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Fig. 5.

Expression and function of A;sAR and A, AR on MC3T3-El cells. A: AR mRNA expression during differentiation. MC3T3-E| cells were

cultured in mineralization medium and total RNA was extracted on the indicated days. Expression of AR mRNA was detected by RT-PCR. Mouse
brain was used as a positive control for all AR subtypes. B,C: Quantification of A;4AR and A;gAR mRNA expression during osteoblast
differentiation by real-time RT-PCR. D: Functional expression of A;oAR and A,gAR. MC3T3-E| cells were cultured with mineralization medium
for 14 days. Cells were then stimulated with exogenous adenosine (100 M) with or without 5 min pretreatment with the indicated concentrations
of ZM241385 (A;4AR antagonist) or MRS1754 (A,zAR antagonist) or DMSO. The DMSO concentratlon in each well was 0.1%. After 5 min
incubation, cellswere homogenizedand cAMP was measured. >P < 0.05 compared with DMSO only. P < 0.05 compared with DMSO andadenosine.

Representative results from more than three experiments are shown.

CD73-induced alterations in osteoblast differentiation. As
shown in Figure 6A,B, enhanced gene expression of BSPand OC
in MC/CD73 was significantly suppressed by treatment with
an AypAR antagonist. Surprisingly, an A;aAR antagonist had no
effects on the BSP and OC gene expression of MC/CD73. It is
important to note that A;aAR and A;sAR mRNA expression
on MC3T3-E!l was not changed by over expression of CD73
(data not shown). These data suggest that CD73-generated
adenosine modulates osteoblast differentiation and function via
activation of AjpAR.

Discussion

Adenosine has a plethora of biological actions on a large variety
of cells and modulates their function. Cells responsible for bone
remodeling are no exception. In vitro and in vivo studies
demonstrated that formation and function of osteoclasts
responsible for bone resorption require A ;AR signaling (Kara
et al., 2010a,b). In vitro studies showed proliferation and
differentiation of osteoblasts responsible for bone formation
could be modulated by AR signaling (Shimegi, 1998; Fatokun
et al., 2006; Costa et al., 2010, 2011). Extracellular adenosine
which activates AR is generated, at least in part, by ecto-5'-

nucleotidse: CD73. The expression of this molecule is
regulated by the canonical Wnt and HIF-la pathways, crucial
signaling cascades in bone forming cells (Synnestvedt et al.,
2002; Spychala and Kitajewski, 2004). Thus, the possibility that
CD73 could impact osteoblast function by modulating
nucleotide metabolism and adenosine concentrations
prompted us to examine the role of this molecule in bone
metabolism.

Significantly decreased serum OC and suppressed
osteoblastic gene expression in bone of male cd73~'~ mice
suggest that their reduced bone volume is due to, at least in part,
to a defect of osteoblast function (Fig. 2). As CD73 plays a major
role in extracellular adenosine generation, this is the first report
indicating the involvement of endogenous adenosine in
osteoblast function in vivo. A better understanding of the
specific role of adenosine can be galned by a detailed analysis of
the phenotype observed in cd73~'~ mice. Unlike cortical bone,
trabecular bone volume, and trabecular thickness were
signifi cantly reduced (29.5% and 17.9% reduction, respectively),
in cd73™'~ mice as compared to wild-type mice. Likewise, bone
mineral density was significantly reduced in the trabecular rich
metaphysis but was not statistically reduced in cortical bone.
These findings suggest bone microenvironmental-specific
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Fig. 6.

Involvement of A2BAR signaling in osteoblast differentiation. Suppressive effect of an A;g AR antagonist on (A) BSP and (B) OC mRNA

expression in MC/CD73 cells. MC/CD73 cells were cultured for 3 days in a-MEM supplemented with 10% FBS in the presence of the indicated
concentration of ZM241385 (A,,AR antagonist) or MRS 1754 (A, AR antagonist) or DMSO only. The DMSO concentration in each well was 0.1%.
The expression of BSP and OC were determined by real-time RT-PCR. >P < 0.05 compared with DMSO-treated control transfectants. °P < 0.05
compared with DMSO-treated MC/CD73 cells. Representative results from more than three experiments are shown.

(trabecular vs. cortical regions) requirements for CD73.
Additionally, whole mount staining with alcian blue and alizarin
red of E|8.5 fetal skeletions, revealed no significant
abnormalities between cd73~'~ and wild-type embryos (data
not shown). These data reveal that CD73 is not required for
embryonic bone patterning or initial bone formation but is most
likely required for bone remodeling that occurs with age. In this
study, we showed that CD73 deficiency resulted in osteopenia
in male mice but not in female mice at 13 weeks of age. Mature
male and female mice are known to show different bone status
and remodeling rates. Thus, there may be an interaction
between CD73-generated adenosine and one or more age-
dependent factors such as sex hormones. Exploring this
interaction will be a topic of future work.

In this study, a series of in vitro studies revealed that CD73
promoted osteoblast differentiation, consistent with earlier
reports indicating that AR activation regulated proliferation and
differentiation of osteoblasts in vitro (Shimegi, 1998; Costa
etal, 201 1). The relatively modest bone phenotype of cd73~/~
mice may be due to redundant pathways of adenosine
production such as via cytoplasmic nuclectidases or S-adenosyl
homocysteine hydrolase. As it is possible that some of these
pathways could be up regulated as a consequence of life-long
CD73 deficiency, it would be interest to compare the bone
phenotype in mice with conditional CD73 deficiency when they
become available.

Unlike previous reports suggesting that adenosine supports
osteoclast formation and bone resorption (Evans et al., 2006;
Kara et al., 2010a,b), we found osteoclast markers were normal
in cd73™'~ mice in the steady state (Fig. 2A) and TRAP staining
of tibia showed comparable osteoclast numbers in wild-type
and ¢cd73~'~ mice (data not shown). However, CD73-
generated adenosine may modulate osteoclast formation and
function during inflammatory bone diseases such as rheumatoid
arthritis and periodontitis, because inflammatory cytokines are
capable of inducing CD73 expression (Kalsi et al., 2002;
Niemeli et al.,, 2004) and adenosine is a well-known anti-
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inflammatory mediator (Haskoé et al., 2008; Blackburn et al.,
2009). Future studies utilizing cd73 ™~ mice in experimental
bone disease models will give us more insight into the role of
CD73 and endogenous adenosine in the pathogenesis of these
diseases.

Elevation of A;sAR and A;pAR expression was observed
during osteogenic differentiation (Fig. 5). These subtypes of AR
are coupled with Gs proteins that can initiate signaling to
stimulate bone formation (Sakamoto et al., 2005; Hsiao et al,,
2008). Interestingly the positive role of CD73 on osteoblast
differentiation in vitro was mediated by the ApAR but not
the AjaAR (Fig. 6A,B). Our experiments do not rule out the
possibility that the AjoAR functions in osteoblast
differentiation in vivo independently of CD73; additional
experiments with gene-targeted mice will be necessary to
address this issue. Based on our data, we hypothesize that
CD?73-generated adenosine stimulates the A;pAR but not
the A;4AR or that A; AR signaling is not coupled to osteogenic
pathways. This idea is supported by reduced bone volume
in A;pAR deficient mice (data not shown) and previous studies
that demonstrated a tight relationship between CD73 and
the AjsAR in endothelial and epithelial cell function
(Strohmeier et al., 1997; Lennon et al., 1998; Eltzschig et al.,
2003; Eckle et al,, 2007; Takedachi et al., 2008). Although the
mechanism by which CD73-generated adenosine activates
the ApAR is not known yet, we speculate that the proximity
between the A;sAR and CD73 on microdomains of the plasma
membrane may lead to efficient activation of the AjzAR by
CD73-generated adenosine.

In conclusion, we propose that endogenous adenosine
generated by CD73 promotes osteoblast differentiation
via A2gAR signaling. The A;pAR is a seven-transmembrane—
spanning G protein—coupled receptor that is coupled to Gs
and uses cAMP as a second messenger. It has been reported that
cAMP promotes osteoblast function and the anabolic action of
bone formation by enhancement of bone morphogenetic
protein signaling (Nakao et al., 2009). Experiments are now
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ongoing to further define the role of the A;gAR in osteoblast
differentiation. Together with our findings in this study, such
information may lead to the development of new anabolic
therapeutic targets for bone diseases.
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human gingival fibroblasts
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Effects of L-ascorbic acid 2-phosphate magnesium salt on the properties of

human gingival fibroblasts. J Periodont Res 2012, 47: 263-271. © 2011 John Wiley
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Background and Objective: 1.-Ascorbic acid 2-phosphate magnesium salt (APM) is
an L-ascorbic acid (AsA) derivative developed to improve AsA stability and dis-
play effective biochemical characteristics. This study aimed to investigate the

effects of APM on the functions and properties of human gingival fibroblasts with
respect to the prevention of periodontal disease in comparison with those of AsA.

Material and Methods: Human gingival fibroblasts were incubated in the presence
or absence of APM or L-ascorbic acid sodium salt (AsANa). Intracellular AsA was
analysed by HPLC. Collagen synthesis was measured by ELISA and real-time
RT-PCR. Intracellular reactive oxygen species (ROS) induced by hydrogen
peroxide (H,0,) were quantified using a fluorescence reagent, and cell damage was
estimated with calcein acetoxymethyl ester. Furthermore, intracellular ROS
induced by tumor necrosis factor-o. (TNF-o) were quantified, and expression of
TNF-o-induced interleukin-8 expression, which increases due to inflammatory
reactions, was measured by ELISA and real-time RT-PCR.

Results: APM remarkably and continuously enhanced intracellular AsA and
promoted type 1 collagen synthesis and mRNA expression. Furthermore, APM
decreased cell damage through the suppression of H,O,-induced intracellular ROS
and inhibited interleukin-8 production through the suppression of TNF-a-induced
intracellular ROS. These effects of APM were superior to those of AsANa.

Conclusion: These results suggest that APM is more effective than AsANa in terms
of intake, collagen synthesis, decreasing cell damage and inhibiting interleukin-8
expression in human gingival fibroblasts. This suggests that local application of
APM can help to prevent periodontal disease.
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L-Ascorbic acid (AsA), better known
as vitamin C, has various biochemical
functions, such as collagen synthesis
in skin fibroblasts (1,2), phagocytosis
of polymorphonuclear leukocytes (3),

differentiation of several mesenchymal
cell types (4) and antioxidant scav-
enging of reactive oxygen species
(ROS; 5). However, AsA is highly
unstable in  aerobic  conditions
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(6,7), neutral pH (8) and in solution
).

L-Ascorbic acid 2-phosphate mag-
nesium salt (APM) is an AsA deriva-
tive developed to improve AsA
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stability. APM is highly resistant to
degradation into AsA, even at neutral
pH (10), but displays numerous bio-
chemical characteristics, such as easy
degradation into AsA in the presence
of phosphatase from living tissues.
Enhancement of collagen production
in keratocytes (11) and skin fibroblasts
(12) by APM has been reported. Fur-
thermore, Kobayashi et al. (13) have
demonstrated that APM can protect
against lipid peroxidation and inflam-
mation in cutaneous tissue induced by
ultraviolet B exposure. Collagen syn-
thesis by APM and its antioxidant
properties are especially attractive to
the skincare field.

Interestingly, these two functions are
also required in gingival tissues for
preventing periodontal disease. Human
gingival fibroblasts are the major con-
stituents of gingival tissues and main-
tain their homeostasis by regulating
collagen metabolism (14). However,
collagenin gingiva is degraded by MMP
produced by periodontal pathogens or
various host cells in inflamed periodontal
tissues (15). Moreover, it has been
reported that ROS, which play a major
role in the etiology of periodontal dis-
ease, are induced by respiratory bursts
of neutrophils (5,16) or by the proin-
flammatory signaling pathway (17-19).
Many studies have indicated that ROS
induce direct tissue destruction, such as
collagen degradation and cell damage
(20,21), or stimulate proinflammatory
processes (22-24).

Therefore, the promotion of colla-
gen synthesis and suppression of ROS
by APM could be expected to con-
tribute to the integrity of gingival tis-
sues and prevention of periodontal
disease. The aim of this study was to
investigate the effects of APM on
intake, collagen synthesis, and antiox-
idant and anti-inflammatory properties
of human gingival fibroblasts in com-
parison with those of AsA.

Material and methods

Reagents

L-Ascorbic acid sodium salt (AsANa)
was obtained from Wako Pure Chem-
ical Industries (Osaka, Japan). APM
was obtained from Showa Denko Co.,

Ltd (Tokyo, Japan). Hydrogen perox-
ide (H,O,) was obtained from Merck
KgaA (Darmstadt, Germany). Calcein
acetoxymethyl ester (calcein-AM) was
obtained from Invitrogen Corporation
(Carlsbad, CA, USA). Tumor necrosis
factor-o (TNF-o) was obtained from
R&D Systems Inc. (Minneapolis, MN,
USA).

Cell culture

The protocol was reviewed and
approved by the Institutional Review
Board of the Osaka University Grad-
uate School of Dentistry, and informed
consent was obtained from all subjects
participating in the study. Two cell
lines of human gingival fibroblasts
(HGF 1 and HGF 2) were obtained
from biopsies of healthy gingiva from
healthy volunteers as previously
described (25). Cells of another human
gingival fibroblast cell line, Gin-1, were
obtained from DS Pharma Biomedical
Co., Ltd (Osaka, Japan). Human gin-
gival fibroblasts were grown in Dul-
becco’s modified Eagle’s medium
(DMEM; GIBCO, Carlsbad, CA,
USA) containing 10% fetal calf serum
(FCS; SAFC Biosciences, Lenexa, KS,
USA) and routinely passaged by
trypsinization when nearly confluent.
The HGF 1 cells were the main cell line
evaluated in this study, and other cell
lines exhibited similar tendencies to
this cell line. The following experi-
ments were performed after seeding the
cells onto a culture plate (6.7 x 10°
cells/em?) and pre-incubating them for
24 h in DMEM containing 10% FCS.

Content of AsA and APM in human
gingival fibroblasts

Human gingival fibroblasts were incu-
bated in 75 cm? flasks with 50 um
AsANa or APM in DMEM containing
1% FCS for 12-48 h. To determine
whether APM was degraded into AsA
by phosphatase present in FCS, APM
was diluted in a medium containing
heat-inactivated FCS at 56°C for
30 min in the APM (inactivated) group.
Human gingival fibroblasts were
washed three times with phosphate-
buffered saline after incubation and
collected in 0.1 mL of cold 5% meta-
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phosphoric acid by scraping. The cell
suspensions were sonicated and centri-
fuged at 10,000 g for 15 minat4°C. The
cell extract supernatants were main-
tained at —80°C until ready for HPLC
analysis. In brief, the separation of AsA
from the supernatants was achieved by
isocratic elution from an Inertsil® ODS-
3 column (4.6 mm X 250 mm, particle
size 5 um; GL Science, Tokyo, Japan),
which was kept at 40°C, with 25 mm
KH,PO,~H;PO, buffer (pH 2.0) con-
taining 20 pm EDTA and 25 mw tetra-
butylammonium hydrogen sulfate at a
flow rate of 0.8 mL/min. AsA was
detected by an electrochemical detector
(Eicom, Kyoto, Japan) adjusted to
550 mV, and APM was detected by a
UV-Vis detector (Shimadzu, Kyoto,
Japan) at 240 nm.

Cell proliferation

Cell proliferation was assessed by the
trypan blue dye exclusion assay.
Human gingival fibroblasts were
incubated in a six-well plate with
50 uyMm AsANa or APM in DMEM
containing 1% FCS for 12-72 h. The
number of living cells was counted
under microscopic observation after
harvesting by trypsinization and
staining with trypan blue (Invitrogen
Corporation).

Collagen synthesis

Human gingival fibroblasts were
incubated in a six-well plate with
50 um AsANa or APM in DMEM
containing 1% FCS for 3-72 h. Sub-
sequently, the amount of type 1 col-
lagen produced by human gingival
fibroblasts in the culture medium
supernatant was determined in each
well using the Human Type 1 Colla-
gen ELISA Kit (ACBio, Kanagawa,
Japan) according to the manufac-
turer’s instructions.

Extraction of RNA and real-time
RT-PCR

Total RNA from human gingival
fibroblasts was isolated using the
RNeasy Mini Kit (QIAGEN K.X.,
Tokyo, Japan), and first-strand cDNA
was synthesized using random primer



hexamers and M-MLV reverse trans-
criptase  (Invitrogen Corporation).
Real-time RT-PCR was performed
using the Power PCR SYBR Master
Mix (Applied Biosystems, Carlsbad,
CA, USA) and gene-specific primers
(Sigma-Aldrich Japan, K.K., Genosys
Division, Ishikari, Japan) in a 7300 fast
real-time RT-PCR system (Applied
Biosystems) according to the manufac-
turer’s instructions. Amplification con-
ditions consisted of an initial
denaturation at 95°C for 10 min, fol-
lowed by 40 cycles of denaturation at
95°C for 15 s, and annealing and elon-
gation at 60°C for 60 s. The primer
sequences were as follows: glyceral-
dehyde-3-phosphate  dehydrogenase
(GAPDH), 5-GCACCGTCAAGGC-
TGAGAAC-3’ (forward), 5-ATGGT-
GGTGAAGACGCCAGT-% (reverse);
type 1 collagen, 5-CTGCTGGACGT-
CCTGGTGAA-3" (forward), 5-AC-
GCTGTCCAGCAATACCTTGAG-3
(reverse); and interleukin-8 (IL-8),
5-ACACTGCGCCAACACAGAAAT-
TA-3" (forward), 5-TTTGCTTGAA-
GTTTCACTGGCATC-3"  (reverse).
Relative expression was obtained after
normalization with gene expression of
GAPDH.

Intracellular ROS

Generation of intracellular ROS
induced by H,O, or TNF-o stimulation
was evaluated using a ROS detection
reagent, 5-(and-6)-chloromethyl-2’,
7’-dichlorodihydrofluorescein diacetate,
acetyl ester (CM-H,DCFDA; Molec-
ular Probes, Carlsbad, CA, USA). In
brief, this reagent is hydrolysed by
intracellular esterases and is converted
to the highly fluorescent derivative
5-(and-6)-chloromethyl-2’,7’-dichloro-
fluorescein through its reaction with
intracellular ROS. The quantification
of fluorescence intensity enabled us to
measure intracellular ROS. Human
gingival fibroblasts were incubated in a
24-well plate with 50 pm AsANa or
APM in DMEM containing 1% FCS
for 12-72 h. Incubated cells were
exposed to 10 um CM-H,DCFDA in
serum-free DMEM for 30 min and
washed with phosphate-buffered saline
to eliminate the extracellular reagent.
Subsequently, the cells were stimulated
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by 1 mm H,0, in serum-free DMEM
for 0.5 h. The intracellular fluorescence
intensity was detected at 485 nm exci-
tation and 530 nm emission using a
fluorescence plate reader. Intracellular
ROS levels were calculated by inte-
grating the area under the fluorescence
intensity—time curve and converted to
the relative value compared with that
in the samples without H,O, stimula-
tion. Transmitted and fluorescent light
images of the cells were observed, and
the fluorescence intensity of each fluo-
rescence image was quantified by an IN
Cell Analyzer 1000 (GE Healthcare
Japan, Tokyo, Japan) and converted to
a relative value against the control.
Likewise, evaluation of intracellular
ROS after 8 h of stimulation by TNF-
o was performed using the CM-
H,CDFDA reagent.

Cell viability assay

Cell viability was determined on the
basis of the metabolism of calcein-AM,
which produces a green fluorescence on
reaction with intracellular esterase.
Human gingival fibroblasts incubated
for 24 h in the presence of AsANa or
APM were exposed to 1 pum calcein-
AM in Dulbecco’s phosphate-buffered
saline for 30 min after stimulation with
1 mm H,0, for 0.5-2 h. Fluorescence
intensity was detected using a fluores-
cence spectrometer, and cell viability
(as a percentage) was calculated as
follows: (fluorescence intensity of each
group after H,O, stimulation)/(fluo-
rescence intensity without H,O, stim-
ulation) x 100.

Determination of IL-8 production

Human gingival fibroblasts were incu-
bated in a 24-well plate with 50 pm
AsANa or APM in DMEM containing
1% FCS for 24 h. The cells were
stimulated with 1nM TNF-o in
DMEM containing 1% FCS. After
stimulation for 8 h, total RNA was
isolated from the cells, and IL-8 mRNA
expression was measured. Finally, the
culture medium supernatants were
assayed for IL-8 using the Human IL-8
ELISA Kit (R&D Systems, Minneap-
olis, MN, USA) according to the
manufacturer’s instructions.
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Statistical analysis

ANOVA was used to compare groups,
and the homogeneity of variance was
confirmed by Bartlett’s test. Tukey’s
multiple comparison test was used to
determine differences among the three
groups (control, AsANa and APM)
with respect to cell proliferation, col-
lagen synthesis, intracellular ROS,
cell viability and IL-8 production.
Unpaired student’s /-test or the Aspin—
Welch test was used to evaluate the
changes in intracellular ROS and the
amount of IL-8 produced in response
to H,O, or TNF-a stimulation.

A —&— Control
-m- AsANa
~o— APM

300 4 -0~ APM (inactivated)

Intracellular AsA (pmol/flask)
S
o

[¢] 12 24 36 48
Incubation time (h)

—4- Control
257 B ~#- AsANa
-~ APM
20+ ~O~ APM (inactivated)

—

12 24 36 48
Incubation time (h)

Intracellular APM (pmol/flask)

Fig. 1. The intracellular accumulation of
L-ascorbic acid (AsA) and vr-ascorbic acid
2-phosphate magnesium salt (APM) in
human gingival fibroblasts. Human gingival
fibroblasts were incubated in the presence or
absence (control) of 50 pm of the sodium salt
of AsA (AsANa) or APM in Dulbecco’s
modified Eagle’s medium (DMEM) con-
taining 1% fetal calf serum (FCS). Dul-
becco’s modified Eagle’s medium containing
1% heat-inactivated FCS was used in the
APM (inactivated) group. After incubation
for 1248 h, cell suspensions collected in 5%
metaphosphoric acid were sonicated and
centrifuged. The amount of intracellular AsA
and APM in the supernatants was deter-
mined by HPLC. (A) AsA was detected by an
electrochemical detector. (B) APM was
detected by an UV-Vis detector. The results
represent the means £ SD of three inde-
pendent experiments.
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Fig. 2. Effects of AsANa and APM on collagen synthesis in human gingival fibroblasts. Human gingival fibroblasts were incubated in the
presence or absence (control) of 50 pm AsANa or APM in DMEM containing 1% FCS for 12-72 h. (A) Cell culture supernatants of HGF 1
cells were measured using an ELISA kit. The results are shown as the means + SD (n = 5) of three independent experiments. (B) Type 1
collagen mRNA expression in HGF 1 cells was measured by real-time RT-PCR as described in the Material and methods section. The results
are shown as the means -+ SD (n = 4) of three independent experiments. (C) After incubation for 72 h, the cell culture supernatants of
HGF 1, HGF 2 and Gin-1 cells were measured using an ELISA kit. The results are shown as the means + SD (n = 5) of three independent
experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 by Tukey’s test.

Results

The amount of intracellular AsA was
remarkably enhanced by APM

To clarify differences in intake of
AsA by human gingival fibroblasts
between AsANa and APM groups,

we quantified the amount of AsA and
APM in the supernatant derived from
crushed cells. The APM group
showed a remarkably enhanced level
of intracellular AsA (> 200 pmol per
flask) at 12 h, and this level was
maintained up to 48 h; although lev-
els were within 30 pmol in the APM
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(inactivated) group in which phos-
phatase in FCS was inactivated
(Fig. 1A). Conversely, intracellular
AsA in the AsANa group disap-
peared at 48 h, although a peak value
of 50 pmol was observed at 12 h.
There was no intracellular AsA
detected in the control group. The



amounts of intracellular APM in the
APM and APM (inactivated) groups
were approximately 5 and 15 pmol,
respectively, up to 48 h (Fig. 1B).

APM promoted type 1 collagen
synthesis and mRNA expression in a
time-dependent manner

To investigate the effects of AsANa
and APM on collagen synthesis in
human gingival fibroblasts, we mea-
sured the amount of type 1 collagen
synthesized by HGF 1 cells in the
supernatant of the culture medium.
No difference in collagen synthesis
was observed among the three groups
until 12 h of incubation, but the
AsANa and APM groups showed a
significant increase compared with the
control group after 24 h (Fig. 2A).
Collagen synthesis continued in the
APM group and accelerated after
48 h, with a twofold higher level than
that in the AsANa group at 48 h
(p < 0.001) and a threefold higher
level at 72 h (p < 0.001). To elucidate
the cause of this acceleration, we
evaluated type 1 collagen mRNA
expression. The APM group showed
significantly higher type 1 collagen
mRNA expression at 48 (p < 0.05)
and 72h (p < 0.01) than that
observed in the control and AsANa
groups, whereas typel collagen
mRNA expression in the AsANa
group did not differ from that in the
control group (Fig. 2B). This acceler-
ation of collagen synthesis was also
observed in HGF 2 and Gin-1 cells
(Fig. 2C). However, no significant
difference in the proliferation of
HGF 1 cells was observed among the
three groups at any incubation time
point.

APM decreased cell damage by
suppressing intracellular ROS
produced by H,0, stimulation

We evaluated intracellular ROS pro-
duced by H,O, stimulation to clarify
the antioxidative properties of AsANa
and APM. Intracellular ROS levels in
the control group increased more than
twofold due to H,O, stimulation at all
incubation times (p < 0.001). The
intracellular ROS scavenging activity
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levels as a percentage of those of the
H,0, alone group were 35 (12 h;
p < 0.01), 38 24 h; p < 0.001), 35
(48 h; p < 0.001) and 16% (72 h;
p < 0.05) in the APM group and 23
(12 h; p < 0.05), 18 (24 h; p < 0.01),
-3 (48 h; not significant) and -10%
(72 h; not significant) in the AsANa
group (Fig. 3A). The APM group
showed significant suppression of
intracellular ROS production up to
72 h, whereas in the AsANa group, the
suppressive effect on ROS production
disappeared at 48 h. Figure 4 illus-
trates the cell images produced by

267

transmitted or fluorescent light and
quantification of fluorescence images
when the cells were incubated for 24 h
followed by H,0O, stimulation. The
strength of the yellowish-green intra-
cellular fluorescence, which corre-
sponded to intracellular ROS levels, in
the APM group was remarkably
reduced compared with that in the
H,0, alone and AsANa groups. This
was consistent with the findings in
Fig. 3A. We also measured cell viabil-
ity to clarify whether cell damage was
influenced by this ROS suppression. In
all groups, cell damage appeared 1 h
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Fig. 3. Effects of APM and AsANa on hydrogen peroxide (H,O,)-induced intracellular
reactive oxygen species (ROS) genération and cell damage in human gingival fibroblasts.
Human gingival fibroblasts were incubated in the presence or absence (control) of 50 pm
AsANa or APM in DMEM containing 1% FCS. (A) After incubation for 12-72 h, the cells
were incubated for 30 min in serum-free DMEM containing 10 um 5-(and-6)-chloromethyl-
2’,7’-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H,DCFDA) and transferred to
1 mMm H,0, in serum-free DMEM. The ROS levels were immediately detected using a
microplate fluorometer for 30 min. The results are shown as the means + SD (n = 6) of
three independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 by Tukey’s test;
and +p < 0.001 by Unpaired student’s r-test. (B) After a 24 h pretreatment for APM and
AsANa, the cells were stimulated with 1 mM H,0, for 0.5-2 h in serum-free DMEM and
subsequently incubated for 30 min in Dulbeccos phosphate-buffered saline containing 1 um
calcein acetoxymethyl ester. The results are shown as the means + SD (n = 6) of three
independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 by Tukey’s test.
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Fig. 4. Intracellular ROS scavenging activity of APM in human gingival fibroblasts. Human gingival fibroblasts were incubated in the
presence or absence (control) of 50 um AsANa or APM in DMEM containing 1% FCS for 24 h. After incubation, the cells were incubated for
30 min in serum-free DMEM containing 10 pm CM-H,DCFDA and transferred to 1 mm H,0; in serum-free DMEM for 30 min. Cell images
were taken, and the fluorescence intensity of each image was quantified by the IN Cell Analyzer 1000. Cell images are representative of three

independent experiments. Data are shown as the means + SD (n =

p < 0.01 by Aspin—Welch test.

after stimulation with H,0,, but cell
damage in the APM group was signif-
icantly lower than that in the H,0,
alone (p < 0.001) and AsANa groups
(p < 0.01; Fig. 3B).

APM inhibited IL-8 production by
suppressing intracellular ROS
through TNF-a stimulation

We investigated the effects of AsANa
and APM on intracellular ROS and
IL-8 production induced by TNF-a
stimulation. The intracellular ROS
level in the control group increased by
approximately 40% due to TNF-a
stimulation (p < 0.001). The APM
group showed a 66% suppression of
intracellular ROS levels (p < 0.01),
but the AsANa group showed only an
8% suppression (not significant) in
comparison to the values for the TNF-a
alone group (Fig. 5A). In contrast,
IL-8 production and mRNA expres-
sion increased remarkably after TNF-o
stimulation. Interestingly, the APM
group showed a 35% inhibition of IL-8
protein production (p < 0.001) and a

52% inhibition of IL-§ mRNA
expression (p < 0.01) compared with
the production in the TNF-o alone
group (Fig. 5B and 5C). However, no
significant differences were observed
between the TNF-o alone and AsANa
groups.

Discussion

APM is a stable AsA derivative, but
the mechanism by which APM and
AsA are taken up by human gingival
fibroblasts has not yet been clarified.
Interestingly, in our experiment quan-
tifying intracellular AsA levels, the
APM group showed an approximately
20-fold enhancement in the amount of
AsA relative to that of the AsA group
24 h after incubation, and this effect
was long lasting. We believe that
enhancement and persistence of intra-
cellular AsA in the APM group could
be explained by the existence of AsA
transporters and the gradual degrada-
tion of APM. Transport studies have
revealed that mammalian cells are
endowed with two types of transporters
(SVCT 1 and SVCT 2) across their
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6) of three independent experiments. ***p < 0.001 by Tukey’s test; and

membrane (26), and various cells
kinetically control the intake of AsA
through these transporters by sodium
or other cations (27,28). The trans-
porters have a high specificity for AsA,
but not for APM (26,29). The amount
of intracellular intact APM in the
APM group was lower than that of
intracellular AsA, although we could
detect intracellular APM. Therefore,
we consider that intracellular AsA in
the APM group was due to the intake
of AsA after degradation. This possi-
bility is supported by the result of the
APM (inactivated) group wherein the
amount of intracellular AsA was
markedly decreased because of phos-
phatase inactivation in FCS. The lower
amount of intracellular AsA in the
APM (inactivated) group was probably
due to active phosphatase on the cell
membrane (30). Chepda ef al. (30)
also demonstrated that APM is
gradually degraded to AsA to contin-
uously supply AsA to the culture
medium for many hours. This highly
effective characteristic of APM has
been demonstrated in other cells as
well (31).
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Fig. 5. Effects of APM and AsANa on tumor necrosis factor-o. (TNF-o)-induced interleukin-
8 (IL-8) production and intracellular ROS generation in human gingival fibroblasts. Human
gingival fibroblasts were incubated in the presence or absence (control) of 50 pm AsANa or
APM in DMEM containing 1% FCS for 24 h. After incubation, the cells were stimulated by
1 nm TNF-a for 8 h. (A) Intracellular ROS generation in human gingival fibroblasts was
determined using CM-H,DCFDA as described in the Material and methods section. Data
are shown as the means + SD (n = 6) of three independent experiments. (B) Interleukin-8
mRNA expression was measured by real-time RT-PCR. The results are shown as the
means + SD (n = 4) of three independent experiments. (C) Interleukin-8 in the culture
medium was detected using an ELISA kit. The results are shown as the means + SD (n = 6)
of three independent experiments. *p < 0.05, **p < 0.01 and ***p < 0.001 by Tukey’s test;

and p < 0.01 by Aspin—-Welch test.

The main finding of this study was
that type 1 collagen synthesis and
intracellular ROS suppression were
related to the amount of intracellular
AsA. The type 1 collagen molecule
consists of two al (1) and one o2 (1)
polypeptide chains with a spiral form
(32). Many studies have reported that
AsA plays an important role as a
cofactor for proline and lysine
hydroxylase, which is required for the
numerous hydrogen bonds needed to
create the stable spiral form and pro-
duce a mature collagen structure (33).
In the results shown in Fig. 3A, the

promotion of collagen in the AsANa
and APM groups at 24 h can be con-
sidered to be dependent on collagen
maturation induced by increased
intracellular AsA, because collagen
mRNA expression did not change up
to 24 h in the three groups, and colla-
gen synthesis in the AsANa group after
48 h stopped at the same time that
the intracellular AsA supply was
exhausted. However, collagen synthesis
after 48 h was accelerated in the APM
group, contrary to the tendency of
intracellular AsA levels to decrease.
We would like to suggest that the
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increase in collagen mRNA expression
strongly contributed to the accelera-
tion in the APM group. Many studies
have found that the type 1 collagen
mRNA expression in various cells
clearly increased in the presence of
AsA, and this phenomenon has been
attributed to mechanisms such as
transcriptional control, a feedback
effect produced by the procollagen
polypeptide (34-36). In contrast, an
increase in collagen mRNA expression
in the AsANa group was not observed
in this study. We speculate that this
was because of the persistence of
intracellular AsA at a high concentra-
tion. That is, in the present study, we
only employed a single AsA treatment
for 72 h, whereas daily AsA treatment
was performed in most other studies.
Excess ROS levels have been impli-
cated as the cause of various diseases,
including periodontal disease (17). In
periodontal lesions, neutrophils release
excessive levels of superoxide, which is
immediately converted to H,0, (5).
The H,0, subsequently converts to
hydroxyl radicals in the presence of
metal jons in various tissues, and
hydroxyl radicals induce the tissue
dysfunction involved in cell damage
(37). Previous studies have reported
that H,O, increases intracellular ROS
and induces damage in various cells
(17,21). In our study, the APM group
showed remarkable suppression of
intracellular ROS production and
decreased cell damage after H,0,
stimulation, similar to the findings for
other antioxidants (38,39). In addition,
the effect was related to the amount of
intracellular AsA that was capable of
scavenging ROS (17). Thus, APM,
which greatly enhanced intracellular
AsA levels, can be expected to prevent
tissue destruction caused by ROS in
the progression of periodontal disease.
In this study, we investigated the
anti-inflammatory properties of APM
against the stimulatory effects of TNF-o,
which is a major proinflammatory
cytokine and induces intracellular ROS
as signaling intermediates for proin-
flammatory  cytokine  production
(17,24,40). On TNF-a stimulation, APM
suppressed intracellular ROS produc-
tion and inhibited IL-8 production in
human gingival fibroblasts. These
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effects appeared to be related to the
intracellular AsA content. Many stud-
ies have reported that IL-8, which is an
important factor in the chemotaxis of
neutrophils (41), is induced by TNF-a
stimulation in various cell types,
including human gingival fibroblasts
(42,43), and is detected in periodontal
lesions (44,45). N-Acetyl-L-cysteine, a
representative antioxidant, inhibited
TNF-o-induced  IL-8  production
through the suppression of intracellular
ROS (24). Furthermore, O’Hara et al.
(46) found that N-acetyl-L-cysteine inac-
tivated redox-sensitive transcription
factors, such as nuclear factor-xB and
activator protein-1. We speculate that
the suppression of intracellular ROS
production by APM may contribute to
the inhibition of IL-8 production
through the inactivation of nuclear
factor-kB and activator protein-1 in
human gingival fibroblasts.
Periodontal disease is an inflamma-
tory disorder caused by periodontal
pathogens. During the inflammatory
process, MMP and ROS cause the
destruction of periodontal tissues (5).
Furthermore, continuous and excessive
IL-8 secretion by human gingival
fibroblasts induces unduly chemotactic
activity of neutrophils and the initia-
tion of chronic inflammatory
responses, eventually leading to tissue
destruction (41,44,45). Hence, the top-
ical application of APM to periodontal
lesions may promote gingival collagen
synthesis and suppress excess ROS
production through the enhancement
of intracellular AsA levels, thereby
blocking the destruction of periodontal
tissue. A previous study reported that
the phosphate derivatives of AsA pen-
etrated through the epidermis of hair-
less mouse skin and were converted to
AsA by phosphatase in the cell mem-
brane (13). In addition, Shibayama
et al. (47) demonstrated that the
phosphate derivatives of AsA pene-
trated through a human epidermal skin
model consisting of keratinocytes
rather than AsA, after which they
reached the site of the dermis mainly
consisting of fibroblasts and collagen.
Therefore, APM can be judged to
penetrate through the gingival epithelia
and reach the gingival fibroblasts,
where it subsequently promotes gingi-

val collagen synthesis, suppresses
excess ROS production by enhancing
intracellular AsA, and regulates
the chronic inflammatory response
through ROS suppression. Thus, the
local application of APM can prevent
periodontal disease.
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Background and Objective: As epithelial cells function as a mechanical barrier, the
permeability of the gingival epithelial cell layer indicates a defensive capability
against invasion by periodontal pathogens. We have reported the expression of
claudin-1 and E-cadherin, key regulators of permeability, in the gingival junctional
epithelium. Irsogladine maleate (IM) is a medication for gastric ulcers and also
regulates Aggregatibacter actinomycetemcomitans-stimuated chemokine secretion
and E-cadherin expression in gingival epithelium. In this study, we have further
investigated the effects of IM on the barrier functions of gingival epithelial cells
under inflammatory conditions.

Material and Methods: We examined the permeability, and the expression of
claudin-1 and E-cadherin, in human gingival epithelial cells (HGECs) stimulated
with tumor necrosis factor (TNF)-o, with or without IM.

Results: TNF-o increased the permeability of HGECs, and IM abolished the
increase. TNF-a reduced the expression of E-cadherin in HGECs, and IM reversed
the reduction. In addition, immunofluorescence staining showed that TNF-a
disrupted claudin-1 expression in HGECs, and IM reversed this effect.

Conclusion: The results suggest that IM reverses the TNF-a-induced disruption of
the gingival epithelial barrier by regulating E-cadherin and claudin-1.

© 2011 John Wiley & Sons A/S
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Periodontitis is an inflammatory con-
dition caused by the colonization of
periodontopathogenic bacteria, such as
Porphyromonas gingivalis or Aggrega-
tibacter actinomycetemcomitans, in the
gingival sulcus. The gingival junctional
epithelium is located at a strategically
important interface at the bottom of
the gingival sulcus and contributes
actively to inflammatory processes

because it represents the first line of
defense against microbial attack (1-3).
As epithelial cells function as a
mechanical barrier (4,5), disruption of
the gingival epithelial cell layer allows
periodontopathogenic  bacteria  to
invade periodontal tissue, leading to
periodontal disease. Therefore, regula-
tion of the barrier function may pre-
vent bacterial invasion.
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Although epithelial cells are generally
interconnected by tight junctions,
adherence junctions, desmosomes and
gap junctions, previous studies have
shown that the junctional epithelium is
interconnected only by a few desmo-
somes, and occasionally by gap
junctions, and has wide intercellular
spaces (1,2). However, we recently
found that claudin-1, a tight junction
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structured protein, was expressed in the
healthy junctional epithelium of Fischer
344 rats (6). A previous report showed
that claudin-1-deficient mice died with-
in 1d of birth and exhibited severe
defects in the permeability of the epi-
dermis (7). Cells over-expressing clau-
din-1 showed increased transepithelial
electrical resistance (8). Therefore,
claudin-1 may play an important role in
the barrier function of the junctional
epithelium, in spite of the absence of
tight junctions. E-cadherin, a key pro-
tein involved in the formation of des-
mosomes and adherens junctions, is
known to regulate the permeability of
epithelial cells (5,9). In the gastric
mucosal epithelium, the disruption of
E-cadherin seems to cause epithelial
permeability to increase (10). Immuno-
histochemical staining has shown that
E-cadherin is expressed in the healthy
junctional epithelium of humans and
rats (6,11) and that its level is decreased
in diseased tissue (11,12). Therefore,
E-cadherin plays an important role
against bacterial invasion in the gingival
junctional epithelium.

Irsogladine maleate (IM) is known to
enhance gap junctional intercellular
communication in cultured rabbit
gastric epithelial and pancreatic cancer
cells (13,14), and is used clinically as
an anti-gastric ulcer agent. Our previ-
ous study showed that IM inhibits
A. actinomycetemcomitans-induced
inflammatory responses in the gingival
epithelium by suppressing neutrophil
migration in vivo and in vitro (12). In
addition, IM rescued the A. actinomy-
cetemcomitans-induced reduction in
E-cadherin in vivo and in vitro (12).
Furthermore, IM countered the reduc-
tion of gap junctional intercellular
communication in cultures of human
gingival epithelial cells (HGECs) stim-
ulated with A. actinomycetemcomitans
or interleukin (IL)-1B (15,16). As IM
seems to regulate the inflammatory
responses induced by bacterial attack
and cytokine stimulation in the human
gingival epithelium, it may be a can-
didate preventive medicine for peri-
odontal disease.

Junctional epithelium, which is orig-
inally derived from the reduced enamel
epithelium, may be replaced over time
by a junctional epithelium formed by

basal cells originating from the oral
gingival epithelium (17). In fact, after
gingivectomy, a new junctional epithe-
lium is formed from the basal cells of the
oral gingival epithelium (18-22). These
findings show that the origin of the
junctional epithelium is the same as that
of the oral gingival epithelium, sug-
gesting that the cultured gingival epi-
thelial cells used in this study possess
some characteristics of junctional epi-
thelial cells.

Tumor necrosis factor-o (TNF-o) is
a major inflammatory cytokine pro-
duced in response to P. gingivalis or
A. actinomycetemcomitans  infection
(23). It has also been reported that
TNF-a induces barrier dysfunction in
many types of cells. In this study, to
investigate the effect of IM on the
gingival epithelial barrier, we examined
permeability and junctional protein
expression in HGECs following stim-
ulation with TNF-oa.

Material and methods

Preparation of cells

Healthy gingival tissues, which had been
surgically dissected through the process
of wisdom tooth extraction and which
were to be discarded, were collected
with the patients’ informed consent.
HGECs from three donors (two wo-
men, 24 and 27 years of age; and one
man, 22 years of age) were isolated as
previously described (15,16). Briefly,
gingival tissues were treated with
0.025% trypsin and 0.01% EDTA
overnight at 4°C, and divided into epi-
thelial and connective tissues. The
HGEC suspension was centrifuged at
120 g for 5 min, and the pellet was sus-
pended in Humedia-KB2 medium
(Kurabo, Osaka, Japan) containing
10 pg/mL of insulin, 5 pg/mL of trans-
ferrin, 10 pM 2-mercaptoethanol, 10 pm
2-aminoethanol, 10 pM sodium selenite,
50 pg/mL of bovine pituitary extract,
100 units/mL of penicillin and 100 pg/
mL of streptomycin (Medium A). The
cells were seeded in 60-mm plastic tis-
sue-culture plates coated with type I
collagen, and incubated in 5% CO,/
95% air at 37°C. When the cells reached
subconfluence, they were harvested and
subcultured.
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A Simian virus-40 (SV40) antigen-
immortalized gingival epithelial cell
line, OBA-9, was kindly provided by
Dr Shinya Murakami (Osaka Univer-
sity Graduate School of Dentistry,
Osaka, Japan) and maintained in
Medium A (24). OBA-9 cells were used
for immunofluorescence staining.

RNA preparation and real-time PCR

Cultured HGECs were harvested at the
fourth passage, seeded in 35-mm plas-
tic tissue-culture plates coated with
type I collagen and maintained in 2 mL
of Medium A. Confluent HGECs were
pretreated for 1 h with or without 1 pm
IM (supplied by Nippon Shinyaku,
Kyoto, Japan) and then exposed for
24 h to 50 ng/mL of TNF-a (R&D
Systems, Minneapolis, MN, USA) in
2 mL of Humedia-KB2 medium con-
taining 10 pg/mL of insulin, 5 pg/mL
of transferrin, 10 uM 2-mercaptoetha-
nol, 10 pM 2-aminoethanol, 10 pm
sodium selenite, 100 units/mL of peni-
cillin and 100 pg/mL of streptomycin
(Medium B). Total RNA was extracted
using ISOGEN (Wako Pure Chemical
Industries, Osaka, Japan) and quanti-
fied by spectrometry at 260 and
280 nm. First-strand ¢cDNA synthesis
was performed with 1 pg of total RNA
extract in a total volume of 20 pL
(Roche, Tokyo, Japan). Real-time
PCR was performed with a Lightcycler
system using SYBR Green (Roche).
The sense and antisense primers for
human E-cadherin, claudin-1 and
glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) mRNA are listed in
Table 1.

Western blotting

To analyze the expression of claudin-1,
E-cadherin and B-actin, HGECs were
cultured as described above. Confluent
HGECs, which had been pretreated for
1 h with or without 1 pm IM, were
exposed to 50 ng/mL of TNF-o for
24 h in 2 mL of Medium B. The cells
were lysed in 200 pL of sodium dode-
cyl sulfate (SDS) sample buffer
(62.5 mm Tris-HCl, 2% SDS, 10%
glycerol, 50 mm dithiothreitol and
0.01% Bromophenol Blue). The sam-
ples were resolved on a 10%



Table 1.  Primers for the real-time PCR
used in this study

Claudin-1

Sense: 5-GCG CGA TAT TTC TTC
TTG CAG G-3'

Antisense: 5-TTCGTACCTGGCATT
GACTGG-3

E-cadherin

Sense: 5-TTC TGC TGC TCT TGC
TGT TTC-3'

Anti-sense: 5-AGT CAAAGT CCT
GGT CCT CTT-3

GAPDH

Sense: 5-AAC GTG TCA GTG GTG
GAC CTG-¥

Antisense: 5-AGT GGG TGT CGC TGT
TGA AGT-3'

GAPDH, glyceraldehyde-3-phosphate dehy-
drogenase.

SDS-polyacrylamide gel by electro-
phoresis under nonreducing conditions
and electrophoretically transferred
onto membranes (Bio-Rad Laborato-
ries, Hercules, CA, USA). The mem-
branes were blocked for 1 h with 5%
nonfat dried milk and reacted overnight
with mouse anti-human E-cadherin IgG
(R&D Systems), rabbit anti-claudin-1
IgG (Invitrogen, Carlsbad, CA, USA)
and mouse anti-human B-actin IgG
(Invitrogen). Then, the membrane was
incubated with horseradish peroxidase
(HRP)-conjugated sheep anti-rabbit or
goat anti-mouse IgG (R&D Systems) in
Tris-buffered saline for 1 h at room
temperature. Immunodetection was
performed according to the manual
supplied with the ECL Plus western
blotting detection reagents (GE Health-
care, Bucks., UK).

Immunofluorescence staining

Fourth-passage HGECs, or OBA-9
cells, were seeded on glass coverslips
coated with type I collagen in 35-mm
plastic tissue-culture plates, and main-
tained in 2mL of Medium A.
Confluent HGECs or OBA-9 cells,
which had been pretreated for 1 h with
or without 1 pm IM, were exposed to
50 ng/mL of TNF-o for 24 h in 2 mL
of Medium B. After incubation, the
cells on the coverslips were washed and
immersed for 10 min in 3.5% formal-

dehyde and 0.2% Triton X-100 in
phosphate-buffered saline. Blocking
was performed by immersing the
coverslips in Tris-buffered saline,
containing 0.2% casein and 0.1%
Triton X-100, for 30 min at 37°C.
After blocking, the coverslips were
washed twice with phosphate-buffered
saline. For staining of claudin-1 or
E-cadherin, HGECs or OBA-9 cells
were labeled with rabbit anti-claudin-1
IgG or mouse anti-human E-cadherin
IgG (Takara, Shiga, Japan), followed
by Alexa Fluor 488-conjugated anti-
rabbit or anti-mouse IgG. Fluorescence
signals were detected using a Zeiss LSM
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Transepithelial electrical resistance

HGECs were seeded on cell-culture
polyethylene terephthalate membrane
inserts (ThinCerts, 0.4 um pore size;
Greiner Bio-One, Frickenhausen, Ger-
many) placed in a 24-well tissue culture
plate and maintained in 800 pL of
Medium A. Confluent HGECs were
pretreated for 1 h with or without 1 um
IM, and then exposed to 10, 50 or
100 ng/mL of TNF-« for 0, 12, 24, or
31 h in Medium B. The transepithelial
electrical resistance (TER) of HGECs
was measured using a Millicell-ERS
(Millipore, Billerica, MA, USA).

510 laser scanning confocal microscope
(Zeiss Microimaging, Thornwood, NY,
USA) or a fluorescence microscope,
BZ-9000 (Keyence, Osaka, Japan). The
immunofluorescence intensity was
quantitatively measured.

Fluorescein—-dextran conjugate
transport assay

To examine cell permeability, we also
used a fluorescein—dextran conjugate
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Fig. 1. Effect of irsogladine maleate (IM) on the permeability of the human gingival epi-
thelial cell (HGEC) layer exposed to tumor necrosis factor-o (TNF-a). (A, B) Transepithelial
electrical resistance (TER) of the HGEC layer. Confluent HGECs on the cell-culture poly-
ethylene terephthalate membrane insert were pretreated for 1 h with or without 1 um IM and
then exposed to 50 ng/mL of TNF-a for the indicated times (A) or to 0-100 ng/mL of TNF-a
for 24 h (B). The TER of HGECs was measured using a Millicell-ERS. **Significant dif-
ference from control (0 h) (Student’s #-test, p < 0.01). (C) Fluorescein—dextran conjugate
transport assay. Confluent HGECs on cell-culture polyethylene terephthalate membrane
inserts were pretreated for 1 h with or without 1 pm IM and then exposed to 50 ng/mL of
TNF-ao for 24 h. Fluorescein—dextran conjugate was then added to the upper chamber to give
a final concentration of 10 pg/mL. Four hours after the addition of fluorescein—dextran
conjugate, the medium was collected from the lower chamber and the concentration was
measured using a fluorescence microplate reader with excitation at 485 nm and emission at
535 nm. *Significant difference (Student’s z-test, p < 0.05).
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Fig. 2. Effect of irsogladine maleate (IM) on the expression of claudin-1 in human gingival
epithelial cells (HGECs) and OBA-9 cells exposed to tumor necrosis factor-a (TNF-ar).
Confluent HGECs and OBA-9 cells were exposed to 50 ng/mL of TNF-a in the presence or
absence of 1 pM IM for 24 h. (A) Claudin-1 mRNA in HGECs was analyzed using real-time
PCR. Values are means + standard deviation of three cultures. **Significant difference
(t-test, p < 0.01). (B) Claudin-1 levels in HGECs were determined by western blotting. The
bands are representative of three experiments. (C, D) Representative fluorescence images of
the cellular distribution of claudin-1 in HGECs (C) or OBA-9 cells (D) was obtained using
microscopy (x640 magnification). Arrows indicate the disruption of claudin-1 scattered in the
cytoplasmic compartment. GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

transport assay. HGECs were seeded
on cell-culture polyethylene tere-
phthalate membrane inserts, as
described above. Confluent HGECs
were pretreated for 1 h with or without
1 uM IM, and then exposed for 24 h to
50 ng/mL of TNF-o in Medium B.
Fluorescein—dextran conjugate (molec-
ular weight = 3000; Molecular Probes,
Eugene, OR, USA) was added to the
upper chamber to give a final concen-
tration of 10 pg/mL. Four hours after
the addition of fluorescein—dextran
conjugate, the medium was collected
from the lower chamber, and the
fluorescence level was measured
with excitation at 485 nm and emission
at 535nm using a fluorescence
microplate reader (Twinkle LB 970;

Berthold Technologies, Bad Wildbad,
Germany).

Statistical analysis

Between-group  comparisons — were
analyzed using the Student’s #-test.
Differences were considered significant
when the probability value was < 5%
(» < 0.05).

Results

IM inhibited the TNF-a-induced
increase in the permeability of
HGECs

At 50 ng/mL, TNF-o decreased the
TER in HGECs, starting 12 h after
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exposure and continuing at a steady
rate (Fig. 1A). In addition, treatment
with 50 and 100 ng/mL of TNF-a for
24 h reduced the TER in HGECs
(Fig. 1B). However, pretreatment with
IM prevented the TNF-a-induced
reduction (Fig. 1A and 1B). In addi-
tion, using the fluorescein—dextran
conjugate transport assay, we con-
firmed the effect of IM on the perme-
ability of HGEC:s stimulated by TNF-o.
TNF-a increased the concentration of
fluorescein—dextran conjugate in the
lower chamber, and IM inhibited this
increase (Fig. 1C).

E-cadherin and claudin-1 were
present in HGECs and OBA-9 cells

Immunofluorescence staining showed
junctional localization of claudin-1 and
E-cadherin in the primary cultures
of HGECs and in immortalized
HGECs (OBA-9), and the immunoflu-
orescence staining of OBA-9 cells was
stronger than that of HGECs (Figs 2
and 3). Therefore, OBA-9 cells
were also used to indicate the disrup-
tion of junctional proteins induced by
TNF-a.

IM prevented the disruption of
claudin-1 and E-cadherin induced by
TNF-« in HGECs and OBA-9 cells

At 50 ng/mL, TNF-o increased the
expression of claudin-1 at the mRNA
and protein levels, and IM did not
affect the increased levels of claudin-1
expression (Fig. 2A and 2B). However,
immunofluorescence staining showed
that 50 ng/mL of TNF-o affected the
distribution of claudin-1 in HGECs
and OBA-9 cells, and the disrupted
claudin-1 proteins were scattered in the
cytoplasmic compartment (Fig. 2C and
2D). In addition, IM reversed the TNF-
a-induced disruption without changing
the levels of mRNA and protein in
HGECs and OBA-9 cells. TNF-a sup-
pressed the expression of E-cadherin at
the mRNA and protein levels, and IM
prevented this decrease (Fig. 3A and
3B). Immunofluorescence staining also
indicated that IM recovered the degra-
dation of E-cadherin induced by TNF-a
in HGECs and OBA-9 cells (Fig. 3C
and 3D).



Discussion

In this study, we demonstrated, for the
first time, that IM regulates gingival
epithelial permeability by preventing
the TNF-o-induced disruption of
E-cadherin and claudin-1. At a cellular
level, this result supports our previous
finding that IM recovered the down-
regulated expression of E-cadherin in
inflammatory gingival tissue in an
animal model.

In the present study, the addition of
TNF-a to cultures of gingival epithe-
lial cells increased cell permeability,
consistent with previous reports in
human airway epithelial cells (25),
Caco-2 intestinal epithelial cells (26),
human corneal epithelial cells (27) and
human corneal endothelial cells (28).
The involvement of cytokines in the

breakdown of barrier integrity is rec-
ognized in many disorders, including
pulmonary edema (29) and Crohn’s
disease (30). The increased perme-
ability by cytokines gives the bacteria
and their products the opportunity to
enter the junctional epithelium.
Therefore, the inhibition of enhance-
ment of cell permeability by IM may
protect gingival cells from bacterial
invasion.

Although tight junctions, which
generally contribute to the regulation
of cell permeability, are considered not
to exist in the gingival junctional epi-
thelium, we previously found that
claudin-1 is present in the gingival
junctional epithelium (6). Therefore,
we hypothesized that claudin-1 is
involved in the permeability of the
gingival epithelium in spite of the lack
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of tight junctions. Although TNF-«
unexpectedly increased the expression
of claudin-l mRNA and protein,
immunofluorescence staining showed
that TNF-a disrupted claudin-1.
Similarly, in the human colon carci-
noma cell line HT-29/B6, TNF-o
mediated claudin-1 internalization into
intercellular vesicles while increasing
expression levels (31). On the other
hand, TNF-a down-regulated claudin-
1 expression at the protein level in a rat
parotid cell line and in human coro-
nary artery endothelial cells (32,33).
These different effects of TNF-a on
claudin-1 expression might be a result
of the source of cells or of the culture
conditions. In addition, IM recovered
the disruption of claudin-1 without
affecting the increased expression
levels. This result is supported by our
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Fig. 3. Effect of irsogladine maleate (IM) on the expression of E-cadherin in human gingival epithelial cells (HGECs) and OBA-9 cells
exposed to tumor necrosis factor-o (TNF-a). Confluent HGECs and OBA-9 cells were exposed to 50 ng/mL of TNF-o in the presence or
absence of 1 pM IM for 24 h. (A) E-cadherin mRNA in HGECs was analyzed using real-time PCR. The mean value + standard deviation of
six cultures is shown. *Significant difference (p < 0.05); **Significant difference (» < 0.01) (both Student’s #-test). (B) E-cadherin levels in
HGECs were determined by western blotting. The bands are representative of three experiments. (C, D) Representative fluorescence images of
the cellular distribution of E-cadherin in HGECs (C) or OBA-9 cells (D) were obtained using microscopy (x400 magnification). The
immunofluorescence intensity was measured quantitatively by histogram function. Arrows indicate the degradation of E-cadherin. GAPDH,

glyceraldehyde-3-phosphate dehydrogenase.
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previous finding that IM did not affect
the increased levels of ZO-1, a struc-
tural protein of tight junctions,
induced by IL-1B in HGECs (34).
These results may suggest that the total
amount of tight junction structured
proteins does not affect gingival epi-
thelial cell permeability.

TNF-a suppressed and disrupted
E-cadherin in HGECs, consistent with
previous reports that TNF-o induces a
significant decrease and disruption of
E-cadherin in small airway epithelial
cells, human bronchial epithelial cells
and human nasal epithelial cells
(35,36). However, in the present study,
IM recovered the reduction of
E-cadherin expression induced by
TNF-a in HGECs. In addition, our
previous report has shown that IM
recovered A. actinomycetemcomitans-
induced reduction of E-cadherin in rat
gingival epithelium. As E-cadherin is a
key protein in the formation of cell
junctions in the gingival junctional
epithelium, its recovery may result in
enhancement of the epithelial barrier
function.

Although further study is required,
the previous and present data suggest
the therapeutic efficiency of IM in the
suppression of periodontal inflamma-
tion. IM has been used clinically as a
medicament that protects the gastric
mucosa. IM, by regulating the physical
barrier in gingival epithelial cells, may
be useful for the prevention of peri-
odontal disease.
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