Submicroscopic Deletion in 7q31 Encompassing CADPS2 and TSPAN12 in a Child With Autism Spectrum Disorder and PHPV Nobuhiko Okamoto, ¹* Yoshikazu Hatsukawa, ² Keiko Shimojima, ³ and Toshiyuki Yamamoto ³ ¹Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan Received 23 August 2010; Accepted 9 March 2011 We performed array comparative genomic hybridization utilizing a whole genome oligonucleotide microarray in a patient with the autism spectrum disorders (ASDs) and persistent hyperplastic primary vitreous (PHPV). Submicroscopic deletions in 7q31 encompassing CADPS2 (Ca²⁺-dependent activator protein for secretion 2) and TSPAN12 (one of the members of the tetraspanin superfamily) were confirmed. The CADPS2 plays important roles in the release of neurotrophin-3 and brainderived neurotrophic factor. Mutations in TSPAN12 are a relatively frequent cause of familial exudative vitreoretinopathy. We speculate that haploinsufficiency of CADPS2 and TSPAN12 contributes to ASDs and PHPV, respectively. Key words: CADPS2; TSPAN12; autism; PHPV; CGH # INTRODUCTION Autism spectrum disorders (ASDs OMIM %209850) are complex neurodevelopmental conditions characterized by social communication disabilities, no or delayed language development, and stereotyped and repetitive behaviors. A number of studies have confirmed that genetic factors play an important role in ASDs. About 10% of ASDs are associated with a Mendelian syndrome (e.g., fragile X syndrome, tuberous sclerosis and Timothy syndrome). Cytogenetic approaches revealed a high frequency of large chromosomal abnormalities (3–7% of patients), including the most frequently observed maternal 15q11-13 duplication (1–3% of patients). Association studies and mutation analysis of candidate genes have implicated the synaptic genes *NLGN3*(Neuroligin3 OMIM*300336), *NLGN4* (OMIM*300427) [Jamain et al., 2003], *SHANK3* (OMIM*606230)[Durand et al., 2007; Moessner et al., 2007], *NRXN1*(Neurexin1 MIM + 600565) [Kim et al., 2008], *SHANK2* (OMIM*603290) [Berkel et al., 2010], and *CNTNAP2* (MIM*604569) [Alarcón et al., 2008; Arking et al., 2008] in ASDs. There is increasing evidence that the *SHANK3-NLGN4-NRNX1* postsynaptic density genes play important roles in the pathogenesis of ASDs. # How to Cite this Article: Okamoto N, Hatsukawa Y, Shimojima K, Yamamoto T. 2011. Submicroscopic deletion in 7q31 encompassing *CADPS2* and *TSPAN12* in a child with autism spectrum disorder and PHPV. Am J Med Genet Part A 155:1568-1573. Recently, on association between de novo copy number variation (CNV) and ASDs was revealed. Sebat et al. [2007] performed comparative genomic hybridization (CGH) on the genomic DNA from ASD patients and unaffected subjects to detect de novo CNV. As a result, they identified CNV in 12 out of 118 (10%) patients with sporadic ASD and confirmed de novo CNV were significantly associated with ASDs. Marshall et al. [2008] performed a genome-wide search for structural abnormalities in 427 unrelated ASD patients using SNP microarray analysis and karyotyping. De novo CNV were found in approximately 7% and approximately 2% of idiopathic families with one ASD child, or two or more ASD siblings, respectively. These authors discovered a CNV at 16p11.2 with an approximate frequency of 1%. Glessner et al. [2009] reported the results from a whole-genome CNV study of many European ASD patients and controls and found several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, and genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2, and FBXO40. The investigators suggested that two gene networks, neuronal cell- Grant sponsor: Ministry of Health, Labour and Welfare of Japan. *Correspondence to: Nobuhiko Okamoto, Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodocho, Izumi, Osaka 594-1101, Japan. E-mail: okamoto@osaka.email.ne.jp Published online 27 May 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/ajmg.a.34028 © 2011 Wiley-Liss, Inc. ²Department of Ophthalmology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan ³Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan OKAMOTO ET AL. 1569 adhesion and ubiquitin degradation, that are expressed within the central nervous system contribute to the genetic susceptibility of ASDs. The International Molecular Genetic Study of Autism Consortium [1998] previously identified linkage loci on chromosomes 7 and 2, which were termed AUTS1 and AUTS5, respectively. Further genetic studies have provided evidence for AUTS1 being located on chromosome 7q [The International Molecular Genetic Study of Autism Consortium 2001]. Screening for mutations in six genes mapping to 7q, CUTL1, SRPK2, SYPL, LAMB1, NRCAM, and PTPRZ1 in 48 unrelated individuals with autism led to the identification of several new coding variants in the CUTL1, LAMB1, and PTPRZ1genes [Bonora et al., 2005]. The human Ca²⁺-dependent activator protein for secretion 2 (*CADPS2*: OMIM*609978) is also located on chromosome 7q31, which is within the AUTS1 locus [Cisternas et al., 2003]. It is a member of the CAPS/CADPS protein family that regulates the secretion of dense-core vesicles, which are abundant in the parallel fiber terminals of granule cells in the cerebellum and play important roles in the release of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF) [Sadakata et al., 2007a,b,c]. BDNF is indispensable for brain development and function, including the formation of synapses. Cisternas et al. [2003] studied *CADPS2* mutations in 90 unrelated autistic individuals, but identified no disease-specific variants. However, Sadakata et al. [2007a] reported that an aberrant, alternatively spliced *CADPS2* mRNA that lacks exon 3 (*CADPS2* Delta exon3) is detected in some patients with ASD. Persistent hyperplastic primary vitreous (PHPV) is an ocular malformation caused by the presence of a retrolental fibrovascular membrane and the persistence of the posterior portion of the tunica vasculosa lentis and the hyaloid artery. It is often accompanied by microphthalmos, cataracts, and glaucoma. NDP (OMIM *300658, X-linked) and FZD4 (OMIM *604579, dominant) were found to be mutated in unilateral and bilateral PHPV [Shastry, 2009]. These genes also cause Norrie disease and familial exudative vitreoretinopathy (FEVR), which share some clinical features with PHPV. FEVR is a genetically heterogeneous retinal disorder characterized by abnormal vascularization of the peripheral retina, which is often accompanied by retinal detachment. Mutations in the genes encoding LRP5 (OMIM *603506, dominant and recessive) also cause FEVR. Junge et al. [2009] showed that Tetraspanin12 (Tspan12) is expressed in the retinal vasculature, and loss of Tspan12 phenocopies defects are seen in Fzd4, Lrp5, and Norrin mutant mice. TSPAN12 is one of the members of the tetraspanin superfamily, characterized by the presence of four transmembrane domains. It constitutes large membrane complexes with other molecules. Nikopoulos et al. [2010] applied next-generation sequencing and found a mutation in TSPAN12 (MIM*613168). Poulter et al. [2010] described seven mutations that were identified in a cohort of 70 FEVR patients without mutations in three known genes. Mutations in TSPAN12, which is at 7q31, are a relatively frequent cause of We performed array comparative genomic hybridization (array-CGH) utilizing a 44K whole genome oligonucleotide microarray in a patient with the ASDs and PHPV. Submicroscopic deletions in 7q31 encompassing *CADPS2* and *TSPAN12* were confirmed. We speculate that haploinsufficiency of *CADPS2* and *TSPAN12* contributes to ASD and PHPV, respectively. # **CLINICAL REPORT** The patient, a 3-year-old boy, was born to nonconsanguineous healthy Japanese parents. His family history was unremarkable. He was born at 40 weeks' of gestation, his birth weight was 3,100 g, and his birth length was 50.0 cm. After birth, congenital nystagmus was noted, and he did not pursuit objects. An ophthalmological examination revealed bilateral PHPV. Cataract, glaucoma, and FEVR were not present. His gross motor development was normal, and his verbal development was delayed. At 3 years of age, he came to our hospital for evaluation because of developmental delay. On examination dysmorphic features included a round face, low-set ears, broad eyebrows, apparent hypertelorism, blepharophimosis, hypoplastic alae nasi, a long philtrum, and a small mouth. His visual acuity was low, but he could perform daily activities with some support. In addition, impairment of social interaction, poor social skills, and strict adherence to routine behaviors were noted. He showed stereotypic movements and hyperactivity in his day care room. He was diagnosed as having an ASD according to the DSM-VI criteria. His DQ was 76 according to standard Japanese method. At 3 years and 8 months of age, his height, weight, and head circumference were 88.6 cm (-2.4 SD), 11.7 kg (-1.8 SD), and 46.8 cm (-2.4 S.D), respectively. The results of routine laboratory tests were unremarkable. G-banded karyotype analysis revealed the following karyotype: 46,XY,inv(4)(p14;q21). Electroencephalography (EEG) showed occipital epileptic discharges. He was free from epileptic seizures. Ultrasound evaluation revealed echogenic bands in the posterior segments of both globes. Magnetic resonance brain imaging also showed bilateral fibrous intraocular tissue (Fig. 1). However, no specific findings were found in the CNS including the cerebellum. FIG. 1. MR coronal image, T2-weighted. Magnetic resonance imaging also showed fibrous intraocular tissue in the eye. [Color figure can be seen in the online version of this article, available at http://onlinelibrary.wiley.com/journal/10.1002/[ISSN]1552-4833]
MATERIALS AND METHODS After obtaining informed consent based on a permission approved by the institution's ethical committee, peripheral blood samples were obtained from the patient and his parents. Genomic DNA was extracted using the QIAquick DNA extraction kit (QIAgen, Valencia, CA). Array-CGH analysis was performed using the Human Genome CGH Microarray 44K (Agilent Technologies, Santa Clara, CA), as described previously [Shimojima et al., 2009]. Metaphase nuclei were prepared from peripheral blood lymphocytes using standard methods and were used for FISH analysis with human BAC clones selected from the UCSC genome browser (http://www.genome.ucsc.edu), as described elsewhere [Shimojima et al., 2009]. Physical positions refer to the March 2006 human reference sequence (NCBI Build 36.1). # **RESULTS** Using array-CGH analysis, genomic copy number loss was identified in the 7q31.31 region (Fig. 2). The deletion was 5.4 Mb in size and included *CADPS2* and *TSPAN12*, but not *FOXP2*. There were no copy number changes in chromosome 4. FISH analyses confirmed the above deletion (Fig. 3). There were no deletions in either parent indicating de novo occurrence. # DISCUSSION We described a patient with an ASD and PHPV who demonstrated submicroscopic deletion in chromosome 7q31.31. The deletion resides in the AUTS1 locus on chromosome 7q. The deleted region contained about 20 genes including *CADPS2* and *TSPAN12*. Little data are available about the association of other genes with developmental and ophthalmological disorders. We posit that haploinsufficiency of *CADPS2* and *TSPAN12* contributes to ASDs and PHPV, respectively. Our patient fulfilled the DSM-VI criteria for an ASD. Poor eye contact, impairment of social interaction, poor social skills with strict adherence to routine, stereotypic movements, and hyperactivity were noted. However, his intellectual disability was mild. Ataxic movement was not observed. There have been several reports of small deletions on chromosome 7q. Lennon et al. [2007] reported a young male with moderate intellectual disability, dysmorphic features, and language delay who had a deletion in the 7q31.1-7q31.31 region, which included the *FOXP2* gene. The patient demonstrated language impairment, including developmental verbal dyspraxia, but did not meet the criteria for autism. Cukier et al. [2009] reported a chromosomal inversion spanning the region from approximately 7q22.1 to 7q31 in autistic siblings. They suggested that an autism susceptibility gene is located in the chromosome 7q22–31 region. Dauwerse et al. FIG. 2. Array-CGH of the patient. Loss of the genomic copy numbers was identified in the region of 7q31.31. The deletion size was 5.4 Mb and included CADPS2 and TSPAN12. FIG. 3. FISH analyses of the patient. Arrow head indicates the deletion at 7q31.31. [2010] characterized a de novo complex rearrangement of the long arm of chromosome 7 in a female patient with moderate mental retardation, anxiety disorder, and autistic features and suggested that disruption of the *C7orf58* gene contributed to the anxiety disorder, and autistic features of their patient. The *C7orf58* gene was also deleted in our patient. However, there have been no basic studies on the association of the *C7orf58* gene and brain function. Further studies are necessary on the role of the *C7orf58* gene. Sadakata et al. [2007b] studied the behavior of Cadps2-/- mice. They showed impaired social interaction, hyperactivity, decreased exploratory behavior, and/or increased anxiety in a novel environment and deficits in intrinsic sleep-wake regulation and circadian rhythmicity. In addition, maternal neglect of newborns was a striking feature. They identified that Cadps2-/- mice show deficient release of NT-3 and BDNF. Cerebellar development was impaired in the mice. Sadakata et al. [2007a] found an aberrant alternatively spliced CADPS2 mRNA that lacks exon 3 in some autistic patients. Exon 3 was shown to encode the dynactin 1binding domain and affect axonal CADPS2 protein distribution. Exon 3-skipped CADPS2 protein possesses almost normal BDNF releasing activity but is not properly transported into the axons of neocortical or cerebellar neurons. However, Eran et al. [2009] observed no difference in prevalence of exon 3 skipping between ASDs and control samples. They concluded that exon 3 skipping represents a normal, minor isoform of CADPS2 in the cerebellum and is likely not a mechanism underlying autism susceptibility or pathogenesis. Our result may reinforce the evidence that CADPS2 is associated with ASDs. Cisternas et al. [2003] studied *CADPS2* gene mutations in 90 unrelated autistic individuals. However, they identified no disease-specific variants. Their results indicate that *CADPS2* mutations are not a major cause of ASDs. However, although small deletions of *CADPS2* as found in the present patient, might be rare, they support the idea that *CADPS2* abnormalities are associated with autism susceptibility. Nikopoulos et al. [2010] reported two missense mutations in five of 11 FEVR families, indicating that mutations in *TSPAN12* are a relatively frequent cause of FEVR. Both residues are completely conserved throughout vertebrate evolution. These authors suggested that both haploinsufficiency and a dominant-negative effect of the mutant TSPAN12 on the wild-type protein should be considered as underlying disease mechanisms. Poulter et al. [2010] described mutations in the *TSPAN12* gene in FEVR patients and suggested that haploinsufficiency of *TSPAN12* causes FEVR because at least four of the seven mutations are predicted to lead to transcripts with premature-termination codons that are likely to be targeted by nonsense-mediated decay. Recently, the Norrin/Frizzled4 signaling pathway that acts on the on the surface of developing endothelial cells and controls retinal vascular development is highlighted [Ye et al., 2010]. This pathway is composed of Norrin, its transmembrane receptor, Frizzled4, coreceptor, Lrp5, and an auxiliary membrane protein, Tspan12. The resulting signal controls a transcriptional program that regulates endothelial growth and maturation. PHPV and FEVR are associated with their pathogenesis. Our findings indicate that haploinsufficiency of *TSPAN12* is a plausible causative mechanism for PHPV. It will be interesting to study *TSPAN12* abnormalities in PHPV without *NDP* and *FZD4* mutations. Singh et al. [2006] reported a voltage-gated potassium channel gene mutation in a temporal lobe epilepsy patient, namely a Kv4.2 truncation mutation lacking the last 44 amino acids in the carboxyl terminal. Kv4.2 channel is encoded by the *KCND2* gene. We suggest that the epileptic discharges on EEG reflect neuronal excitability caused by haploinsufficiency of *KCND2*. Shen et al. [2010] suggested that using chromosomal microarray analysis to test for submicroscopic genomic deletions and duplications should be considered as part of the initial diagnostic evaluation of patients with ASDs. Miller et al. [2010] suggested that the use of chromosomal microarray is recommended as the first-tier cytogenetic diagnostic test for patients with unexplained developmental delay/intellectual disability, ASDs, or multiple congenital anomalies. In patients with ASDs and other anomalies, chromosomal microarray may be the useful method to clarify the underlying defect. # **ACKNOWLEDGMENTS** We thank the patient's family for their cooperation. This study was supported by Health and Labour Research Grants from the Ministry of Health, Labour and Welfare of Japan. #### REFERENCES Alarcón M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, Sebat J, Wigler M, Martin CL, Ledbetter DH, Nelson SF, Cantor RM, Geschwind DH. 2008. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 82:150–159. Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M, Rea A, Guy M, Lin S, Cook EH, Chakravarti A. 2008. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 82:160–164. - Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U, Endris V, Roberts W, Szatmari P, Pinto D, Bonin M, Riess A, Engels H, Sprengel R, Scherer SW, Rappold GA. 2010. Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42:489–491. - Bonora E, Lamb JA, Barnby G, Sykes N, Moberly T, Beyer KS, Klauck SM, Poustka F, Bacchelli E, Blasi F, Maestrini E, Battaglia A, Haracopos D, Pedersen L, Isager T, Eriksen G, Viskum B, Sorensen EU, Brondum-Nielsen K, Cotterill R, Engeland H, Jonge M, Kemner C, Steggehuis K, Scherpenisse M, Rutter M, Bolton PF, Parr JR, Poustka A, Bailey AJ, Monaco AP, International Molecular Genetic Study of Austism Consortium. 2005. Mutation screening and association analysis of six candidate genes for autism on chromosome 7q. Eur J Hum Genet 13:198–207. - Cisternas FA, Vincent JB, Scherer SW, Ray PN. 2003. Cloning and characterization of human CADPS and CADPS2, new members of the Ca²⁺-dependent activator for secretion protein family. Genomics 81: 279–291. - Cukier HN, Skaar DA, Rayner-Evans MY, Konidari I, Whitehead PL, Jaworski JM, Cuccaro ML, Pericak-Vance MA, Gilbert JR. 2009. Identification of chromosome 7 inversion breakpoints in an autistic family narrows candidate region for autism susceptibility. Autism Res 2: 258–266 - Dauwerse JG, Ruivenkamp CA, Hansson K, Marijnissen GM, Peters DJ, Breuning MH, Hilhorst-Hofstee Y. 2010. A complex chromosome 7q rearrangement identified in a patient with mental retardation, anxiety disorder, and autistic features. Am J Med Genet Part A 152A:427–433. - Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C,
Leboyer M, Bourgeron T. 2007. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39:25–27. - Eran A, Graham KR, Vatalaro K, McCarthy J, Collins C, Peters H, Brewster SJ, Hanson E, Hundley R, Rappaport L, Holm IA, Kohane IS, Kunkel LM. 2009. Comment on "Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients". J Clin Invest 119: 679–680. - Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S, Zhang H, Estes A, Brune CW, Bradfield JP, Imielinski M, Frackelton EC, Reichert J, Crawford EL, Munson J, Sleiman PM, Chiavacci R, Annaiah K, Thomas K, Hou C, Glaberson W, Flory J, Otieno F, Garris M, Soorya L, Klei L, Piven J, Meyer KJ, Anagnostou E, Sakurai T, Game RM, Rudd DS, Zurawiecki D, McDougle CJ, Davis LK, Miller J, Posey DJ, Michaels S, Kolevzon A, Silverman JM, Bernier R, Levy SE, Schultz RT, Dawson G, Owley T, McMahon WM, Wassink TH, Sweeney JA, Nurnberger JI, Coon H, Sutcliffe JS, Minshew NJ, Grant SF, Bucan M, Cook EH, Buxbaum JD, Devlin B, Schellenberg GD, Hakonarson H. 2009. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 459:569–573. - International Molecular Genetic Study of Autism Consortium. 1998. A full genome screen for autism with evidence for linkage to a region on chromosome 7q. Hum Mol Genet 7:571–578. - International Molecular Genetic Study of Autism Consortium (IMGSAC). 2001. Further characterization of the autism susceptibility locus AUTS1 on chromosome 7q. Hum Mol Genet 10:973–982. - Jamain S, Quach H, Betancur C, Råstam M, Colineaux C, Gillberg IC, Soderstrom H, Giros B, Leboyer M, Gillberg C, Bourgeron T. Paris Autism Research International Sibpair Study. 2003. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 34:27–29. - Junge HJ, Yang S, Burton JB, Paes K, Shu X, French DM, Costa M, Rice DS, Ye W. 2009. TSPAN12 regulates retinal vascular development by promoting Norrin- but not Wnt-induced FZD4/beta-catenin signaling. Cell 139:299–311. - Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y, Lally E, Weiss LA, Najm J, Kutsche K, Descartes M, Holt L, Braddock S, Troxell R, Kaplan L, Volkmar F, Klin A, Tsatsanis K, Harris DJ, Noens I, Pauls DL, Daly MJ, MacDonald ME, Morton CC, Quade BJ, Gusella JF. 2008. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 82:199–207. - Lennon PA, Cooper ML, Peiffer DA, Gunderson KL, Patel A, Peters S, Cheung SW, Bacino CA. 2007. Deletion of 7q31.1 supports involvement of FOXP2 in language impairment: Clinical report and review. Am J Med Genet A 143A:791–798. - Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, Shago M, Moessner R, Pinto D, Ren Y, Thiruvahindrapduram B, Fiebig A, Schreiber S, Friedman J, Ketelaars CE, Vos YJ, Ficicioglu C, Kirkpatrick S, Nicolson R, Sloman L, Summers A, Gibbons CA, Teebi A, Chitayat D, Weksberg R, Thompson A, Vardy C, Crosbie V, Luscombe S, Baatjes R, Zwaigenbaum L, Roberts W, Fernandez B, Szatmari P, Scherer SW. 2008. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 82:477–488. - Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB, Stavropoulos DJ, Tepperberg JH, Thorland EC, Vermeesch JR, Waggoner DJ, Watson MS, Martin CL, Ledbetter DH. 2010. Consensus statement: Chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86:749–764. - Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer SW. 2007. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81:1289–1297. - Nikopoulos K, Gilissen C, Hoischen A, van Nouhuys CE, Boonstra FN, Blokland EA, Arts P, Wieskamp N, Strom TM, Ayuso C, Tilanus MA, Bouwhuis S, Mukhopadhyay A, Scheffer H, Hoefsloot LH, Veltman JA, Cremers FP, Collin RW. 2010. Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am J Hum Genet 86:240–247. - Poulter JA, Ali M, Gilmour DF, Rice A, Kondo H, Hayashi K, Mackey DA, Kearns LS, Ruddle JB, Craig JE, Pierce EA, Downey LM, Mohamed MD, Markham AF, Inglehearn CF, Toomes C. 2010. Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am J Hum Genet 86:248–253. - Sadakata T, Washida M, Iwayama Y, Shoji S, Sato Y, Ohkura T, Katoh-Semba R, Nakajima M, Sekine Y, Tanaka M, Nakamura K, Iwata Y, Tsuchiya KJ, Mori N, Detera-Wadleigh SD, Ichikawa H, Itohara S, Yoshikawa T, Furuichi T. 2007a. Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. J Clin Invest 117:931–943. - Sadakata T, Kakegawa W, Mizoguchi A, Washida M, Katoh-Semba R, Shutoh F, Okamoto T, Nakashima H, Kimura K, Tanaka M, Sekine Y, Itohara S, Yuzaki M, Nagao S, Furuichi T. 2007b. Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J Neurosci 27:2472—2482. - Sadakata T, Washida M, Furuichi T. 2007c. Alternative splicing variations in mouse CAP S2: Differential expression and functional properties of splicing variants. BMC Neurosci 8:25. - Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee YH, Hicks 1573 - J, Spence SJ, Lee AT, Puura K, Lehtimäki T, Ledbetter D, Gregersen PK, Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King MC, Skuse D, Geschwind DH, Gilliam TC, Ye K, Wigler M. 2007. Strong association of de novo copy number mutations with autism. Science 316:445–449. - Shastry BS. 2009. Persistent hyperplastic primary vitreous: Congenital malformation of the eye. Clin Experiment Ophthalmol 37:884–890. - Shen Y, Dies KA, Holm IA, Bridgemohan C, Sobeih MM, Caronna EB, Miller KJ, Frazier JA, Silverstein I, Picker J, Weissman L, Raffalli P, Jeste S, Demmer LA, Peters HK, Brewster SJ, Kowalczyk SJ, Rosen-Sheidley B, McGowan C, Duda AW III, Lincoln SA, Lowe KR, Schonwald A, Robbins M, Hisama F, Wolff R, Becker R, Nasir R, Urion DK, Milunsky JM, Rappaport L, Gusella JF, Walsh CA, Wu BL, Miller DT. Autism Consor- - tium Clinical Genetics/DNA Diagnostics Collaboration. 2010. Clinical genetic testing for patients with autism spectrum disorders. Pediatrics 125:e727–e735. - Shimojima K, Páez MT, Kurosawa K, Yamamoto T. 2009. Proximal interstitial 1p36 deletion syndrome: The most proximal 3.5-Mb microdeletion identified on a dysmorphic and mentally retarded patient with inv(3)(p14.1q26.2). Brain Development 31:629–633. - Singh B, Ogiwara I, Kaneda M, Tokonami N, Mazaki E, Baba K, Matsuda K, Inoue Y, Yamakawa K. 2006. A Kv4.2 truncation mutation in a patient with temporal lobe epilepsy. Neurobiol Dis 24:245–253. - Ye X, Wang Y, Nathans J. 2010. The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol Med 16:417–425. www.nature.com/jhg # ORIGINAL ARTICLE # Clinical application of array-based comparative genomic hybridization by two-stage screening for 536 patients with mental retardation and multiple congenital anomalies Shin Hayashi^{1,2}, Issei Imoto^{1,3}, Yoshinori Aizu⁴, Nobuhiko Okamoto⁵, Seiji Mizuno⁶, Kenji Kurosawa⁷, Nana Okamoto^{1,8}, Shozo Honda¹, Satoshi Araki⁹, Shuki Mizutani⁹, Hironao Numabe¹⁰, Shinji Saitoh¹¹, Tomoki Kosho¹², Yoshimitsu Fukushima¹², Hiroshi Mitsubuchi¹³, Fumio Endo¹³, Yasutsugu Chinen¹⁴, Rika Kosaki¹⁵, Torayuki Okuyama¹⁵, Hirotaka Ohki¹⁶, Hiroshi Yoshihashi¹⁷, Masae Ono¹⁸, Fumio Takada¹⁹, Hiroaki Ono²⁰, Mariko Yagi²¹, Hiroshi Matsumoto²², Yoshio Makita²³, Akira Hata²⁴ and Johji Inazawa^{1,25} Recent advances in the analysis of patients with congenital abnormalities using array-based comparative genome hybridization (aCGH) have uncovered two types of genomic copy-number variants (CNVs); pathogenic CNVs (pCNVs) relevant to congenital disorders and benign CNVs observed also in healthy populations, complicating the screening of disease-associated alterations by aCGH. To apply the aCGH technique to the diagnosis as well as investigation of multiple congenital anomalies and mental retardation (MCA/MR), we constructed a consortium with 23 medical institutes and hospitals in Japan, and recruited 536 patients with clinically uncharacterized MCA/MR, whose karyotypes were normal according to conventional cytogenetics, for two-stage screening using two types of bacterial artificial chromosome-based microarray. The first screening using a targeted array detected pCNV in 54 of 536 cases (10.1%), whereas the second screening of the 349 cases negative in the first screening using a genome-wide high-density array at intervals of approximately 0.7 Mb detected pCNVs in 48 cases (13.8%), including pCNVs relevant to recently established microdeletion or microduplication syndromes, CNVs containing pathogenic genes and recurrent CNVs containing the same region among different patients. The results show the efficient application of aCGH in the clinical setting. *Journal of Human Genetics* (2011) 56, 110–124; doi:10.1038/jhg.2010.129; published online 28 October 2010 Keywords: array-CGH; congenital anomaly; mental retardation; screening # INTRODUCTION Mental retardation (MR) or developmental delay is estimated to affect 2–3% of the population. However, in a significant proportion of cases, the etiology remains uncertain. Hunter reviewed 411 clinical cases of MR and reported that a specific genetic/syndrome diagnosis was carried out in 19.9% of them. Patients with MR often have congenital anomalies, and more than three minor anomalies can be useful in the diagnosis of
syndromic MR.^{2,3} Although chromosomal aberrations are well-known causes of MR, their frequency determined by conventional karyotyping has been reported to range from 7.9 to 36% in patients with MR.^{4–8} Although the diagnostic yield depends on the population of each study or clinical conditions, such studies ¹Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan; ²Hard Tissue Genome Research Center, Tokyo Medical and Dental University, Tokyo, Japan; ³Department of Human Genetics and Public Health Graduate School of Medical Science, The University of Tokushima, Japan; ⁴Division of Advanced Technology and Development, BML, Saitama, Japan; ⁵Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan; ⁶Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Japan; ⁷Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan; ⁸Department of Maxillofacial Orthognathics, Graduate School, Tokyo, Medical and Dental University, Tokyo, Japan; ⁹Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan; ¹⁰Department of Medical Genetics, Kyoto University Hospital, Kyoto, Japan; ¹¹Department of Pediatrics, Hokkaido University Graduate School of Medicine, Science, Kumamoto, Japan; ¹³Department of Pediatrics, University Graduate School of Medicals, Science, Correspondence: Professor J Inazawa, Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan. E-mail: johinaz.cgen@mri.tmd.ac.jp Received 20 August 2010; revised 25 September 2010; accepted 30 September 2010; published online 28 October 2010 suggest that at least three quarters of patients with MR are undiagnosed by clinical dysmorphic features and karyotyping. In the past two decades, a number of rapidly developed cytogenetic and molecular approaches have been applied to the screening or diagnosis of various congenital disorders including MR, congenital anomalies, recurrent abortion and cancer pathogenesis. Among them, array-based comparative genome hybridization (aCGH) is used to detect copy-number changes rapidly in a genome-wide manner and with high resolution. The target and resolution of aCGH depend on the type and/or design of mounted probes, and many types of microarray have been used for the screening of patients with MR and other congenital disorders: bacterial artificial chromosome (BAC)-based arrays covering whole genomes, 9,10 BAC arrays covering chromosome X,11,12 a BAC array covering all subtelomeric regions,13 oligonucleotide arrays covering whole genomes, 14,15 an oligonucleotide array for clinical diagnosis16 and a single nucleotide polymorphism array covering the whole genome. 17 Because genome-wide aCGH has led to an appreciation of widespread copy-number variants (CNVs) not only in affected patients but also in healthy populations, 18-20 clinical cytogenetists need to discriminate between CNVs likely to be pathogenic (pathogenic CNVs, pCNVs) and CNVs less likely to be relevant to a patient's clinical phenotypes (benign CNVs, bCNVs).²¹ The detection of more CNVs along with higher-resolution microarrays needs more chances to assess detected CNVs, resulting in more confusion in a clinical setting. We have applied aCGH to the diagnosis and investigation of patients with multiple congenital anomalies and MR (MCA/MR) of unknown etiology. We constructed a consortium with 23 medical institutes and hospitals in Japan, and recruited 536 clinically uncharacterized patients with a normal karyotype in conventional cytogenetic tests. Two-stage screening of copy-number changes was performed using two types of BAC-based microarray. The first screening was performed by a targeted array and the second screening was performed by an array covering the whole genome. In this study, we diagnosed well-known genomic disorders effectively in the first screening, assessed the pathogenicity of detected CNVs to investigate an etiology in the second screening and discussed the clinical significance of aCGH in the screening of congenital disorders. # MATERIALS AND METHODS #### Subjects We constructed a consortium of 23 medical institutes and hospitals in Japan, and recruited 536 Japanese patients with MCA/MR of unknown etiology from July 2005 to January 2010. All the patients were physically examined by an expert in medical genetics or a dysmorphologist. All showed a normal karyotype by conventional approximately 400-550 bands-level G-banding karyotyping, Genomic DNA and metaphase chromosomes were prepared from peripheral blood lymphocytes using standard methods. Genomic DNA from a lymphoblastoid cell line of one healthy man and one healthy woman were used as a normal control for male and female cases, respectively. All samples were obtained with prior written informed consent from the parents and approval by the local ethics committee and all the institutions involved in this project. For subjects in whom CNV was detected in the first or second screening, we tried to analyze their parents as many as possible using aCGH or fluorescence in situ hybridization (FISH). #### Array-CGH analysis Among our recently constructed in-house BAC-based arrays,²² we used two arrays for this two-stage survey. In the first screening we applied a targeting array, 'MCG Genome Disorder Array' (GDA). Initially GDA version 2, which contains 550 BACs corresponding to subtelomeric regions of all chromosomes except 13p, 14p, 15p, 21p and 22p and causative regions of about 30 diseases already reported, was applied for 396 cases and then GDA version 3, which contains 660 BACs corresponding to those of GDA version 2 and pericentromeric regions of all chromosomes, was applied for 140 cases. This means that a CNV detected by GDA is certainly relevant to the patient's phenotypes. Subsequently in the second screening we applied 'MCG Whole Genome Array-4500' (WGA-4500) that covers all 24 human chromosomes with 4523 BACs at intervals of approximately 0.7 Mb to analyze subjects in whom no CNV was detected in the first screening. WGA-4500 contains no BACs spotted on GDA. If necessary, we also used 'MCG X-tiling array' (X-array) containing 1001 BAC/PACs throughout X chromosome other than pseudoautosomal regions.¹² The array-CGH analysis was performed as previously described.^{12,23} For several subjects we applied an oligonucleotide array (Agilent Human Genome CGH Microarray 244K; Agilent Technologies, Santa Clara, CA, USA) to confirm the boundaries of CNV identified by our in-house BAC arrays. DNA labeling, hybridization and washing of the array were performed according to the directions provided by the manufacturer. The hybridized arrays were scanned using an Agilent scanner (G2565BA), and the CGH Analytics program version 3.4.40 (Agilent Technologies) was used to analyze copy-number alterations after data extraction, filtering and normalization by Feature Extraction software (Agilent Technologies). #### Fluorescence in situ hybridization Fluorescence in situ hybridization was performed as described elsewhere²³ using BACs located around the region of interest as probes. # **RESULTS** # CNVs detected in the first screening In the first screening, of 536 cases subjected to our GDA analysis, 54 (10.1%) were determined to have CNV (Figure 1; Tables 1 and 2). Figure 1 Percentages of each screening in the current study. Table 1 A total of 40 cases with CNV at subtelomeric region(s) among 54 positive cases in the first screening | | Position where | e CNV detected | | | | |--------|---|----------------|---|------------------------------------|--------------------------------| | Gender | Loss | Gain | Corresponding disorder ^a | OMIM or citation | Parental analysis ^b | | M | 1p36.33 | | Chromosome 1p36 deletion syndrome | #607872 | | | М | 1p36.33p36.32 | | Chromosome 1p36 deletion syndrome | #607872 | | | M | 1p36.33p36.32 | | Chromosome 1p36 deletion syndrome | #607872 | | | M | 1p36.33p36.32 | | Chromosome 1p36 deletion syndrome | #607872 | | | M | 1q44 | | Chromosome 1q43-q44 deletion syndrome | #612337 | | | E | 2q37.3 | | 2q37 monosomy ^c | Shrimpton et al. ²⁴ | | | F | 2q37.3
2q37.3 | | 2q37 monosomy ^c | Shrimpton et al. ²⁴ | | | | 3q29 | | | #609425 | | | M | | | Chromosome 3q29 deletion syndrome | | | | F | 5p15.33p15.32 | | Cri-du-chat syndrome | #123450 | | | M | 5q35.2q35.3 | | Chromosome 5q subtelomeric deletion syndrome | Rauch et al.25 | | | F | 6p25.3 | | Chromosome 6pter-p24 deletion syndrome | #612582 | | | M | 7q36.3 | | 7q36 deletion syndrome ^d | Horn <i>et al.</i> ²⁶ | | | F | 7q36.3 | | 7q36 deletion syndrome ^d | Horn <i>et al.</i> ²⁶ | | | M | 9p24.3p24.2 | | Chromosome 9p deletion syndrome | #158170 | | | F | 9q34.3 | | Kleefstra syndrome | #610253 | | | F | 10q26.3 | | Chromosome 10q26 deletion syndrome | #609625 | | | F | 16p13.3 | | Chromosome 16p13.3 deletion syndrome | #610543 | | | F | 22q13.31 | | Chromosome 22q13 deletion syndrome | #606232 | | | M | 22q13.31q13.33 | | Chromosome 22q13 deletion syndrome | #606232 | | | M | | 15q26.3 | 15q overgrowth syndrome ^c | Tatton-Brown et al. ²⁷ | | | F | | 15q26.3 | 15q overgrowth syndrome ^c | Tatton-Brown et al. ²⁷ | | | M | | 21q22.13q22.3 | Down's syndrome (partial trisomy 21) | #190685 | | | M | | Xp22.33 | A few cases have been reported; e.g. V5-130 in Lu <i>et al.</i> ²⁸ | #150005 | | | M | | · | | #300815 | | | | 1-44 | Xq28 | Chromosome Xq28 duplication syndrome | | | | F | 1q44 | 0-02 0-02 2 | Chromosome 1q43-q44 deletion syndrome | #612337 | | | | 2-06.2 | 8p23.2p23.3 | On the Late of the country and | F | | | M | 3p26.3 | 10 10 00 11 00 | 3p deletion syndrome ^d |
Fernandez et al. ²⁹ | | | | | 12p13.33p11.22 | | | | | F | 3p26.3 | | 3p deletion syndrome ^d | Fernandez et al. ²⁹ | | | | | 16p13.3 | Chromosome 16p13.3 duplication syndrome | #613458 | | | F | 4q35.2 | | 4q— syndrome ^d | Jones <i>et al.</i> ³⁰ | | | | | 7q36.3 | | | | | M | 5p15.33 | | Cri-du-chat syndrome | #123450 | | | | | 20p13 | | | | | M | 5p15.33p15.32 | | Cri-du-chat syndrome | #123450 | | | | | 2p25.3 | | | | | F | 6q27 | | 6q terminal deletion syndromed | Striano et al.31 | | | | · | 11q25 | · | | | | F | 6q27 | , | 6q terminal deletion syndrome ^d | Striano et al.31 | | | | -4- | 8g24.3 | oq tommar adventor eynereme | ourano de atr | | | M | 7q36.3 | 0420 | 7q36 deletion syndrome ^d | Horn et al. ²⁶ | dn | | | 7 400.0 | 1q44 | 7 450 deletion syndrome | nom cran. | G// | | M | 9p24.3p24.2 | 1444 | Chromosoma On deletion aundrema | #158170 | | | IVI | 9pz4.3pz4.z | 7*20.0 | Chromosome 9p deletion syndrome | #136170 | | | | 10 150 150 | 7q36.3 | 20 | | | | F | 10p15.3p15.2 | | Chromosome 10p terminal deletion ^d | Lindstrand et al. ³² | pat | | | | 7p22.3p22.2 | | | | | M | 10p15.3 | | Chromosome 10p terminal deletion ^d | Lindstrand et al.32 | | | | | 2p25.3 | | | | | M | 10q26.3 | | Chromosome 10q26 deletion syndrome | #609625 | | | | | 2q37.3 | Distal trisomy 2q ^d | Elbracht et al.33 | | | M | 18q23 | | Chromosome 18q deletion syndrome | #601808 | | | | | 7q36.3 | | | | | F | 22q13.31q13.33 | | Chromosome 22q13.3 deletion syndrome | #606232 | pat | | | , | 17q25.3 | One case was reported | Lukusa et al. ³⁴ | • | | M | Xp22.33/Yp11.32 | • | Contiguous gene–deletion syndrome on Xp22.3 ^d | Fukami <i>et al.</i> ³⁵ | | | | | Xa27 3a28 | Chromosome Xq28 duplication syndrome | | | | | | Xq27.3q28 | Unromosome Aq28 auphcation syndrome | #300815 | | Abbreviations: F, female; CNV, copy-number variant; M, male; OMIM, Online Mendelian Inheritance in Man; dn, de novo CNV observed in neither of the parents. The name of disorder is based on entry names of OMIM, expect for entry names in DECIPHER and description in each cited article. Pat, father had a balanced translocation involved in corresponding subtelomeric regions. Entry names in DECIPHER. Description in each cited article. All the CNVs detected in the first screening were confirmed by FISH. Among the positive cases, in 24 cases one CNV was detected. All the CNVs corresponded to well-established syndromes or already described disorders (Table 1). In 16 cases two CNVs, one deletion and one duplication, were detected at two subtelomeric regions, indicating that one of parents might be a carrier with reciprocal translocation involved in corresponding subtelomeric regions, and at least either of the two CNVs corresponded to the disorders. We also performed parental analysis by FISH for three cases whose parental samples were available, and confirmed that in two cases the subtelomeric aberrations were inherited from paternal balanced translocation and in one case the subtelomeric aberrations were de novo (Table 1). In the other 14 cases, CNVs (25.9%) were detected in regions corresponding to known disorders (Table 2). CNVs detected in the second screening and assessment of the CNVs Cases were subject to the second screening in the order of subjects detected no CNV in the first screening, and until now we have analyzed 349 of 482 negative cases in the first screening. In advance, we excluded highly frequent CNVs observed in healthy individuals and/or in multiple patients showing disparate phenotypes from the present results based on an internal database, which contained all results of aCGH analysis we have performed using WGA-4500, or other available online databases; for example, Database of Genomic Variant (http://projects.tcag.ca/variation/). As a result, we detected 66 CNVs in 63 cases (Figure 1; Table 3). Among them, three patients (cases 36, 42 and 44) showed two CNVs. All the CNVs detected in the second screening were confirmed by other cytogenetic methods including FISH and/or X-array. For 60 cases, we performed FISH for confirmation and to determine the size of each CNV. For five cases, cases 13, 36, 48, 57 and 63, with CNVs on the X chromosome, we used the X-array instead of FISH. For cases 4, 6, 16-19 and 34, we also used Agilent Human Genome CGH Microarray 244K to determine the refined sizes of CNVs. The maximum and minimum sizes of each CNV determined by these analyses are described in Table 3. # Well-documented pCNVs emerged in the second screening CNVs identified for recently established syndromes. We assessed the pathogenicity of the detected CNVs in several aspects (Figure 2). 21,37,38 First, in nine cases, we identified well-documented pCNVs, which are responsible for syndromes recently established. A heterozygous deletion at 1q41-q42.11 in case 2 was identical to patients in the first report of 1q41q42 microdeletion syndrome.³⁹ Likewise a CNV in case 3 was identical to chromosome 1q43-q44 deletion syndrome (OMIM: #612337),40 a CNV in case 4 was identical to 2q23.1 microdeletion syndrome, 41 a CNV in case 5 was identical to 14q12 microdeletion syndrome⁴² and a CNV in case 6 was identical to chromosome 15q26-qter deletion syndrome (Drayer's syndrome) (OMIM: #612626).43 Cases 7, 8 and 9 involved CNVs of different sizes at 16p12.1-p11.2, the region responsible for 16p11.2-p12.2 microdeletion syndrome. 44,45 Although an interstitial deletion at 1p36.23p36.22 observed in case 1 partially overlapped with a causative region of chromosome 1p36 deletion syndrome (OMIM: #607872), the region deleted was identical to a proximal interstitial 1p36 deletion that was recently reported.46 Because patients with the proximal 1p36 deletion including case 1 demonstrated different clinical characteristics from cases of typical chromosome 1p36 deletion syndrome, in the near term their clinical features should be redefined as an independent syndrome.44 CNVs containing pathogenic gene(s). In four cases we identified pCNVs that contained a gene(s) probably responsible for phenotypes. In case 10, the CNV had a deletion harboring GLI3 (OMIM: *165240) Table 2 Other cases among 54 positive cases in the first screening | | Position where | e CNV detected | | | |--------|----------------|----------------|---------------------------|----------| | Gender | Gain | Loss | Corresponding disorder | OMIM | | F | | 4p16.3 | Ring chromosome | | | | | 4q35.2 | | | | M | | 3q22.323 | BPES | #110100 | | M | | 2q22.3 | ZFHX1B region | *605802 | | M | | 4q22.1 | Synuclein (SNCA) region | *163890 | | F | | 7p21.1 | Craniosynostosis, type 1 | #123100 | | F | | 7q11.23 | Williams syndrome | #194050 | | F | | 8q23.3q24.11 | Langer-Giedion syndrome | #150230 | | M | 15q11.2q13.1 | | Prader-Willi/Angelman | #176270/ | | | | | | #105830 | | F | | 17p11.2 | Smith-Magenis syndrome | #182290 | | M | | 17q11.2 | Neurofibromatosis, type I | +162200 | | M | 22q11.21 | | DiGeorge syndrome | #188400 | | F | | 22q11.21 | DiGeorge syndrome | #188400 | | F | Xp22.31 | | Kallmann syndrome 1 | +308700 | | F | Whole X | | Mosaicism | | Abbreviations: CNV, copy-number variant; F, female; M, male; OMIM. Online Mendelian Inheritance in Man. accounting for Greig cephalopolysyndactyly syndrome (GCS; OMIM: 175700).⁴⁷ Although phenotypes of the patient, for example, pre-axial polydactyly of the hands and feet, were consistent with GCS, his severe and atypical features of GCS, for example, MR or microcephaly, might be affected by other contiguous genes contained in the deletion.⁴⁸ Heterozygous deletions of BMP4 (OMIM: *112262) in case 11 and CASK (OMIM: *300172) in case 13 have been reported previously. 49,50 In case 12, the CNV contained YWHAE (OMIM: *605066) whose haploinsufficiency would be involved in MR and mild CNS dysmorphology of the patient because a previous report demonstrated that haploinsufficiency of ywhae caused a defect of neuronal migration in mice⁵¹ and a recent report also described a microdeletion of YWHAE in a patient with brain malformation.⁵² Recurrent CNVs in the same regions. We also considered recurrent CNVs in the same region as pathogenic; three pairs of patients had overlapping CNVs, which have never been reported previously. Case 16 had a 3.3-Mb heterozygous deletion at 10q24.31-q25.1 and case 17 had a 2.0-Mb deletion at 10q24.32-q25.1. The clinical and genetic information will be reported elsewhere. Likewise, cases 14 and 15 also had an overlapping CNV at 6q12-q14.1 and 6q14.1, and cases 18 and 19 had an overlapping CNV at 10p12.1-p11.23. Hereafter, more additional cases with the recurrent CNV would assist in defining new syndromes. CNVs reported as pathogenic in previous studies. Five cases were applicable to these criteria. A deletion at 3p21.2 in case 20 overlapped with that in one case recently reported.⁵³ The following four cases had CNVs reported as pathogenic in recent studies: a CNV at 7p22.1 in case 21 overlapped with that of patient 6545 in a study by Friedman et al., 14 a CNV at 14q11.2 in case 22 overlapped with those of patients 8326 and 5566 in Friedman et al., 14 a CNV at 17q24.1-q24.2 in case 23 overlapped with that in patient 99 in Buysse et al.54 and a CNV at 19p13.2 in case 24 overlapped with case P11 in Fan et al.55 Large or gene-rich CNVs, or CNVs containing morbid OMIM genes. In cases inapplicable to the above criteria, we assessed CNVs Table 3 Sixty-three cases with CNV in the 2nd screening | | | Clinical | Remarkable
clinical | | | | | | | | of the identified | | | | l coding | assess- | Corresponding
or candidate | |------|-------|-------------|------------------------------|-----|---------------|---|--|---------------|-------------|-------------|-------------------|------------|------------|----------|----------|-------------------|-------------------------------| | Case | Gende | r
diagnosis | features | CN | / Position | WGA-4500 ^b | FISH ^b | Start (max) | Start (min) | End (min) | End (max) | Size (min) | Size (max) | analysis | genesc | ment ^d | gene(s) | | 1 | М | MCA/MR | | del | 1p36.23p36.22 | arr cgh
1p36.23p36.22
(RP11-81J7 →
RP11-19901)x1 | ish del(1)(p36.23p36.22)
(RP11-462M3+,
RP11-106A3-,
RP11-28P4+)dn | 8 585 127 | 8 890 860 | 10 561 097 | 11 143 717 | 1 670 237 | 2 558 590 | dn | 32 | P | | | 2 | М | MCA/MR | | del | 1q41q42.11 | arr cgh 1q41
(RP11-135J2→
RP11-239E10)x1 | ish del(1)(q41q42.11)
(RP11-706L9+,
RP11-224019-,
RP11-36704-)dn | 215 986 492 3 | 216532600 | 221 534 398 | 222 467 931 | 5001798 | 6 481 439 | dn | 35 | Р | | | 3 | F | MCA/MR | Epilepsy | del | 1q44 | arr cgh 1q44
(RP11-156E8)x1 | ish del(1)(q44)
(RP11-56019+,
RP11-156E8-) | 241 996 973 : | 243 177 632 | 243 251 660 | 244 141 010 | 74028 | 2 144 037 | | 11 | Р | | | 4 | F | MCA/MR | | del | 2q22 | arr cgh 2q23.1
(RP11-72H23)x1 | ish del(2)(q23.1)
(RP11-375H16-) | 147 651 472 | 147 688 255 | 149 855 826 | 149879891 | 2 167 571 | 2 228 419 | | 7 | Р | | | 5 | F | MCA/MR | | del | 14q12q13.2 | arr cgh 14q12q13.2
(RP11-36909 →
RP11-26M6)x1 | ish del(14)(q13.2)
(RP11-831F6-) | 28 768 137 | 29 297 829 | 34 689 412 | 35 489 337 | 5 391 583 | 6721200 | | 25 | Р | | | 6 | М | MCA/MR | CHD | del | 15q26.2 | arr cgh 15q26.2q26.3
(RP11-79C10 →
RP11-80F4)x1 | ish del(15)(q26.2)
(RP11-308P12-) | 93 199 415 | 93 214 053 | 96 928 421 | 96 942 334 | 3714368 | 3 742 919 | | 6 | Р | | | 7 | М | MCA/MR | CHD | del | 16p12.1p11.2 | arr cgh 16p12.1p11.2
(RP11-309I14→
RP11-150K5)x1 | ish del(16)(p11.2)
(RP11-75J11-)dn | 25 795 340 | 27 008 538 | 29 825 404 | 31 443 492 | 2816866 | 5 648 152 | dn | 138 | Ρ | | | 8 | М | MCA/MR | CHD | del | 16p11.2 | arr cgh 16p12.1p11.2
(RP11-360L15 →
RP11-150K5)x1 | ish del(16)(p11.2)
(RP11-360L15-,
RP11-388M20+,
RP11-75J11+)dn | 27 184 508 | 28873631 | 29 825 404 | 31 443 492 | 951773 | 4 258 984 | dn | 134 | Р | | | 9 | F | MCA/MR | | del | 16p11.2 | arr cgh 16p11.2
(RP11-368N21 →
RP11-499D5)x1 | ish del(16)(p11.2)
(RP11-388M20-,
RP11-75J11-) | 28873841 | 29408698 | 32 773 200 | 34 476 095 | 3 364 502 | 5 602 254 | | 125 | Р | | | 10 | М | MCA/MR | | del | 7p14.2p13 | arr cgh 7p14.2p13
(RP11-138E20 →
RP11-52M17)x1 | ish del(7)(p14.1p13)
(RP11-258I11+,
RP11-2J17-,
RP11-346F12-)dn | 35 621 006 | 36 470 190 | 44 657 334 | 45 508 196 | 8 187 144 | 9887190 | dn | 70 | Р | GLI3 | | 11 | F | MCA/MR | Corneal opacity | del | 14q22.1q22.3 | arr cgh 14q22.1q22.3
(RP11-122A4 →
RP11-172G1)x1 | ish del(14)(q22.1)
(RP11-122A4-,
RP11-316L15+)dn | 51964774 | 51 983 834 | 54730496 | 55 054 754 | 2746662 | 3 089 980 | dn | 18 | Р | BMP4 | | 12 | М | MCA/MR | Idiopathic
leukodystrophy | | 17q13.3 | arr cgh 17p13.3
(RP11-294J5 →
RP11-35707)x1 | ish del(17)(p13.3)
(RP11-4F24-,
RP11-26N6+)dn | 1 008 128 | 1146211 | 2 077 151 | 2 026 967 | 930 940 | 1018839 | dn | 22 | Р | YWHAE | | 13 | M | MCA/MR | | del | Xp11.4p11.3 | arr cgh Xp11.3p11.4
(RP11-1069J5→
RP11-245M24)x1 | ish del(X)(p11.4p11.3)
(RP11-95C16-,
RP11-829C10-)dn | 41 392 291 | 41 385 453 | 45 419 624 | 45 495 709 | 4034171 | 4103418 | dn | 9 | Р | CASK | Table 3 Continued | | | Clinical | Remarkable
clinical | | | | | And an artist of the first the design of the first control of the second | Base pos | ition and size o | f the identifie | d CNV ^a | | - Parentai | | | Corresponding
or candidate | |--------|-------|-------------|------------------------|-----|---------------|---|--|--|-------------|------------------|-----------------|--------------------|------------|------------|---------|-------------------|-------------------------------| | Case C | Gende | r diagnosis | features | CN | V Position | WGA-4500 ^b | FISH ^b | Start (max) | Start (min) | End (min) | End (max) | Size (min) | Size (max) | analysis | genes c | ment ^d | gene(s) | | 14 | М | MCA/MR | | del | 6q12q14.1 | arr cgh 6q12q14.2(RP11-
502L6 →
RP11-232L4)x1 | ish del(6)(q13)
(RP11-28P18-)dn | 69 029 871 | 69 731 888 | 83 926 178 | 85 101 718 | 14194290 | 16 071 847 | ' dn | 56 | Р | 9 44 494 | | 15 | M | ZLS | | del | 6q14.1 | arr cgh 6q14.1
(RP11-343P23 →
RP11-217L13)x1 | ish del(6)(q14.1)
(RP11-5N7-,RP11-
990K4-,RP11-1I6+) | 75 484 004 | 76 145 436 | 5 79 474 428 | 79 851 528 | 3 328 992 | 4367524 | , | 10 | Р | | | 16 | F | MCA/MR | CHD | del | 10p12.1p11.23 | arr cgh 10p12.1p11.23
(RP11-89D1 →
91A23)x1 | ish del(10)
(p12.1p11.23)
(RP11-164A7-,
RP11-110B21-) | 27 045 285 | 27 054 002 | 29057401 | 29 088 950 | 2 003 399 | 2 043 665 | i | 18 | Р | | | 17 | М | MCA/MR | | del | 10p12.1p11.23 | arr cgh 10p12.1p11.23
(RP11-218D6 →
RP11-RP11-
181111)x1 | ish del(10)(p11.23)
(RP11-15H10-) | 28 121 596 | 28 131 608 | 30 559 024 | 30 577 807 | 2427416 | 2456211 | | 12 | Р | | | 18 | M | MCA/MR | CHD | del | 10q24.31q25.1 | arr cgh 10q24.31q25.1
(RP11-108L7 →
RP11-108L7)x1 | ish del(10)(q24.33)
(RP11-416N2-)dn | 102 560 783 | 102 568 462 | 105 914 057 | 105 929 608 | 3 345 595 | 3 368 825 | dn | 66 | Р | | | 19 | M | MCA/MR | | del | 10q24.32q25.1 | arr cgh 10q24.32q25.1
(RP11-21N23 →
RP11-99N20)x1 | ish del(10)(q24.33)
(RP11-416N2-)dn | 103 917 900 | 103 928 189 | 106 005 827 | 106011522 | 2077638 | 2 093 622 | dn | 41 | Р | | | 20 | F | MCA/MR | | del | 3p21.31p21.2 | arr cgh 3p21.31p21.2
(RP11-24F11 →
RP11-89F17)x1 | ish del(3)(p21.31)
(RP11-3B7-) | 46 150 261 | 46 359 965 | 51 390 597 | 52 571 544 | 5 030 632 | 6 421 283 | i | 175 | Р | | | 21 | М | MCA/MR | | del | 7p22.1 | arr cgh 7p22.1
(RP11-90J23→
RP11-2K20)x1 | ish del(7)(p22.1)
(RP11-2K20-)dn | 3 185 609 | 5892225 | 6 233 987 | 6 409 277 | 341 762 | 3 223 668 | dn | 28 | Р | | | 22 | F | MCA/MR | Corneal opacity, CHD | dup | 14q11.2 | arr cgh 14q11.2
(RP11-152G22 →
RP11-84D12)x3 | ish dup(14)(q11.2)
(RP11-152G22++) | 20 070 731 | 20 306 624 | 20 534 929 | 21 264 945 | 228 305 | 1 194 214 | | >30 | Р | | | 23 | M | MCA/MR | | del | 17q24.1q24.2 | arr cgh 17q24.1q24.2
(RP11-89L7 →
RP11-79K13)x1 | ish del(17)
(q24.1q24.2)
(RP11-93E5-,
RP11-89L7-,
RP11-79K13-) | 60 576 365 | 60 936 391 | 64 592 701 | 64 587 782 | 3656310 | 4011417 | | 29 | Р | | | 24 | М | SMS susp. | | del | 19р13.2 | arr cgh 19p13.2
(RP11-19704 →
RP11-164D24)x1 | ish del(19)(p13.2)
(91021-) | 9248377 | 10 248 853 | 11968772 | 12 553 279 | 1719919 | 3 304 902 | dn | | Р | | | 25 | M | MCA/MR | Epilepsy | dup | 2q11.2q13 | arr cgh 2q11.2q13(
RP11-90G13 →
RP11-79K7)x3 | ish dup(2)(q11.2)
(RP11-542D13++) | 88 273 220 | 91 696 986 | 109869691 | 112714666 | 18 172 705 | 24 441 446 | | >30 | Р | | | 26 | M | MCA/MR | CHD | dup | 4p16.1 | arr cgh 4p16.1
(RP11-17I9)x3 | ish dup(4)(p16.1)
(RP11-301J10++) | 8 202 790 | 8 520 479 | 9 793 705 | 10638054 | 1 273 226 | 2 435 264 | | 17 | Р | | Table 3 Continued | | | Clinical | Remarkable
clinical | | | | | Base posi | tion and size o | of the identified | d CNV ^a | | Protein-
Parental coding | | | |--------|------|-------------|------------------------|------------------|--|---|-------------|-------------|-----------------|-------------------|--------------------|------------|-----------------------------|------|-----------| | Case G | ende | r diagnosis | features | CNV Position | WGA-4500 ^b | FISH ^b | Start (max) | Start (min) | End (min) | End (max) | Size (min) | Size (max) | analysis genes ^c | ment | gene(s) | | 27 | F | MCA/MR | | del
7q22.1q22.2 | arr cgh 7q22.1q22.2
(RP11-10D8 →
RP11-72J24)x1 | ish del(7)(q22.1q22.2)
(RP11-124G15+,RP11-
188E1-,RP11-95P19-) | 97314215 | 98 261 079 | 105 604 920 | 106 451 506 | 7343841 | 9 137 291 | 135 | Р | | | 28 | F | MCA/MR | Epilepsy | del 12q13.13 | arr cgh 12q13.13
(RP11-74 8→
RP11-624J6)x1 | ish del(12)(q13.13)
(RP11-624J6-) | 50 987 232 | 51 016 427 | 51 956 291 | 52 180 088 | 939864 | 1 192 856 | 44 | Р | | | 29 | M | MCA/MR | | dup 16q22.3 | arr cgh 16q22.3
(RP11-90L19 →
RP11-89K4)x3 | ish dup(16)(q22.3)
(RP11-115E3++,
RP11-90L19++) | 70 355 260 | 70848592 | 72 328 913 | 73 785 124 | 1 480 321 | 3 429 864 | 25 | Р | | | 30 | M | RTS susp. | | dup 16q24.1 | arr cgh 16q24.1
(RP11-140K16 →
RP11-442O1)x3 | ish dup(16)(q24.1)
(RP11-770B4++,
RP11-140K16++) | 82 699 729 | 82 797 548 | 83749375 | 84 123 857 | 951827 | 1 424 128 | . 16 | Р | | | 31 | M | MCA/MR | Epilepsy | del 2q24.2q24.3 | arr cgh 2q24.2
(RP11-89L13→
RP11-79L13)x1 | ish del(2)(q24.2)
(RP11-638N12-) | 160 407 234 | 161 072 815 | 162883584 | 166 923 475 | 1810769 | 6516241 | 28 | Р | TBR1 | | 32 | M | MCA/MR | | del 3p26.2 | arr cgh 3p26.2
(RP11-32F23)x1 | ish del(3)(p26.2)
(RP11-32F23-) | 3 943 353 | 4016797 | 4 198 468 | 4329970 | 181 671 | 386 617 | 2 | Р | SUMF1 | | 33 | M | MCA/MR | lgA
deficiency | del 7q21.11 | arr cgh 7q21.11
(RP11-22M18)x1 | ish del(7)(q21.11)
(RP11-115M2+,
RP11-35304-,
RP11-22M18-) | 83 597 839 | 83 601 541 | 84 549 609 | 84 788 160 | 948 068 | 1 190 321 | 3 | Р | SEMA3A | | 34 | M | MCA/MR | | dup 14q32.2 | arr cgh 14q32.2
(RP11-128L1)x3 | ish dup(14)(q32.2)
(RP11-177F8++) | 99 330 486 | 99 337 358 | 99 841 558 | 99 845 472 | 504 200 | 514986 | 7 | Р | EML1, YY1 | | 35 | M | MCA/MR | Epilepsy | dup 16p13.3 | arr cgh 16p13.3
(RP11-349I11)x3 | ish dup(16)(p13.3)
(RP11-349I11++) | 4851459 | 5 678 447 | 5 906 909 | 6 165 923 | 228 462 | 1314464 | 9 | P | A2BP1 | | 36 | M | MCA/MR | | dup Xp22.2p22.13 | arr cgh Xp22.2p22.13
(RP11-2K15→
RP11-115I10)x3 | not performed
(X-tiling array) | 16 874 735 | 16 952 121 | 17 596 600 | 17 638 351 | 644 479 | 763 616 | 2 | Р | | | | | | | dup Xp21.3 | arr cgh Xp21.3
(RP11-438J7)x3 | not performed
(X-tiling array) | 28 704 076 | 28 704 076 | 28868075 | 28868075 | 163 999 | 163 999 | 1 | Р | IL1RAPL1 | | 37 | F | MCA/MR | | del 1p34.3 | arr cgh 1p34.3
(RP11-89N10→
RP11-416A14)x1 | ish del(1)(p34.2)
(RP11-195A8+,
RP11-166F21-)dn | 37 830 131 | 38 338 265 | 39466349 | 39 583 645 | 1 128 084 | 1753514 | dn 7 | Р | | | 38 | M | MCA/MR | Hyper
IgE | dup 1q25.2 | arr cgh 1q25.2
(RP11-177A2 →
RP11-152A16)x3 | ish dup(1)(1q25.2)
(RP11-177A2++,
RP11-152A16++) | 177 088 480 | 177 196 858 | 177 535 659 | 177 859 828 | 338 801 | 771 348 | dn 9 | Р | | | 39 | М | MCA/MR | | del 2p24.1p23.3 | arr cgh 2p24.1p23.3
(RP11-80H16→
RP11-88F6)x1 | ish del(2)(p23.3)
(RP11-88F6-,
RP11-373D23+)dn | 20 037 821 | 23 094 244 | 26815794 | 28414457 | 3 721 550 | 8376636 | dn 86 | Р | | | 40 | F | MCA/MR | CHD | del 3p26.1p25.3 | arr cgh 3p26.1p25.3
(RP11-128A5 →
RP11-402P11)x1 | ish del(3)(p26.1p25.3)
(RP11-936E1-,
RP11-402P11-,
RP11-1079H21+) dn | 8 190 557 | 8 497 949 | 9930973 | 10 026 217 | 1 433 024 | 1835660 | dn 18 | Р | | Two-stage aCGH analysis for patients with MCA/MR S Hayashi et al Table 3 Continued | | | Clinical | Remarkable
clinical | | | | walked from the control of contr | Base posi | ition and size o | f the identified | d CNVª | | Parental | | | Corresponding or candidate | |------|-------|-------------|------------------------|------------------|---|--|--|-------------|------------------|------------------|------------|------------|----------|--------------------|-------------------|--| | Case | Gende | r diagnosis | features | CNV Position | WGA-4500 ^b | FISH ^b | Start (max) | Start (min) | End (min) | End (max) | Size (min) | Size (max) | analysis | genes ^c | ment ^d | gene(s) | | 41 | M | MCA/MR | | del 3p22.1p21.31 | arr cgh 3p22.1p21.31
(RP11-241P3 →
RP11-88B8)x1 | ish del(3)(p22.1)
(RP11-61H16+,
RP11-241P3-,
RP11-78010+)dn | 41 365 663 | 42 284 365 | 48 177 538 | 49 198 542 | 5893173 | 7832879 | dn | 123 | Р | The second secon | | 42 | M | MCA/MR | Corneal opacity | del 3p14.3p14.2 | arr cgh 3p14.3p14.2
(RP11-80H18 →
RP11-79J9)x1 | ish del(3)(p14.2)
(RP11-79J19-,
RP11-230A22+)mat | 57 370 434 | 58 149 199 | 58 742 633 | 58 887 574 | 593 434 | 1517140 | mat | 11 | В | | | | | | | del 8q21.11q21.1 | 3 arr cgh 8q21.11q21.13
(RP11-225J6 →
RP11-214E11)x1 | ish del(8)
(q21.11q21.13)
(RP11-225J6-,
RP11-48B3+)dn | 75 722 961 | 75 821 163 | 81 110 557 | 81 493 446 | 5 289 394 | 5 770 485 | dn | 12 | Р | | | 43 | M | MCA/MR | | del 3q26.31q26.3 | 3 arr cgh 3q26.31-q26.33
(RP11-292L5 →
RP11-355N16)x1 | ish del(3)(q26.32)
(RP11-300L9+,
RP11-105L6-)dn | 175 650 310 | 176 531 688 | 180 613 203 | 181 653 281 | 4 081 515 | 6 002 971 | dn | 12 | Р | | | 44 | M | MCA/MR | CHD | del 13q13.2q13.3 | arr cgh 13q13.2
(RP11-269G10 →
90F5)x1 | ish del(13)(q13.2)
(RP11-142E9+,
RP11-381E21-,
RP11-98D3+)dn | 33 451 136 | 33 895 560 | 34813379 | 34 909 905 | 917819 | 1 458 769 | dn | 1 | Р | | | | | | | del 22q11.21 | arr cgh 22q11.21
(RP11-155F20 →
54C2)x1 | ish del(22)(q11.21)
(RP11-155F20-,
RP11-590C5-,
RP11-54C2-)pat | 19310307 | 19310307 | 19 590 642 | 19 590 642 | 280 335 | 280 335 | pat | 15 | В | | | 45 | F | aRS | | del 18q21.2 | arr cgh 18q21.2
(RP11-89B14)x1 | ish del(18)(q21.2)
(RP11-159D14+,
RP11-186B13-,
RP11-111C17-)dn | 48 218 621 | 49 166 752 | 51 288 665 | 51 861 143 | 2121913 | 3 642 522 | dn | 9 | Р
| | | 46 | M | MCA/MR | | dup 19p13.3 | arr cgh 19p13.3
(RP11-49M3→
RP11-268021)x3 | | 1 095 485 | 2 418 857 | 3 499 581 | 4 460 252 | 1 080 724 | 3 364 767 | dn | 113 | Р | | | 47 | F | MCA/MR | Autism | del 19p13.3 | arr cgh 19p13.3
(RP11-30F17 →
RP11-330I7)x1 | ish del(19)(p13.3)
(RP11-330I7-)dn | 4844383 | 6 043 505 | 6 859 584 | 6 881 792 | 816079 | 2 037 409 | dn | 23 | Р | | | 48 | М | MCA/MR | | del Xp11.3 | arr cgh Xp11.3
(RP11-151G3 →
RP11-48J14)xO | ish del(X)(p11.3)
(RP11-203D16-)mat | 44 403 077 | 44 433 162 | 46 795 584 | 46 795 588 | 2362422 | 2392511 | mat | 18 | Р | | | 49 | M | MCA/MR | | dup 3p26.3 | arr cgh 3p26.3
(RP11-6301)x3 | ish dup(3)(p26.3)
(RP11-6301++)pat | 2377366 | 2 443 357 | 2619407 | 2628216 | 176 050 | 250850 | pat | 1 | В | | | 50 | M | MCA/MR | | dup 5p14.3 | arr cgh 5p14.3
(RP11-91A5)x3 | ish dup(5)(p14.3)
(RP11-91A5++)pat | 19 046 234 | 19 485 530 | 19 656 108 | 20 798 445 | 170 578 | 1752211 | pat | 1 | В | | | 51 | М | MCA/MR | | dup 5q13.3 | arr cgh 5q13.1
(RP11-40N8→
RP11-91C10)x3 | ish dup(5)(q13.1)
(RP11-105A11++)mat | 66 417 271 | 66 481 371 | 67 501 700 | 67 838 977 | 1 020 329 | 1 421 706 | mat | 3 | В | | Table 3 Continued | | | Clinical | Remarkable
clinical | | | | | Base posi | tion and size o | f the identified | d CNV° | | | Protein-
coding | | Correspondin
or candidate | |------|-------|--------------|------------------------------|------------------|--|---|-------------|-------------|-----------------|------------------|------------|------------|----------|--------------------|-------------------|------------------------------| | Case | Gende | er diagnosis | features | CNV Position | WGA-4500 ^b | FISH® | Start (max) | Start (min) | End (min) | End (max) | Size (min) | Size (max) | analysis | genesc | ment ^d | gene(s) | | 52 | М | MCA/MR | | dup 7p22.3 | arr cgh 7p22.3
(RP11-23D23)x3 | ish dup(7)(p22.3)
(RP11-23D23++,
RP11-1133D5+)mat | 1 | 954016 | 954 584 | 1 101 944 | 568 | 1 101 943 | mat | 12 | В | | | 53 | F | MCA/MR | | dup 8p23.2 | arr cgh 8p23.2
(RP11-79119 →
RP11-89112)x3 | ish dup(8)(p23.2)
(RP11-89I19++,
RP11-89I12++)pat | 3324954 | 3726061 | 4564671 | 5 973 493 | 838610 | 2648539 | pat | 1 | В | | | 54 | M | MCA/MR | | dup 9q33.1 | arr cgh 9q33.1
(RP11-150L1)x3 | ish dup(9)(q33.1)
(RP11-150L1++)pat | 118980752 | 119452372 | 119614984 | 120 011 559 | 162612 | 1 030 807 | pat | 2 | В | | | 55 | F | MCA/MR | | dup 10q22.3 | arr cgh 10q22.3
(RP11-79M9)x3 | ish dup(10)(q22.3)
(RP11-79M9++)mat | 77356915 | 77 718 484 | 77 873 148 | 78 230 039 | 154664 | 873 124 | mat | 1 | В | | | 56 | M | MCA/MR | ELBW,
hepato-
blastoma | dup 12q21.31 | arr cgh 12q21.31
(RP11-91C4)x3 | ish dup(12)(q21.31)
(RP11-91C4++,
RP11-142L2+)pat | 80924954 | 82678148 | 82830190 | 85 768 388 | 152 042 | 4843434 | pat | 3 | В | | | 57 | М | GS | | del Xp11.23 | arr cgh Xp11.23
(RP11-876B24)
x0 mat | not performed
(X-tiling array) | 47 752 808 | 47747918 | 47 852 109 | 47 868 412 | 104 191 | 115604 | mat | 3 | В | | | 58 | M | MCA/MR | | dup 8q11.23 | arr cgh 8q11.23
(RP11-221P7)x3 | ish dup(8)(q11.23)
(RP11-221P7++,
RP11-26P22++) | 53665974 | 53717675 | 54 235 229 | 54 576 654 | 517 554 | 910680 | | 3 | vous | | | 59 | F | MCA/MR | Micro-
cephaly | dup 10q11.21 | arr cgh 10q11.21
(RP11-178A10)x3 | ish dup(10)(q11.21)
(RP11-178A10++) | 41 986 946 | 42 197 693 | 42 320 775 | 43 603 027 | 123 082 | 1616081 | | 15 | vous | | | 60 | M | MCA/MR | | dup 11p14.2p14.1 | arr cgh 11p14.2p14.1
(RP11-1L12)x3 | ish dup(11)
(p14.2p14.1)
(RP11-1L12++) | 26 723 462 | 27 033 270 | 27213374 | 27 445 504 | 180 104 | 722 042 | | 4 | vous | | | 61 | F | MCA/MR | | dup 12p11.1 | arr cgh 12p11.1
(RP11-88P4)x3 | ish dup(12)(p11.1)
(RP11-472A10++) | 33 333 493 | 33 359 944 | 33 572 956 | 33 572 956 | 213012 | 239 463 | | 2 | vous | | | 62 | F | aRS | | dup 12q21.31 | arr cgh 12q21.31
(RP11-91 24→
RP11-91C4)x3 | ish dup(12)(q21.31)
(RP11-91C4++,
RP11-142L2++) | 79 949 648 | 82 172 368 | 83 968 319 | 85768388 | 1795951 | 5818740 | | 12 | VOUS | | | 63 | F | MR | Congenital
myopathy | dup Xq12 | arr cgh Xq12
(RP11-90P17 →
RP11-383C12)x3 | Not performed
(X-tiling array) | 66212661 | 66 216 353 | 66 921 699 | 66 948 538 | 705346 | 735877 | | 1 | VOUS | | Abbreviations: aRS, atyplical Rett syndrome; B, benign; CNV, copy-number variant; dn: de novo CNV observed in neither of the parents; ELBW, extremely low birth weight; FISH, fluorescence in situ hybridization; GS, Gillespie syndrome; mat: CNV identified also in father; RTS, Rubinstein–Taybi syndrome; SMS, Smith–Magenis syndrome; VOUS, variant of uncertain clinical significance; ZLS, Zimmermann–Laband syndrome. *The sizes were estimated by WGA-4500, X-array, FISH or Agilent Human Genome CGH microarray 244K. *The notation systems is based on ISCN2005.36 *The number of protein-coding genes contained in the respective CNVs. *The result of CNV assessment. Figure 2 A flowchart of the assessment of CNVs detected in the second screening. from several aspects. A CNV that contains abundant genes or is large $(>3 \,\mathrm{Mb})$ has a high possibility to be pathogenic.²¹ The CNVs in cases 25-30 probably correspond to such CNVs. Also, we judged a CNV containing a morbid OMIM gene as pathogenic:²¹ TBR1 (OMIM: *604616) in case 31,56 SUMF1 (OMIM: *607939) in case 32,57,58 SEMA3A (OMIM: *603961) in case 33,59 EML1 (OMIM: *602033) and/or YY1 (OMIM: *600013) in case 34,60,61 A2BP1 (OMIM: *605104) in case 35⁶² and *IL1RAPL1* (OMIM: *300206) in case 36.63 Several previous reports suggest that these genes are likely to be pathogenic, although at present no evidence of a direct association between these genes and phenotypes exists. CNVs de novo or X maternally inherited. Among the remaining 27 cases, 12 cases had CNVs considered pathogenic as their CNVs were de novo (cases 37-47) or inherited del(X)(p11.3) from the mother (case 48). In the second screening we performed FISH for 36 CNVs of the 34 cases whose parental samples were available to confirm that 24 cases had de novo CNVs, which were probably pathogenic. A CNV in case 48, a boy with a nullizygous deletion at Xp11.3 inherited from his mother, was also probably relevant to his phenotype (Tables 3 and 4). Meanwhile, although case 57 was a boy with a deletion at Xp11.23 inherited from his mother, he was clinically diagnosed with Gillespie syndrome (OMIM: #206700) that was reported to show an autosomal dominant or recessive pattern,64 thus we judged that the deletion was not relevant to his phenotype. As a result, cases 49-57 had only CNVs inherited from one of their parents which are likely to be unrelated to the phenotypes; that is, bCNV (Table 4). As a result, we estimated that 48 cases among 349 analyzed (13.8%) had pCNV(s) in the second screening (Table 3; Figure 2). The CNVs of the remaining six cases, cases 58-63, were not associated with previously reported pathogenicity and their inheritance could not be evaluated, thus we estimated they were variants of uncertain clinical significance (VOUS).38 #### DISCUSSION Because aCGH is a high-throughput technique to detect CNVs rapidly and comprehensively, this technique has been commonly used for analyses of patients with MCA and/or MR.38,65-68 However, recent studies of human genomic variation have uncovered surprising properties of CNV, which covers 3.5-12% of the human genome even in healthy populations. 18-20,69 Thus analyses of patients with uncertain clinical phenotypes need to assess whether the CNV is pathogenic or unrelated to phenotypes.²¹ However, such an assessment may diminish the rapidness or convenience of aCGH. In this study, we evaluated whether our in-house GDA can work well as a diagnostic tool to detect CNVs responsible for wellestablished syndromes or those involved in subtelomeric aberrations in a clinical setting, and then explored candidate pCNVs in cases without any CNV in the first GDA screening. We recruited 536 cases that had been undiagnosed clinically and studied them in a two-stage screening using aCGH. In the first screening we detected CNVs in 54 cases (10.1%). Among them, 40 cases had CNV(s) at subtelomeric region(s) corresponding to the well-established syndromes or the already described disorders and the other 14 cases had CNVs in the regions corresponding to known disorders. Thus about three quarters of cases had genomic aberrations involved in subtelomeric regions. All the subtelomeric deletions and a part of the subtelomeric duplications corresponded to the disorders, indicating that especially subtelomeric deletions had more clinical significance compared to subtelomeric duplications, although the duplication might result in milder phenotypes and/or function as a modifier of phenotypes.⁷⁰ Moreover, parental analysis in three cases with two subtelomeric aberrations revealed that two of them were derived from the parental balanced translocations, indicating that such subtelomeric aberrations were potentially recurrent and parental analyses were worth performing. Recently several similar studies analyzed patients with MCA/MR or developmental delay using a targeted array for subtelomeric regions and/or known genomic disorders and detected clinically relevant CNVs in 4.4-17.1% of the patients. 28,65,70,71 Our detection rate in the first screening was equivalent to these reports. Although such detection rates depend on the type of microarray, patient selection criteria and/or number of subjects, these results suggest that at least 10% of cases with undiagnosed MCA/MR and a normal karyotype would be detectable by targeted array. Table 4 Parental analysis of 34 cases in the second screening | | | Clinical | | CNV | Size of | CNV (bp) | Protein-coding | Parental | |
-----------------|--------|-----------------------|---------|---------------|------------|------------|----------------|----------|---------------| | Case | Gender | diagnosis | del/dup | Position | Min. | Max. | genes | analysis | Pathogenicity | | 1 | М | MCA/MR | del | 1p36.23p36.22 | 1 670 237 | 2 558 590 | 32 | de novo | Р | | 2 | M | MCA/MR | del | 1q41q42.11 | 5 001 798 | 6 481 439 | 35 | de novo | Р | | 7 | M | MCA/MR | del | 16p12.1p11.2 | 2816866 | 5 648 152 | 138 | de novo | Р | | 8 | M | MCA/MR
with CHD | del | 16p11.2 | 951 773 | 4 258 984 | 134 | de novo | Р | | 10 | M | MCA/MR | del | 7p14.2p13 | 8516513 | 9 421 233 | 70 | de novo | Р | | 11 | F | MCA/MR | del | 14q22.1q22.3 | 2746662 | 3 089 980 | 18 | de novo | P | | 12 | M | MCA/MR | del | 17q13.3 | 930 940 | 1018839 | 22 | de novo | P | | 13 | M | MCA/MR | del | Xp11.4p11.3 | 4 034 171 | 4 103 418 | 9 | de novo | Р | | 14 | M | MCA/MR | del | 6q12q14.1 | 14 194 290 | 16 071 847 | 56 | de novo | P | | 18 | М | MCA/MR | del | 10q24.31q25.1 | 3 345 595 | 3368825 | 66 | de novo | P | | 19 | M | MCA/MR | del | 10g24.32g25.1 | 2 077 638 | 2 093 622 | 41 | de novo | P | | 21 | M | MCA/MR | del | 7p22.1 | 341762 | 3 223 668 | 28 | de novo | P | | 24 | M | SMS susp. | del | 19p13.2 | 1719919 | 3 304 902 | 23 | de novo | P | | 37 | F | MCA/MR | del | 1p34.3 | 1 128 084 | 1753514 | 7 | de novo | P | | 38 | M | MCA/MR | dup | 1q25.2 | 338 801 | 771 348 | 9 | de novo | P
P | | 39 | M | MCA/MR | del | 2p24.1p23.3 | 3721550 | 8376636 | 86 | de novo | P | | 40 | F | MCA/MR | del | 3p26.1p25.3 | 1 433 024 | 1835660 | 18 | de novo | Р | | 41 | M | MCA/MR | del | 3p22.1p21.31 | 5 893 173 | 7 832 879 | 123 | de novo | P | | 42ª | M | MCA/MR | del | 8g21.11g21.13 | 5 289 394 | 5 770 485 | 12 | de novo | Р | | 42ª | M | MCA/MR | del | 3p14.3p14.2 | 593 434 | 1517140 | 11 | Maternal | В | | 43 | M | MCA/MR | del | 3g26.31g26.33 | 4 081 515 | 6 002 971 | 12 | de novo | P | | 44 ^b | M | MCA/MR | del | 13q13.2q13.3 | 917819 | 1 458 769 | 1 | de novo | Р | | 44 ^b | M | MCA/MR | del | 22q11.21 | 917819 | 1 458 769 | 15 | Paternal | В | | 45 | F | Rett syndrome | del | 18g21.2 | 2 121 913 | 3 642 522 | 9 | de novo | P | | 46 | M | MCA/MR | dup | 19p13.3 | 2041395 | 2 404 096 | 113 | de novo | P | | 47 | F | MCA/MR | del | 19p13.3 | 816079 | 2 037 409 | 23 | de novo | Р | | 48 ^c | M | MCA/MR | del | Xp11.3 | 2 362 422 | 2392511 | 18 | Maternal | Р | | 49 | M | MCA/MR | dup | 3p26.3 | 176 050 | 250850 | 1 | Paternal | В | | 50 | М | MCA/MR | dup | 5p14.3 | 170 578 | 1 752 211 | 1 | Paternal | В | | 51 | M | MCA/MR | dup | 5q13.3 | 1 020 329 | 1 421 706 | 3 | Maternal | В | | 52 | M | MCA/MR | dup | 7p22.3 | 568 | 1 101 943 | 12 | Maternal | В | | 53 | F | MCA/MR | dup | 8p23.2 | 838 610 | 2 648 539 | 1 | Paternal | В | | 54 | М | MCA/MR | dup | 9q33.1 | 162612 | 1 030 807 | 2 | Paternal | В | | 55 | F | MCA/MR | dup | 10g22.3 | 154 664 | 873 124 | 1 | Maternal | В | | 56 | M | MCA/MR | dup | 12q21.31 | 152 042 | 4 843 434 | 3 | Paternal | В | | 57 | M | Gillespie
syndrome | del | Xp11.23 | 104 191 | 115 604 | 3 | Maternal | В | Abbreviations: B, benign; CNV, copy-number variant; F, female; M, male; MCA/MR, multiple congenital anomalies and mental retardation; P, pathogenic. aTwo CNVs were detected in case 42. Another interesting observation in the first screening was that subtelomeric rearrangements frequently occurred even in patients with MCA/MR of uncertain whose karyotype had been diagnosed as normal. This result may be consistent with a property of subtelomeric regions whose rearrangements can be missed in conventional karyotyping,⁷² and in fact other techniques involving subtelomeric FISH or MLPA also identified subtelomeric abnormalities in a number of patients with MCA and/or MR in previous reports. 70,73,74 Our result may support the availability of prompt screening of subtelomeric regions for cases with uncertain congenital disorders. In the second screening we applied WGA-4500 to 349 cases to detect 66 candidate pCNVs in 63 cases (18.1%), and subsequently assessed the pathogenicity of these CNVs. The pCNVs included nine CNVs overlapping identical regions of recently recognized syndromes (cases 1-9; deletion at 1p36.23-p36.22, 1q41-q42.11, 1q43-q44, 2q23.1, 14q12, 15q26-qter and 16p11.2-p12.2, respectively), four CNVs containing disease-associated genes (cases 10-13; GLI3, BMP4, YWHAE and CASK, respectively), three pairs of CNVs of recurrent deletions (cases 14, 15: at 6q12-q14.1 and 6q14.1; case 16, 17: at 10p12.1-p11.23 and case 18, 19: at 10q24.31-q25.1 and 10q24.32-q25.1), five CNVs identical to pCNVs in previous studies (cases 20–24), six large and/or gene-rich CNVs (cases 25–30) and six $\,$ CNVs containing a morbid OMIM gene (cases 31-36). For the remaining cases, we estimated the pathogenicity of the CNVs from a parental analysis (Table 4). We judged the 11 de novo CNVs (cases 37-47) and 1 CNV on chromosome Xp11.3 inherited from Two CNVs were detected in case 44 ^cNullizygous deletion inherited from his mother probably affected the phenotype. the mother (case 48) as probably pathogenic. And nine inherited CNVs (cases 49-57) were probably benign. The clinical significance of CNVs in the other six cases, cases 58-63, remains uncertain (VOUS). As a result we estimated CNVs as pathogenic in 48 cases among 349 cases (13.8%) analyzed in the second screening. None of the pCNVs corresponded to loci of well-established syndromes. This may suggest that our two-stage screening achieved a good balance between rapid screening of known syndromes and investigation of CNV of uncertain pathogenicity. Table 5 Summary of parental analyses | | | Average | size (bp) | The average number of | |------------|---------------------|-----------|-----------|-----------------------| | | | Min. | Max. | protein-coding genes | | Pathogenio | : CNVs ^a | | | | | del | 23 | 3 309 267 | 4 597 689 | 43 | | dup | 2 | 1190098 | 1 587 722 | 61 | | Total | 25 | 3139733 | 4356892 | 44 | | Benign CN | IVs ^b | | | | | del | 3 | 538 481 | 1 030 504 | 10 | | dup | 8 | 334 432 | 1740327 | 3 | | Total | 11 | 390 082 | 1 546 739 | 5 | Abbreviation: CNV. copy-number variant ^aTwenty-four *de novo* CNVs and case 48. ^bEleven inherited CNVs other than case 48. Among the cases with parental analyses, the 25 pCNVs had larger sizes and contained more protein-coding genes (average size, 3.1 Mb at minimum to 4.4 Mb at maximum; average number of genes, 44) as compared with the 11 inherited bCNVs that were probably unrelated to phenotypes (average size, 0.39 Mb at minimum to 1.5 Mb at maximum; average number of genes, 5) (Table 5). Although all of the 25 pCNVs except 2 were deletions, about three quarters (8 of 11 cases) of the inherited bCNVs were duplications (Table 5). These findings are consistent with previously reported features of pCNVs and bCNVs.21,38 We also compared our current study with recent aCGH studies meeting the following conditions: (1) a microarray targeted to whole genome was applied; (2) patients with MCA and/or MR of uncertain etiology, normal karyotype and the criteria for patients selection were clearly described; (3) pathogenicity of identified CNVs were assessed. On the basis of the above criteria, among studies reported in the past 5 years, we summarized 13 studies (Table 6), 10,14,15,17,54,55,75-81 Diagnostic yield of pCNVs in each study was 6.3-16.4%, and our current diagnostic yield of the second screening was 13.8%. Though cases with subtelomeric aberration detected in the first screening had been excluded, our diagnostic yield was comparable to those of the reported studies. It is not so important to make a simple comparison between diagnostic yields in different studies as they would depend on the conditions of each study, for example, sample size or array resolution,38,82 however it seems interesting that the higher resolution of a microarray does not ensure an increase in the rate of detection of pCNVs. One recent study showed data that may explain the discrepancy between the resolution of microarray and diagnostic yield.^{54,83} The authors analyzed 1001 patients with MCA and/or MR using one Table 6 Previous studies of analyzing patients with MCA and/or MR using aCGH targeted to whole genome | | | Applied array | | | Patients | Pathogenic CN | | | |--------------------------------------|-------|-----------------|-----------------|------------------|--------------------|-----------------|------|--| | Author (year) | Туре | Number³ | Distribution | Number | Type of disorders | Number | % | | | Schoumans et al. ⁷⁵ | BAC | 2600 | 1.0 Mb* | 41 | MCA and MR | 4 | 9.8 | | | de Vries <i>et al.</i> ⁷⁶ | BAC | 32 477 | Tiling | 100 | MCA and/or MR | 10 | 10.0 | | | Rosenberg et al.77 | BAC | 3500 | 1.0 Mb* | 81 | MCA and MR | 13 | 16.0 | | | Krepischi-Santos et al.78 | BAC | 3500 | 1.0 Mb* | 95 | MCA and/or MR | 15 | 15.8 | | | Friedman et al.14 | SNP | Affymetrix 100K | 23.6 kb** | 100 | MR | 11 | 11.0 | | | Thuresson et al.79 | BAC | | 1.0 Mb* | 48 | MCA and MR | 3 | 6.3 | | | Wagenstaller et al.80 | SNP | Affymetrix 100K | 23.6 kb** | 67 | MR | 11 | 16.4 | | | Fan et al.55 | Oligo | Agilent 44K | 24 kb-43 kb** | 100° | MCA and MR, Autism | 15 ^d | 15.0 | | | Xiang et al.15 | Oligo | Agilent 44K | 24 kb-43 kb** | 40e | MR, DD and autism | 3 | 7.5 | | | Pickering et al. 10 | BAC | 2600 | 1 Mb* | 354 ^f | MCA and/or MR | 36 ^g | 10.2 | | | McMullan et al. 17 | SNP | Affymetrix 500K | 2.5 kb-5.8 kb** | 120 | MCA and/or MR | 18 | 15.0 | | | Bruno et al.81 | SNP | Affymetrix 250K | 2.5 kb-5.8 kb** | 117 | MCA and/or MR | 18 | 15.4 | | | Buysse et al.54 | BAC | 3431 | 1 Mb* | 298 | MCA and/or MR | 26 | 8.7 | | | | Oligo | Agilent 44K | 24 kb-43 kb** | 703 | MCA and/or MR | 74 | 10.5 | | | Our current study | BAC | 4523 | 0.7 Mb | 349 | MCA and MR | 48 | 13.8 | | | Total | | | | 2613 | | 305 | 11.7 | | Abbreviations: BAC, bacterial artificial chromosome; CNV, copy-number
variant; DD, developmental delay; MCA, multiple congenital anomalies; MR, mental retardation; SNP, single nucleotide In five cases, CNVs were also identified by a targeted array. Ten cases with an abnormal karyotype were excluded. Only cases studied with an array throughout the genome are described. Ninety-eight cases were also analyzed by a targeted array. 8Seventeen cases with an abnormal karyotype were excluded polymorphism. The number of clones or name of array is described. ^{*}Each distribution referred to each article (*) or manual of each manufacturer (**) *All cases were analyzed by both a targeted array and a genome-wide array. of two types of microarray, BAC array and oligonucleotide array. The BAC array was applied for 298 patients to detect 58 CNVs in 47 patients, and among them 26 CNVs (8.7%) were determined to be causal (pathogenic). Conversely, the oligonucleotide arrays were applied for 703 patients to detect 1538 CNVs in 603 patients, and among them 74 CNVs (10.5%) were determined to be pathogenic. These results may lead to the following idea: a lower-resolution microarray detects a limited number of CNVs likely to be pathogenic, because such CNVs tend to be large, and a higher-resolution microarray detects an increasing number of bCNVs or VOUS.38 Indeed, in studies using a high-resolution microarray, most of the CNVs detected were smaller than 500 kb but almost all pCNVs were relatively large.^{54,81,83} Most of the small CNVs were judged not to be pathogenic, and the percentage of pCNVs stabilized at around 10%. This percentage may suggest a frequency of patients with MCA/MR caused by CNV affecting one or more genes, other than known syndromes and subtelomeric aberrations. The other patients may be affected by another cause undetectable by genomic microarray; for example a point mutation or microdeletion/duplication of a single gene, aberration of microRNA, aberration of methylation states, epigenetic aberration or partial uniparental disomy. As recently hypothesized secondary insult, which is potentially another CNV, a mutation in a phenotypically related gene or an environmental event influencing the phenotype, may result in clinical manifestation. ⁸⁴ Especially, in two-hit CNVs, two models have been hypothesized: (1) the additive model of two co-occurring CNVs affecting independent functional modules and (2) the epistatic model of two CNVs affecting the same functional module. ⁸⁵ It also suggests difficulty in selecting an optimal platform in the clinical screening. Nevertheless, information on both pCNVs and bCNVs detected through studies using several types of microarrays is unambiguously significant because an accumulation of the CNVs will create a map of genotype—phenotype correlation that would determine the clinical significance of each CNV, illuminate gene function or establish a new syndrome. #### **ACKNOWLEDGEMENTS** We thank Ayako Takahashi and Rumi Mori for technical assistance. This study was supported by the Joint Usage/Research Program of Medical Research Institute, Tokyo Medical and Dental University. This work was also supported by grants-in-aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science, and Technology, Japan; a grant from Core Research for Evolutional Science and Technology (CREST) of the Japan Science and Technology Corporation (JST); a grant from the New Energy and Industrial Technology Development Organization (NEDO); and in part by Grant-in-Aid for Scientific Research (B) (17390099, 20390301) of Japan Society for the Promotion of Science (JSPS); Health and Labour Sciences Research Grants for Research on information system of undiagnosed diseases (H21-nanchi-ippan-167) and Research on policy for intractable diseases (H22-nanchi-shitei-001) from the Ministry of Health, Labour and Welfare, Japan. - 1 Roeleveld, N., Zielhuis, G. A. & Gabreëls, F. The prevalence of mental retardation: a critical review of recent literature. Dev. Med. Child Neurol. 39, 125–132 (1997). - 2 Hunter, A. G. Outcome of the routine assessment of patients with mental retardation in a genetics clinic. Am. J. Med. Genet. 90, 60–68 (2000). - Smith, D. W. & Bostian, K. E. Congenital anomalies associated with idiopathic mental retardation. *J. Pediatr.* 65, 189–196 (1964). Gustavson, K. H., Hagberg, B., Hagberg, G. & Sars, K. Severe mental retardation in a - 4 Gustavson, K. H., Hagberg, B., Hagberg, G. & Sars, K. Severe mental retardation in a Swedish county. II. Etiologic and pathogenetic aspects of children born 1959–1970. Neuropadiatrie 8, 293–304 (1977). - Fryns, J. P., Kleczkowska, A., Kubieñ, E. & Van den Berghe, H. Cytogenetic findings in moderate and severe mental retardation. A study of an institutionalized population of 1991 patients. Acta. Paediatr. Scand. Suppl. 313, 1–23 (1984). - 6 Gustavson, K. H., Holmgren, G. & Blomquist, H. K. Chromosomal aberrations in mildly mentally retarded children in a northern Swedish county. *Ups. J. Med. Sci. Suppl.* 44, 165–168 (1987). - 7 Schreppers-Tijdink, G. A., Curfs, L. M., Wiegers, A., Kleczkowska, A. & Fryns, J. P. A systematic cytogenetic study of a population of 1170 mentally retarded and/or behaviourly disturbed patients including fragile X-screening. The Hondsberg experience. J. Genet Hum. 36, 425–446 (1988). - 8 van Karnebeek, C. D., Koevoets, C., Sluijter, S., Bijlsma, E. K., Smeets, D. F., Redeker, E. J. et al. Prospective screening for subtelomeric rearrangements in children with mental retardation of unknown aetiology: the Amsterdam experience. J. Med. Genet. 39, 546–553 (2002). - 9 Vissers, L. E., de Vries, B. B., Osoegawa, K., Janssen, I. M., Feuth, T., Choy, C. O. et al. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am. J. Hum. Genet. 73, 1261–1270 (2003). - 10 Pickering, D. L., Eudy, J. D., Olney, A. H., Dave, B. J., Golden, D., Stevens, J. et al. Array-based comparative genomic hybridization analysis of 1176 consecutive clinical genetics investigations. Genet. Med. 10, 262–266 (2008). - 11 Bauters, M., Van Esch, H., Marynen, P. & Froyen, G. X chromosome array-CGH for the identification of novel X-linked mental retardation genes. Eur. J. Med. Genet. 48, 263–275 (2005). - 12 Hayashi, S., Honda, S., Minaguchi, M., Makita, Y., Okamoto, N., Kosaki, R. et al. Construction of a high-density and high-resolution human chromosome X array for comparative genomic hybridization analysis. J. Hum. Genet. 52, 397–405 (2007). 13 Kok, K., Dijkhuizen, T., Swart, Y. E., Zorgdrager, H., van der Vlies, P., Fehrmann, R. - 13 Kok, K., Dijkhuizen, T., Swart, Y. E., Zorgdrager, H., van der Vlies, P., Fehrmann, R. et al. Application of a comprehensive subtelomere array in clinical diagnosis of mental retardation. Eur. J. Med. Genet. 48, 250–262 (2005). - 14 Friedman, J. M., Baross, A., Delaney, A. D., Ally, A., Arbour, L., Armstrong, L. et al. Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am. J. Hum. Genet. 79, 500–513 (2006). - 15 Xiang, B., Li, A., Valentin, D., Nowak, N. J., Zhao, H. & Li, P. Analytical and clinical validity of whole-genome oligonucleotide array comparative genomic hybridization for pediatric patients with mental retardation and developmental delay. Am. J. Med. Genet. 146A, 1942–1954 (2008). - 16 Shen, Y., Irons, M., Miller, D. T., Cheung, S. W., Lip, V., Sheng, X. et al. Development of a focused oligonucleotide-array comparative genomic hybridization chip for clinical diagnosis of genomic imbalance. Clin. Chem. 53, 2051–2059 (2007). - 17 McMullan, D. J., Bonin, M., Hehir-Kwa, J. Y., de Vries, B. B., Dufke, A., Rattenberry, E. et al. Molecular karyotyping of patients with unexplained mental retardation by SNP arrays: a multicenter study. Hum. Mutat. 30, 1082–1092 (2009). - 18 lafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y. et al. Detection of large-scale variation in the human genome. *Nat. Genet.* **36**, 949–951 (2004) - 19 Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P. et al. Large-scale copy number polymorphism in the human genome. Science. 305, 525–528 (2004). - 20 Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D. et al. Global variation in copy number in the human genome. Nature 444, 444–454 (2006). - 21 Lee, C., lafrate, A. J. & Brothman, A. R. Copy number variations and clinical cytogenetic diagnosis of constitutional disorders. *Nat. Genet.* 39, S48–S54 (2007) - 22 Inazawa, J., Inoue, J. & Imoto, I. Comparative genomic hybridization (CGH)-arrays pave the way for identification of novel cancer-related genes. *Cancer Sci.* 95, 559–563 (2004). - 23 Hayashi, S., Kurosawa, K., Imoto, I., Mizutani, S. & Inazawa, J. Detection of cryptic chromosome aberrations in a patient with a balanced t(1;9)(p34.2;p24) by array-based comparative genomic hybridization. Am. J. Med. Genet. 139, 32–36 (2005). - 24 Shrimpton, A. E., Braddock, B. R., Thomson, L. L., Stein, C. K. & Hoo, J. J. Molecular delineation of deletions on 2q37.3 in three cases with an Albright hereditary osteodystrophy-like phenotype. Clin. Genet. 66, 537–544 (2004). - 25 Rauch, A. & Dörr, H. G. Chromosome 5q subtelomeric deletion syndrome. Am. J. Med. Genet. C 145C, 372–376 (2007). - 26 Horn, D., Tönnies, H., Neitzel, H., Wahl, D., Hinkel, G. K., von Moers, A. et al. Minimal clinical expression of the holoprosencephaly spectrum and of Currarino syndrome due to different cytogenetic rearrangements deleting the Sonic Hedgehog gene and the HLXB9 gene at 7q36.3. Am. J. Med. Genet. A 128A, 85–92 (2004). - 27 Tatton-Brown, K., Pilz, D. T., Orstavik, K. H., Patton, M., Barber, J. C., Collinson, M. N. et al. 15q overgrowth syndrome: a newly recognized phenotype associated with overgrowth, learning difficulties, characteristic facial appearance, renal anomalies and increased dosage of distal chromosome 15q. Am. J. Med. Genet. A
149A, 147–154 (2009). - 28 Lu, X., Shaw, C. A., Patel, A., Li, J., Cooper, M. L., Wells, W. R. et al. Clinical implementation of chromosomal microarray analysis: summary of 2513 postnatal cases. PLoS One 2, e327 (2007). - 29 Fernandez, T. V., García-González, I. J., Mason, C. E., Hernández-Zaragoza, G., Ledezma-Rodríguez, V. C., Anguiano-Alvarez, V. M. et al. Molecular characterization of a patient with 3p deletion syndrome and a review of the literature. Am. J. Med. Genet. A 146A, 2746–2752 (2008). - 30 Jones, K. L. Smith's Recognizable Patterns of Human Malformation, 6th edn. (Elsevier Saunders, Philadelphia, 2006). - 31 Striano, P., Malacarne, M., Cavani, S., Pierluigi, M., Rinaldi, R., Cavaliere, M. L. et al. Clinical phenotype and molecular characterization of 6q terminal deletion syndrome: five new cases. Am. J. Med. Genet. A 140, 1944–1949 (2006). - 32 Lindstrand, A., Malmgren, H., Verri, A., Benetti, E., Eriksson, M., Nordgren, A. et al. Molecular and clinical characterization of patients with overlapping 10p deletions. Am. J. Med. Genet. A 152A, 1233-1243 (2010). - 33 Elbracht, M., Roos, A., Schönherr, N., Busse, S., Damen, R., Zerres, K. et al. Pure distal trisomy 2q: a rare chromosomal abnormality with recognizable phenotype. Am. J. Med. Genet. A 149A, 2547-2550 (2009). - 34 Lukusa, T. & Fryns, J. P. Pure de novo 17q25.3 micro duplication characterized by micro array CGH in a dysmorphic infant with growth retardation, developmental delay and distal arthrogryposis. *Genet. Couns.* 21, 25–34 (2010). - 35 Fukami, M., Kirsch, S., Schiller, S., Richter, A., Benes, V., Franco, B. et al. A member of a gene family on Xp22.3, VCX-A, is deleted in patients with X-linked nonspecific - mental retardation. Am. J. Hum. Genet. 67, 563–573 (2000). 36 Shaffer, L. G. & Tommerup, N. An International System for Human Cytogenetic Nomenclature (2005) (Karger, Basel, 2005). - 37 Koolen, D. A., Pfundt, R., de Leeuw, N., Hehir-Kwa, J. Y., Nillesen, W. M., Neefs, I. et al. Genomic microarrays in mental retardation: a practical workflow for diagnostic applications. Hum. Mutat. 30, 283–292 (2009). 38 Miller, D. T., Adam, M. P., Aradhya, S., Biesecker, L. G., Brothman, A. R., Carter, N. P. - et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am. J. Hum. Genet. 86, 749-764 (2010). - 39 Shaffer, L. G., Theisen, A., Bejjani, B. A., Ballif, B. C., Aylsworth, A. S., Lim, C. et al. The discovery of microdeletion syndromes in the post-genomic era: review of the methodology and characterization of a new 1q41q42 microdeletion syndrome. *Genet. Med.* **9**, 607–616 (2007). - 40 van Bon, B. W., Koolen, D. A., Borgatti, R., Magee, A., Garcia-Minaur, S., Rooms, L. et al. Clinical and molecular characteristics of 1qter microdeletion syndrome: delineating a critical region for corpus callosum agenesis/hypogenesis. J. Med. Genet. 45, 346-354 (2008). - 41 van Bon, B. W., Koolen, D. A., Brueton, L., McMullan, D., Lichtenbelt, K. D., Adès, L. C. et al. The 2q23.1 microdeletion syndrome: clinical and behavioural phenotype. Eur. J. Hum. Genet. 18, 163-170 (2010). - 42 Mencarelli, M. A., Kleefstra, T., Katzaki, E., Papa, F. T., Cohen, M., Pfundt, R. et al. 14q12 microdeletion syndrome and congenital variant of Rett syndrome. Eur. J. Med. Genet. 52, 148-152 (2009). - 43 Rump, P., Dijkhuizen, T., Sikkema-Raddatz, B., Lemmink, H. H., Vos, Y. J., Verheij, J. B. et al. Drayer's syndrome of mental retardation, microcephaly, short stature and absent phalanges is caused by a recurrent deletion of chromosome $15(q26.2 \rightarrow qter)$. Clin. Genet. 74, 455-462 (2008). - 44 Ballif, B. C., Hornor, S. A., Jenkins, E., Madan-Khetarpal, S., Surti, U., Jackson, K. E. et al. Discovery of a previously unrecognized microdeletion syndrome of 16p11.2p12.2. Nat. Genet. 39, 1071-1073 (2007). - 45 Shinawi, M., Liu, P., Kang, S. H., Shen, J., Belmont, J. W., Scott, D. A. et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay. behavioral problems, dysmorphism, epilepsy, and abnormal head size, J. Med. Genet, 47, 332-341 (2010). - 46 Kang, S. H., Scheffer, A., Ou, Z., Li, J., Scaglia, F., Belmont, J. et al. Identification of proximal 1p36 deletions using array-CGH: a possible new syndrome. Clin. Genet. 72, 329-338 (2007). - 47 Johnston, J. J., Olivos-Glander, I., Killoran, C., Elson, E., Turner, J. T., Peters, K. F. et al Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am. J. Hum. Genet. 76, 609-622 (2005). - 48 Johnston, J. J., Olivos-Glander, I., Turner, J., Aleck, K., Bird, L. M., Mehta, L. et al. Clinical and molecular delineation of the Greig cephalopolysyndactyly contiguous gene deletion syndrome and its distinction from acrocallosal syndrome. Am. J. Med. Genet. A 123A, 236-242 (2003). - 49 Hayashi, S., Okamoto, N., Makita, Y., Hata, A., Imoto, I. & Inazawa, J. Heterozygous deletion at 14q22.1-q22.3 including the BMP4 gene in a patient with psychomotor retardation, congenital corneal opacity and feet polysyndactyly. Am. J. Med. Genet. A 146A, 2905-2910 (2008). - 50 Hayashi, S., Mizuno, S., Migita, O., Okuyama, T., Makita, Y., Hata, A. et al. The CASK gene harbored in a deletion detected by array-CGH as a potential candidate for a gene causative of X-linked dominant mental retardation. Am. J. Med. Genet. A 146A, 2145-2151 (2008). - 51 Toyo-oka, K., Shionoya, A., Gambello, M. J., Cardoso, C., Leventer, R., Ward, H. L. et al. 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nat. Genet. 34, 274-285 (2003). - 52 Mignon-Ravix, C., Cacciagli, P., El-Waly, B., Moncla, A., Milh, M., Girard, N. et al. Deletion of YWHAE in a patient with periventricular heterotopias and marked corpus callosum hypoplasia. J. Med. Genet. 47, 132-136 (2010). - 53 Haldeman-Englert, C. R., Gai, X., Perin, J. C., Ciano, M., Halbach, S. S., Geiger, E. A. et al. A 3.1-Mb microdeletion of 3p21.31 associated with cortical blindness, cleft lip, CNS abnormalities, and developmental delay. Eur. J. Med. Genet. 52, 265-268 (2009). - 54 Buysse, K., Delle Chiaie, B., Van Coster, R., Loeys, B., De Paepe, A., Mortier, G. et al. Challenges for CNV interpretation in clinical molecular karyotyping. lessons learned from a 1001 sample experience. Eur. J. Med. Genet. 52, 398-403 - 55 Fan, Y. S., Jayakar, P., Zhu, H., Barbouth, D., Sacharow, S., Morales, A. et al. Detection of pathogenic gene copy number variations in patients with mental retardation by - genomewide oligonucleotide array comparative genomic hybridization. Hum. Mutat. **28**. 1124–1132 (2007). - 56 Hevner, R. F., Shi, L., Justice, N., Hsueh, Y., Sheng, M., Smiga, S. et al. Tbr1 regulates differentiation of the preplate and layer 6. Neuron 29, 353-366 (2001). - Cosma, M. P., Pepe, S., Annunziata, I., Newbold, R. F., Grompe, M., Parenti, G. et al. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113, 445-456 (2003). - 58 Dierks, T., Schmidt, B., Borissenko, L. V., Peng, J., Preusser, A., Mariappan, M. et al. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell 113, 435-444 (2003). - 59 Behar, O., Golden, J. A., Mashimo, H., Schoen, F. J. & Fishman, M. C. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. *Nature* 383, 525-528 (1996). - 60 Eudy, J. D., Ma-Edmonds, M., Yao, S. F., Talmadge, C. B., Kelley, P. M., Weston, M. D. et al. Isolation of a novel human homologue of the gene coding for echinoderm microtubule-associated protein (EMAP) from the Usher syndrome type 1a locus at 14q32. Genomics 43, 104–106 (1997). 61 He, Y. & Casaccia-Bonnefil, P. The Yin and Yang of YY1 in the nervous system. - J. Neurochem. 106, 1493-1502 (2008). - Martin, C. L., Duvall, J. A., Ilkin, Y., Simon, J. S., Arreaza, M. G., Wilkes, K. *et al.* Cytogenetic and molecular characterization of A2BP1/FOX1 as a candidate gene for autism. Am. J. Med. Genet. 144B, 869-876 (2007). - 63 Tabolacci, E., Pomponi, M. G., Pietrobono, R., Terracciano, A., Chiurazzi, P. & Neri, G. A truncating mutation in the IL1RAPL1 gene is responsible for X-linked mental retardation in the MRX21 family. *Am. J. Med. Genet.* **140**, 482-487 (2006). - Nelson, J., Flaherty, M. & Grattan-Smith, P. Gillespie syndrome: a report of two further - cases. Am. J. Med. Genet. 71, 134–138 (1997). 65 Shaffer, L. G. & Bejjani, B. A. Medical applications of array CGH and the transformation of clinical cytogenetics. Cytogenet. Genome Res. 115, 303-309 - 66 Shaffer, L. G., Bejjani, B. A., Torchia, B., Kirkpatrick, S., Coppinger, J. & Ballif, B. C. The identification of microdeletion syndromes and other chromosome abnormalities: cytogenetic methods of the past, new technologies for the future. *Am. J. Med. Genet. C Semin. Med. Genet.* **145C**, 335–345 (2007). 67 Bejjani, B. A. & Shaffer, L. G. Clinical utility of contemporary molecular cytogenetics. - Annu. Rev. Genomics Hum. Genet. 9, 71–86 (2008). - 68 Edelmann, L. & Hirschhorn, K. Clinical utility of array CGH for the detection of chromosomal imbalances associated with mental retardation and multiple congenital anomalies. Ann. NY Acad. Sci. 1151, 157-166 (2009). - de Ståhl, T. D., Sandgren, J., Piotrowski, A., Nord, H., Andersson, R., Menzel, U. et al. Profiling of copy number variations (CNVs) in healthy individuals from three ethnic groups using a human genome 32K BAC-clone-based array. Hum. Mutat. 29, 398–408 - 70 Shao, L., Shaw, C. A., Lu, X. Y., Sahoo, T., Bacino, C. A., Lalani, S. R. et al. Identification of chromosome abnormalities in subtelomeric regions microarray analysis: a study of 5,380 cases. Am. J. Med. Genet. A 146A, 2242-2251 (2008). -
Lu, X., Phung, M. T., Shaw, C. A., Pham, K., Neil, S. E., Patel, A. et al. Genomic imbalances in neonates with birth defects: high detection rates by using chromosomal microarray analysis. Pediatrics 122, 1310-1318 (2008). - 72 Xu, J. & Chen, Z. Advances in molecular cytogenetics for the evaluation of mental retardation. Am. J. Med. Genet C Semin. Med. Genet. 117C, 15–24 (2003). - 73 Ravnan, J. B., Tepperberg, J. H., Papenhausen, P., Lamb, A. N., Hedrick, J., Eash, D. et al. Subtelomere FISH analysis of 11 688 cases: an evaluation of the frequency and pattern of subtelomere rearrangements in individuals with developmental disabilities. J. Med. Genet. 43, 478–489 (2006). - 74 Ahn, J. W., Ogilvie, C. M., Welch, A., Thomas, H., Madula, R., Hills, A. et al. Detection of subtelomere imbalance using MLPA: validation, development of an analysis protocol, and application in a diagnostic centre. *BMC Med. Genet.* **8**, 9 (2007). 75 Schoumans, J., Ruivenkamp, C., Holmberg, E., Kyllerman, M., Anderlid, B. M. & - Nordenskjold, M. Detection of chromosomal imbalances in children with idiopathic mental retardation by array based comparative genomic hybridisation (array-CGH). J. Med. Genet. 42, 699-705 (2005). - 76 de Vries, B. B., Pfundt, R., Leisink, M., Koolen, D. A., Vissers, L. E., Janssen, I. M. et al. Diagnostic genome profiling in mental retardation. Am. J. Hum. Genet. 77, 606-616 (2005). - 77 Rosenberg, C., Knijnenburg, J., Bakker, E., Vianna-Morgante, A. M., Sloos, W., Otto, P. A. et al. Array-CGH detection of micro rearrangements in mentally retarded individuals: clinical significance of imbalances present both in affected children and normal parents. J. Med. Genet. 43, 180–186 (2006). - 78 Krepischi-Santos, A. C., Vianna-Morgante, A. M., Jehee, F. S., Passos-Bueno, M. R., Knijnenburg, J., Szuhai, K. et al. Whole-genome array-CGH screening in undiagnosed syndromic patients; old syndromes revisited and new alterations. Cytogenet, Genome Res. 115, 254-261 (2006). - 79 Thuresson, A. C., Bondeson, M. L., Edeby, C., Ellis, P., Langford, C., Dumanski, J. P. et al. Whole-genome array-CGH for detection of submicroscopic chromosomal imbalances in children with mental retardation. Cytogenet. Genome Res. 118, 1-7 (2007). - Wagenstaller, J., Spranger, S., Lorenz-Depiereux, B., Kazmierczak, B., Nathrath, M., Wahl, D. et al. Copy-number variations measured by single-nucleotide-polymorphism oligonucleotide arrays in patients with mental retardation. Am. J. Hum. Genet. 81, 768-779 (2007).