the case when the
ASD and the HHD have the same results are getting lower as hp increases (Fig. 5).

The HHD is superior to ASD especially when 80 < Az < 90. It is a reasonable result as we should be able
to better cluster individuals if we have more information (i.e., LE). The difference of ratios of success

TABLE 4. CONDITIONAL PROBABILITIES OF CANDIDATE HAPLOTYPE-DIPLOTYPES FOR INDIVIDUALS
IN FIGURE 2 BASED ON THE POPULATION MODELS IN TABLE 3

Conditional probability

Individual Unphased-diplotype Candidate haplotype-diplotype (i) My (i) M,
{1,0}-{1,0}-{1,1}-{1,0} {1011, 0110} 1.0000 0.8955

a {1110, 0011} 0.0000 0.1045
Others 0.0000 0.0000

{1,0}-{1,1}-{1,0}-{1,0} {1101, 0110} 1.0000 0.8727

b {1110, 0101} 0.0000 0.1273
Others 0.0000 0.0000

{1,1}-{1,0}-{1,0}-{1,0} {1111, 1000} 1.0000 0.8000

c {1011, 1100} 0.0000 0.2000
Others 0.0000 0.0000
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TABLE 5. MEANS OF VARIANCES OF ASD/HHD MEASURES ON THE REGIONS WHERE
THE SNPs ARE WEAKLY CORRELATED AND HIGHLY CORRELATED IN CHROMOSOME 1

Mean of variances

LE LD P-value
ASD 0.00267 0.00546 2.066-1071°
HHD 0.00248 0.00539 1.637-107"7

The LE and LD columns show the means of variances on the LE regions (i.e., regions with many
htSNPs) and those on the LD regions (i.e., regions with a few htSNPs), respectively. The difference of
the variances between weakly and highly correlated regions are tested by t-test for each of the measures.
The P-value column shows the P-value of the t-test.

between the ASD and the HHD also becomes largest when 80 < Ap < 90. In this case, the HHD is superior
on 13 data sets, while the ASD is superior only on six data sets among the remaining 18 data sets.

5. CONCLUSION

We proposed a new inter-diplotype similarity measure that we call the PMD. The PMD improves the
previous ASD measure by utilizing a population model. As one of such population models, we propose to
use the HMM population model used in the phasing algorithm HIT. We call the PMD based on the HIT’s
HMM the HHD. The HHD utilizes the predicted conditional probabilities of haplotype-diplotypes of
unphased-diplotype emitted from the HIT's HMM. Based on comprehensive experiments over 8930
genome-wide data sets of HapMap, we showed that the HHD significantly outperforms the ASD. We also
discussed the relationships between the clustering accuracies and the LD.

There are many future tasks to do related to this work. The HHD requires much larger computation time
than the ASD, and one future task should be to improve the computation speed of the HHD. There are still
data sets for which the HHD is not superior to the ASD. It would be very interesting if we can predict the
regions where the HHD is inferior to the ASD, before computing these measures. Another future task is to
improve the population model, as it should directly improve the performance of the PMD. From the
biological viewpoint, it would also be very interesting if we can utilize our clustering algorithms to identify

TABLE 6. THE EXPERIMENTAL RESULTS AND THEIR RELATIONSHIPS TO THE Hp VALUES

Mean of CERs Comparison of CERs
hB ﬂblOCkS ASD HHD CERASD < CERHHD CERHHD < CERASD CERASD = CERHHD P-value ofsign test
0~ 10 1 0.5630 0.5630 0 (0.0) 0 (0.0 1(1.0)
10~ 20 44 04733 0.4678 9 (0.2045) 13 (0.2955) 22 (0.5) 0.5235
20 ~ 30 223 04363 0.4305 62 (0.2780) 82 (0.3677) 79 (0.3543) 0.1130
30 ~ 40 993  0.4240 0.4207 380 (0.3827) 418 (0.4209) 195 (0.1964) 0.1902
40 ~50 2364 0.3929 0.3877 975 (0.4124) 1131 (0.4784) 258 (0.1091) 7.276-10"%*
50 ~60 3063 0.3567 03514 1327 (0.4332) 1528 (0.4989) 208 (0.06793) 1.808-10~%*
60 ~70 1822 0.3052 0.2997 772 (0.4237) 970 (0.5324) 80 (0.04391) 2.303-107%*
70 ~ 80 399  0.2584 0.2465 165 (0.4135) 211 (0.5288) 23 (0.05764) 0.02018*
80 ~ 90 21 0.2178 0.1944 6 (0.2857) 13 (0.6190) 2 (0.09524) 0.1671
90 ~ 100 0 — — — — — —
Total 8930 0.3611 0.3557 3696 (0.4139) 4366 (0.4889) 868 (0.09720) 8.98-10714*

The #blocks column shows the numbers of blocks with the specified hp values. In the Comparison of CERs columns, the
CER4sp < CERyyp/CERssp > CERyup/CERssp = CERyyp columns show the numbers (and the ratios) of data (with the specified hp
values) where the ASD performed better/the HHD performed better/the performance of the two measures are exactly the same,
respectively. x ~ y indicates that x < sz < y, and * means the result of the sign test is significant (i.e., < 0.05).
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FIG. 4. The plotof 5 values and the means of CERs for
both the ASD and the HHD. x ~ y indicates that x < hp
< y. The HHD is superior to the ASD in all the cases.
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gene functions of the target genome regions, especially the regions that affect the disease prevalence and
drug responses (Bamshad et al., 2004; Wiencke, 2004; Wilson et al., 2001).

6. APPENDIX
Counting number of mutations under founder hypothesis

Suppose that founder haplotype-alleles f, ..., f, has been evolved into the present-day haplotpye-
alleles of individuals p and g, without any recombinations. Let p; and p, be the haplotype-alleles of p and
gz and g5 be the haplotype-alleles of g. We can consider that the number of mutations between p and g
under the assumption of founders f;, ..., f, as

2 m
St (7, )= min { > min{dist(p, £) + dista,, £)}.

i=1
2 m
Z ?Elll{diSf(Pi, £;) +dist(q, _;» 1))} } , (M
i=1""

where dist() denotes the ordinary number of mutations between the two sequences.
But we cannot know the appropriate set of founder haplotype-alleles. Instead, we can define the number
of mutations between two individuals under the assumption that there are m founders as

12

08
FIG. 5. The plot of hp values and the ratios of success
for both the ASD and the HHD. The line ASD = HHD
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4 SNP loci

a
v hé ¥ v " S
el = ; FIG. 6. The optimal founder

L haplotype-allele pair (when m = 2)
2 founder haplotype-alleles for the individuals a and b in

,b, , Figure 2.

Si(p. @)= min_Sh,...0.9) ®)

vany

Table 2 shows all the S%() values for all the pairs among individuals a, b, and ¢ in Figure 2. Figure 6 shows
the founder pair f;, f, that minimizes the St ¢,(a, b) value.
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Single Nucleotide Polymorphisms in ABCC2
Associate With Tenofovir-Induced Kidney
Tubular Dysfunction in Japanese Patients With
HIV-1 Infection: A Pharmacogenetic Study
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Background. Tenofovir is a widely used antiretroviral drug although it can cause kidney tubular dysfunction
(KTD). The aim of this study was to determine the association between polymorphisms in genes encoding drug
transporters and KTD in Japanese patients treated with tenofovir.

Methods. The association between tenofovir-induced KTD and 14 single nucleotide polymorphisms (SNPs)
in the ABCC2, ABCC4, ABCC10, SCL22A6, and ABCBI genes was investigated in 190 Japanese patients. KTD was
diagnosed by the presence of at least 3 abnormalities in the following parameters: fractional tubular resorption of
phosphate, fractional excretion of uric acid, urinary B2-microglobulin, urinary ol-microglobulin, and urinary
N-acetyl-B-D-glucosaminidase. Genotyping was performed by allelic discrimination using TagMan 5’-nuclease
assays with standard protocols. Associations between genotypes and KTD were tested by univariate and multivar-
iate logistic regression analyses.

Results. KTD was diagnosed in 19 of the 190 (10%) patients. Univariate and multivariate analyses showed a
significant association between KTD and genotype CC at position —24 CC (adjusted odds ratio [OR], 20.08; 95%
confidence interval [CI], 1.711-235.7; P=.017) and genotype AA at position 1249 (adjusted OR, 16.21; 95% CI,
1.630-161.1; P =.017) of ABCC2. Multivariate analysis showed higher adjusted OR for patients with both homo-
zygotes (adjusted OR, 38.44; 95% CI, 2.051-720.4; P =.015). ABCC2 haplotype —24T and 1249G was a protective
haplotype for KTD (OR, 0.098; 95% CI, .002-.603; P = .003

Conclusions. This is the first study of our knowledge to identify the association between SNPs in ABCC2 and
tenofovir-induced KTD in an Asian population. Close monitoring of renal function is warranted in tenofovir-
treated patients with these SNPs.

Tenofovir disoproxil fumarate (TDF), a prodrug of te-
nofovir, is a nucleotide reverse transcriptase inhibitor
widely used for the treatment of human immunodefi-
ciency virus type 1 (HIV-1) infection and hepatitis B
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infection [1-4]. Tenofovir is excreted by a combination
of glomerular filtration and active tubular secretion.
Although the nephrotoxicity of tenofovir is regarded
mild and tolerable [5-7], several cases of tenofovir-
induced nephrogenic diabetes insipidus, Fanconi syn-
drome, and acute renal failure have been reported, and
prognosis of renal function with long-term tenofovir
use remains unknown [8-10].

The mechanism of tenofovir-induced kidney
damage is not fully understood. However, mitochon-
drial damage in the proximal renal tubular cells was
observed in patients with prominent tenofovir-
induced kidney tubular dysfunction (KTD) [11, 12].
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Because the characteristics and severity of tenofovir-induced
KTD vary widely among individuals, the role of host genetics
has drawn a particular attention. Single nucleotide polymor-
phisms (SNPs) in transporter proteins of renal tubular cells
have been investigated to elucidate their roles in tenofovir-
induced KTD [13-15].

Tenofovir enters kidney tubular cells through the basolateral
membrane and is transported mainly by organic anion trans-
porter (OAT) 1 and, to a lesser extent, OAT 3, encoded by
genes SLC22A6 and SLC22A8, respectively [16]. Tenofovir is ex-
creted into the urine at the apical membrane by 2 transporters
on the luminal membrane; multidrug resistance protein (MRP)
4 and MRP 2, encoded by the adenosine triphosphate-binding
cassette (ABC) genes ABCC4 and ABCC2, respectively [17, 18].
Although the role of MRP4 in transporting tenofovir has been
well established, that of MRP 2 remains controversial [19, 20].
Recently, MRP 7, encoded by ABCCI0 gene, was also reported
to take part in the excretion of tenofovir [21]. P-glycoprotein is
a membrane protein expressed on the cells of renal proximal
tubule, intestine, and hepatocytes. Encoded by ABCBI gene,
P-glycoprotein transports TDEF, the prodrug of tenofovir. SNPs
on ABCBI might alter the expression of P-glycoprotein and
thus affect exposure of tenofovir [22-24].

Previous studies reported inconsistent findings on the asso-
ciation of the SNPs of the transporter protein on tenofovir-
induced KTD [13-15]. Several pathological processes could
induce KTD, such as active infection, inflammation, diabetic
nephropathy, concurrent use of nephrotoxic drugs, and preex-
isting renal impairment, and thus it is difficult to evaluate
KTD induced exclusively by tenofovir [25]. Moreover, drug
interaction with other antiretrovirals, especially ritonavir-
boosted protease inhibitors, modifies tenofovir clearance and
thus the severity of tenofovir-induced KTD [26, 27]. Previous
studies examined patients treated with various antiretroviral
combinations, which might also contribute to the inconsistent
findings. Thus, the effect of SNPs on tenofovir-induced KTD
remains to be clarified and isolated from other abovemen-
tioned conventional risk factors for KTD [15, 28]. Of note,
the population investigated in previous studies on the role
of SNPs in tenofovir-induced KTD was mostly whites, and
patients of other genetic background have hardly been
examined.

Based on the above background, the present study was de-
signed to elucidate the association between polymorphisms in
genes encoding drug transporters in renal tubular cells and
tenofovir-induced KTD, in a setting designed to exclude other
predisposing or intervening factors: the inclusion of Japanese
patients with HIV infection on the same antiretroviral
combination with suppressed HIV-1 viral load, and free of
preexisting renal impairment, major comorbidities, and active
infections.

METHODS

Ethics Statement

This study was approved by the Human Genetics Research
Ethics Committee of the National Center for Global Health
and Medicine, Tokyo, Japan. Each patient included in this
study provided a written informed consent for genetic testing
and publication of clinical data for research purposes. The
study was conducted according to the principles expressed in
the Declaration of Helsinki.

Study Design

We performed a single-center cohort study to cross-sectionally
elucidate the association between SNPs in genes encoding
renal tubular transporters in Japanese patients with HIV infec-
tion and tenofovir-induced KTD.

Study Subjects

The study included consecutive Japanese patients with HIV
infection, aged >17 years, with HIV-1 viral load <200 copies/
mL, and on at least 4-week treatment with once-daily ritonavir
(100 mg)-boosted darunavir (800 mg) plus fixed dose teno-
fovir (300 mg)/emtricitabine (200 mg), seen at our clinic
between 1 October 2011 and 31 March 2012. The exclusion
criteria were (1) active infection, (2) malignancy, (3) diabetes
mellitus, defined by the use of anti-diabetic agents or fasting
plasma glucose >126 mg/dL or plasma glucose >200 mg/dL on
two different days, (4) alanine aminotransferase 2.5 times
more than the upper limit of normal, (5) estimated glomerular
filtration rate (eGFR) calculated by Cockcroft-Gault equation
of <50 mL/minutes [creatinine clearance = [(140 — age) x
weight (kg)]/(serum creatinine x 72)(x0.85 for females)] [29],
and (6) patients without consent to the study.

Measurements

Blood and spot urine samples were collected either on the day of
enrollment or on the next visit, together with body weight mea-
surement. The blood samples were used to measure serum creat-
inine, serum uric acid, serum phosphate, CD4 count, and C-
reactive protein, whereas urine samples were used to measure
phosphate, uric acid, creatinine, B2-microglobulin (B2M),
al-microglobulin (a:1M), and N-acetyl-8-D-glucosaminidase
(NAG). The values of B2M, alM, and NAG measured in the
urine samples were expressed relative to urinary creatinine of
1 g/L (/g Cr).

Urinary concentrations of p2M and olM were measured
with latex aggregation assay kits (B2M: BMG-Latex X1
“Seiken”; Denka Seiken Co, Niigata, Japan; a.1M: Eiken olM-
III; Eiken Chemical Co, Tokyo, Japan), and those of NAG by
colorimetric assay of enzyme activity with 6-methyl-2-pyridyi-
N-acetyl-1-thio-B-D-glucosaminide as substrate (Nittobo
Medical Co, Tokyo).
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Definition of Renal Proximal Tubular Dysfunction
KTD was defined as the presence of at least 3 abnormalities in
the following 5 parameters: fractional tubular resorption of phos-
phate {1 [(urine phosphate x serum creatinine)/(urine
creatinine x serum  phosphate)]} x 100 of <82%, fractional
excretion of uric acid {[(urine uric acid x serum creatinine)/
(urine creatinine x serum uric acid)] x 100)} of >15%, [32-
microglobulinuria (B2M > 1000 ug/g Cr), ol-microglobulinuria
(a1M > 16.6 mg/g Cr), and high-NAG level in urine (NAG>
5.93 U/g Cr). The above cutoff levels were selected on the basis
of data reported previously by various investigators [15, 30, 31].
The potential risk factors for KTD were determined accord-
ing to previous studies and collected together with the basic
demographics from the medical records [6, 27, 32, 33]. They
included age, sex, body weight, and presence or absence of
other medical conditions (concurrent use of nephrotoxic
drugs such as ganciclovir, sulfamethoxazole/trimethoprim,
and nonsteroidal antiinflammatory agents, coinfection with
hepatitis B, defined by positive hepatitis B surface antigen, co-
infection with hepatitis C, defined by positive HCV viral load,
hypertension, defined by current treatment with antihyperten-
sive agents or 2 successive measurements of systolic blood

pressure >140 mmHg or diastolic blood pressure >90 mmHg
at the clinic, dyslipidemia, defined by current treatment with
lipid-lowering agents or 2 successive measurements of either
low-density lipoprotein cholesterol >140 mg/dL, high-density
lipoprotein cholesterol <40 mg/dL, total cholesterol >240 mg/dL,
triglyceride >500 mg/dL. At our clinic, blood pressure and
body weight are measured every visit. We used the data on or
closest to and preceding the day of blood/urine sample collec-
tion by no more than 180 days.

Genetic Polymorphisms

SNPs in genes encoding tubular transporters were selected on
the basis of their functional significance, findings of previously
published reports, and/or reported minor-allele frequencies
>5% in the Japanese [13-15, 21, 28]. The allele frequency data
for the Japanese were obtained from the Japanese Single Nu-
cleotide Polymorphisms (JSNP) database [34]. The 14 SNPs
selected were (1) ABCC2 (encodes MRP2) —24C — T (in the
promoter; rs717620); 1249G— A (Val4l7lle; rs2273697);
2366C — T (Ser789Phe; rs56220353); 2934G — A (Ser978Ser;
rs3740070), (2) ABCC4 (encodes MRP4) 559G —>T
(Gly187Trp; rs11568658); 912G — T (Lys304Asn; rs2274407);
2269G — A (Glu757Lys; rs3765534); 3348A — G (Lys1116Lys;
rs1751034); 4135T — G [in the 3’ untranslated region (UTR);
(rs3742106)]; 4976T — C (3’ UTR; rs1059751), (3) ABCCI0
(encodes MRP10) 526G — A (intron; rs9349256); 2759T — C
(Ne920Thr; 1rs2125739), (4) SLC22A6 (encodes OATI)
180C — T (Asn60Asn; rs11568630), and (5) ABCBI (encodes
P-glycoprotein) 2677T — A/G (A:Ser893Thr, G:Ser893Ala;
rs2032582).

Pharmacogenetic Analyses

Genomic DNA was extracted from peripheral-blood leuko-
cytes using the protocol described in the sheet enclosed with
the QIAamp DNA MiniKit (Qiagen, Valencia, California). All
genotyping was performed by allelic discrimination using
TagMan 5'-nuclease assays with standard protocols (TaqgMan
SNP Genotyping Assays; Applied Biosystems, Foster City,
California). The primer and probe sequences are available on
request.

Japanese patients with once-dally
DRV/r plus TDF/FTC for >4 weeks

n=244
Excluded n=54
Did not consent n=34
HY viral load >200 copiesfml  n=6
Diabetes mellitus n=4
ALT 2.5 times >ULN n=1
Did not visit during study period n=8
Enrolied in the study
=130
Patients with Patients with normal
Kidney tubular dysfunction kidney tubular function
n=19 n=171

Figure 1.
TDF/FTC, tenofovir/emtricitabine; ULN, upper limit of normal.

Patient enroliment. Abbreviations: ALT, alanine transaminase; DRV/r, ritonavir-boosted darunavir; HIV, human immunodeficiency virus;

287

HIV/AIDS e CID o 3



Statistical Analysis

Baseline characteristics were compared between patients with
KTD and without tubular dysfunction by the Student ¢ test for
continuous variables and by either the x” test or Fisher exact
test for categorical variables. Statistical comparisons for geno-
type frequencies between 2 groups were made by use of 2 x 3
table Fisher exact test (2 x 6 table for rs2032582). Associations
between genotypes and KTD were tested by univariate and
multivariate logistic regression analyses. The impact of other
variables was estimated with univariate analysis, and those
with P<.20 were incorporated into multivariate analysis, in
addition to the basic demographics such as age and sex. Statis-
tical significance was defined at 2-sided P value <.05. We used
odds ratios (ORs) and 95% confidence intervals (95% CIs) to
estimate the impact of each variable on KTD. The Haploview
software was used to test Hardy-Weinberg equilibrium and
ABCC2 and ABCC4 haplotype analysis. All other statistical

analyses were performed with the Statistical Package for Social
Sciences ver. 17.0 (SPSS, Chicago, Illinois).

RESULTS

A total of 190 patients who provided blood and urine samples
and satisfied the inclusion and exclusion criteria were enrolled
in the study (Figure 1). KTD was diagnosed in 19 of the 190
patients (10%). The baseline characteristics and laboratory
data for patients with and without KTD are listed in Table 1.
Patients with KTD were older (P<.001), had smaller body
weight (P=.006) and lower eGFR (P =.003), and were more
likely to be hypertensive than patients with normal tubular
function (P=.088). The median duration of tenofovir therapy
was 71.5 weeks (interquartile range [IQR]: 36.8-109.2 weeks)
for the entire study population, which was not different
between the 2 groups (P =.888).

Table 1.

Characteristics of Patients With and Without Kidney Tubular Dysfunction

Patients With KTD (n = 19)

Urinary p2M (ug/g Cr)®

3066 (2247-10068)

Patients With Normal Tubular

Function (n=171) PValue

<.001

209.2 (114.2-536.2)

Urinary NAG (U/g Cr)?

9(6.2-14.3) 3.74 (2.84-4.9b) <.001

Fractional excretion of uric acid®

9.7 (8.1-12.4)

6.4 (6.0-9.0) <.001

Urinary 2M > 1000 pg/g Cr, No. (%)

19 (100

21 {(12.3) <.001

Urinary NAG >5.93 U/g Cr, No. (%)

17 (89.5)

23 (13.5) <.001

Fractional excretion of uric acid >15%, No. (%)

2 (10.5) 4(23) 12

~ Sex (male), No. (%)

18 (94.7)

166 (97.1) 473

Route of transmission (homosexual contact), No. (%)

16 (84.2)

153 (89.5) .528

Estimated glomerular filtration rate (mL/minutes/1.73 m??

75.5 (62.8-93.5)

87.7 {77.5-98) .003

CD4 cell count (ul)?

380 (194-501)

379 (275-533) 261

Serum uric acid (mg/dL)?

4.7 (4.2-5.7)

5.6 (4.8-6.4) .080

Abbreviations: KTD, kidney tubular dysfunction; NAG, N-acetyl-B-o-glucosaminidase; TDF, tenofovir disoproxil fumarate.
2 Median (interquartile range).
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Table 2. Genotype Frequencies at ABCC2, ABCC4, ABCC10, SLC22A6, and ABCBT in Patients With and Without Kidney Tubular
Dysfunction

Patients With Normal Tubular
Genotype Amino Acid Patients With KTD (n=19) Function (n =171) PValue®

—24 C—T, rs717620

018

cT 52 (30.4)

1249 G — A, rs2273697 Vald17lle

AG 34 (19.9)

G/G 6 (31.6) 46 (26.9)

A 6 (31.6) 46 (26.9)

C/C 8 (42.1) 39 (22.8)

526G — A, rs9349256

A/G . 9 (47.4) 65 (38) 569

HIV/AIDS e CID e 5
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Table 2 continued.

Patients With Normal Tubular
Genotype Amino Acid Patients With KTD (n =19) Function (n=171) PValue?®

180C — T, rs11568630

Ccr 1(6.3) 74.1) 577

ABCB1 (P-glycoprotein)

7 0(0) 47 (27.5)

G/G 4(21.1) 36 (21.1) .002

G/A 1(5.3) 24 (14)

Abbreviation: KTD, kidney tubular dysfunction.
? By Fisher exact test.

Table 2 summarizes the distribution of genotypes at the 1.609-38.10; P=.011). Furthermore, old age (per 1 year, OR,
ABCC2, ABCC4, ABCCI10, SLC22A11, and ABCBI genes in 1.165; 95% CI, 1.100-1.233; P <.001), low body weight (per 1
the 2 groups. All polymorphisms were in Hardy-Weinberg kg decrement, OR, 1.076; 95% CI, 1.021-1.135; P =.007), and
equilibrium with a cutoff P value of .001. In single SNP analy-  low eGFR (per 1 mL/minutes/1.73 m* decrement, OR, 1.052;
sis, a higher percentage of patients with KTD were found  95% CI, 1.016-1.090; P =.004) were also associated with KTD.
among genotype CC at position —24 and genotype AA at po- Multivariate analysis identified genotype CC at position —24
sition 1249 of ABCC2, compared to patients with other geno- and genotype AA at position 1249 of ABCC2 as independent
types (—24 CC; 14.3% [in 18 of 126 patients] vs 1.6% [in 1 of risks for KTD after adjustment for sex, age, weight, eGFR, and
64 patients]; P=.004) (1249 AA; 42.9% [in 3 of 7 patients] vs hypertension (adjusted OR,=20.08; 95% CI, 1.711-235.7;
8.7% [in 16 of 183 patients]; P =.023), respectively. The per- P=.017) (adjusted OR, 16.21; 95% CI, 1.630-161.1; P =.017),
centage of patients with KTD was also higher among genotype  respectively (Table 4). Patients with both of the abovemen-
AA at position 2677 of ABCBI, compared to patients with  tioned two homozygotes showed higher adjusted OR in multi-
other genotypes (2677 AA; 42.9% [in 3 of 7 patients] vs. 8.7%  variate analysis (adjusted OR, 38.44; 95% CI, 2.051-720.4;
[in 16 of 183 patients]; P =.023). KTD was marginally associ-  P=.015) (Table 4). On the other hand, genotype AA at posi-
ated with genotype AA at position 559 and genotype GG at  tion 2677 of ABCBI was not significantly associated with KTD
position 4976 of ABCC4 (P =.112, and .090, respectively). in multivariate analysis adjusted for the abovementioned vari-

ables (adjusted OR, 1.686; 95%ClI, .163-17.43; P =.661).
Association of Genotypes with KTD

Univariate analysis showed a significant association between Association of Haplotypes at ABCC2 and ABCC4 with KTD

KTD and patients with genotype CC at position —24  Haplotype construction was performed with the 4 identified
(OR, =10.50; 95% CI, 1.369-80.55; P =.024) and patients with ~ SNPs with P<.10 in univariate analysis: ABCC2, =24 C—> T,
genotype AA at position 1249 (OR, 7.828; 95% CIL 1.609- 1249 G — A; ABCC4, 559 G — T, 4976T — C (Table 4). Hap-
38.10; P=.011) of ABCC2 (Table 3). The risk for KTD was  lotypes with frequency of >1% were analyzed. ABCC2 haplo-
higher in patients with both genotype CC at position —24 and  type CA was significantly associated with TDF-induced KTD
genotype AA at position 1249 (OR, 31.88; 95% CI, 3.131- (OR, 2.910; 95% CI, 1.295-6.221; P=.011), whereas ABCC2
324.5; P=.003). Genotype AA at position 2677 of ABCBI was  haplotype TG was a protective haplotype (OR, 0.098; 95%
also significantly associated with KTD (OR, 7.828; 95% CI,  CI, .002-.603; P =.003). ABCC4 haplotype TT was marginally
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