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Selective Localization of SYT14 in Purkinje Cells of the Cerebellum in Mice and Humans

(A) Immunohistochemical analysis with the Ab-SYT14 antibody of the cerebellum from an adult mouse at 12 weeks of age. Nuclei were
stained with DAPI (the scale bar represents 100 pm). A magnified image is shown in the first right panel (the scale bar represents
10 um).The Ab-SYT14 antibody (0.9 mg/dl) was used at a dilution ration of 1:2000, and the Alexa-488-conjugated secondary antibody

dilution was 1:1000.

(B) Immunohistochemical analysis with the Ab-SYT14 antibody of the cerebellum from the human control. Ab-SYT14 antibodies were
preincubated with (left panel) or without (middle panel) peptide antigen before immunostaining. Nuclei were stained with hematoxylin
(scale bars represent 100 ym). A magnified image is shown in the right panel (the scale bar represents 20 pm). The Ab-SYT14 antibody

(0.9 mg/dl) was used at a dilution of 1:500.

performed with Ab-SYT14, as previously described.'®~*!

Mouse brain sections were prepared at the RIKEN Brain
Science Institute. Mouse experimental protocols were
approved by the animal experiment committee of the
RIKEN Brain Science Institute. The frozen brain of C57BL/6]
mouse was mounted in Tissue-Tek and sliced to 10 pm
sections with a freezing microtome. A human adult brain
specimen was obtained through the postmortem examina-
tion of a brain from a control subject without neurodegen-
erative disorders. Informed consent was obtained from
the family on the basis of the IRB-approved protocol of
Yokohama City University School of Medicine. The human
brain was fixed in 10% formalin and cut into 1-cm-thick
slices. Sliced tissues were embedded in paraffin wax, and
5 um sections were immunostained with primary anti-
bodies and visualized with the Vectastain ABC kit (Vector
Laboratories, Burlingame, CA). Selective localization of
SYT14/Syt14 in Purkinje cells of the mouse cerebellum
(Figure 3A) and human cerebellum (Figure 3B) were recog-
nized, indicating that SYT14 plays an important role in
the cerebellum. These data are in agreement with a scenario
in which the SYT14 mutation causes cerebellar degenera-
tion in this family.

In this study, only one p.Gly484Asp mutation of SYT14
was identified in association with SCA. Quintero-Rivera
et al.’® previously described a 12-year-old female with
cerebral atrophy, absence seizures, developmental delay
with a WISC III score of 58 for full IQ, and de novo
t(1;3)(q32.1;925.1) disrupting SYTI14. Her brain MRI
showed diffuse cerebral atrophy, including that of the cere-

bellar hemisphere and vermis. Although the inheritance
modes are different (recessive impact on our family and
dominant on the female patient), mild to moderate mental
retardation and cerebellar atrophy are common among
patients with SYT14 abnormalities. It will be important
to assess the future phenotype of the female patient
studied by Quintero-Rivera et al.'®

Relatively common ARCAs in Japan include ataxia, early-
onset; oculomotor apraxia, hypoalbuminemia/ataxia-
oculomotor apraxia 1 (EAOH/AOA1 [MIM 208920));
ataxia-oculomotor apraxia 2 (AOA2 [MIM 606002]); spastic
ataxia; Charlevoix-Saguenay type (SACS [MIM 270550});
ataxia with isolated vitamin E deficiency (AVED [MIM
277460]); and ataxia-telangiectasia (AT [MIM 208900]).
(Friedrich ataxia 1 [FRDA (MIM 229300)] has never been
described in the Japanese population.) In this family,
patients never showed ocularmotor apraxia, spasticity,
peripheral neuropathy, retinal abnormality, immunolog-
ical abnormality, or other systemic involvements. As an
adult-onset type of pure ARCA, SYNEl-related ARCA
(also known as spinocerebellar ataxia, autosomal-recessive
8; SCARS [MIM 610743)) is found to be caused by mutations
of the gene encoding synaptic nuclear envelope protein 1.22
Furthermore, these patients were not associated with
psychomotor retardation. Thus, SYT14-mutated ARCA,
described here, should be categorized to a distinct type of
ARCA.

SYTs is a large family of transmembrane proteins associ-
ated with exocytosis of secretory vesicles (including syn-
aptic vesicles).”® The mammalian SYT family is composed
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of 17 members. SYTs are anchored to the secretory vesicles
via a single transmembrane domain (TM) close to its N
terminus and have tandem cytoplasmic domains, C2A
and C2B.2* Among SYTs, SYT1 (MIM 185605) is involved
in neurotransmitter release and has been intensively
studied. The crystal structure of the C2 domains consists
of a compact eight-stranded B-barrel with two protruding
loops (loops 1 and 3) that form the Ca®*-binding
pockets.>® SYT1 binds three and two Ca®* ions via loops
1and 3 of C2A and C2B, respectively. Ca®* binding triggers
the rapid penetration of the C2 domains into membranes
harboring negatively charged phospholipids. Ca** also
promotes SYT1 binding to t-SNAREs (target-membrane-
soluble N-ethylmaleimide-sensitive factor attachment
protein receptors). SYT1 is a key sensor for evoked and
synchronous neurotransmitter release in many classes of
neurons.”® SYT14 also has TM, C2A, and C2B domains,
but it has no conserved Ca®>"-binding motif that includes
the conserved aspartic acid residues in loops 1 and 3 of
C2A and C2B.2° Although the roles of SYTs as Ca*" sensors
have been studied extensively, little is known about
Ca®*-independent SYTs, which might inhibit the SNARE-
catalyzed fusion in both the absence and presence of
Ca®* .27 Recently, Zhang et al.?® suggested that Ca®*-inde-
pendent SYT4 (MIM 600103) negatively regulates exocy-
tosis, regardless of its inability to induce Ca**-dependent
exocytosis.

SYT14 has phospholipid-binding activity that is Ca*"
independent.'* The glycine residue mutated in the family
is located around the C2B domain loop 1, which plays an
important role in binding to phospholipids in SYT1.>® We
confirmed that, compared to the wild-type, the mutation
did not alter the binding activity of SYT14 to phospho-
lipids. In an overexpression system, wild-type SYT14 as
well as normal variants were distributed in the cytoplasm
close to the plasma membrane, showing in-line accu-
mulation along with the membrane. In contrast, the
p-Gly484Asp mutant showed a different (reticular) distri-
bution pattern. In the ER, several cotranslational and
posttranslational modifications that are required for the
correct folding of transmembrane and secretory proteins
take place.?*° Incompletely folded proteins are generally
excluded from ER exit sites.” The fact that the
p-Gly484Asp was not properly transferred from the ER
suggests that the mutant protein might not fold correctly.
The lower yield of the mutant protein as compared to the
wild-type in the bacterial expression system we performed
also supports the improper folding of the mutant.
Abnormal distribution in the ER might result in the loss
of function of SYT14 or in ER dysfunction.

In conclusion we have shown that SYT14 is localized
specifically in Purkinje cells of mouse and human cere-
bellum. The results strongly support the involvement of
SYT14 in the pathogenesis of SCA and are consistent
with the atrophy of the cerebellum seen in both patients.
A possible relationship between SYTs and neurodegenera-
tion has been suggested previously,*! and here we provide

data that support the idea that disruption of an SYT protein
is involved in human neurodegeneration and that exocy-
tosis machinery can be involved in one of the pathome-
chanisms of neurodegeneration.

Supplemental Data

Supplemental Data include two figures and five tables and can be
found with this article online at http://www.cell.com/AJHG/.
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Tenascin-X (TNX) is the largest member in the tenascin family of large oligomeric glycoproteins of the ex-
tracellular matrix (ECM). TNX is expressed in the leptomeningeal trabecula and connective tissue of choroid
plexus in the brain as well as in muscular tissues. Interestingly, single nucleotide polymorphism (SNP) analysis in
human showed that TNX is significantly associated with schizophrenia. Previously we generated TNX-deficient
(TNX—/—) mice by homologous recombination using embryonic stem (ES) cells. In the present study, we ana-
lyzed behaviors relevant to affect, learning and memory, and motor control in TNX—/— mice. TNX—/— mice
showed increased anxiety in light-dark and open-field tests and superior memory retention in a passive avoid-
ance test. Also, TNX—/— mice displayed higher sensorimotor coordination than did wild-type mice in a rotorod
test. However, TNX~/— mice did not differ from wild-type mice in locomotor activity in a home-cage activity test
using telemetric monitoring. These findings suggest that TNX has diverse roles including roles in behavioral
functions such as anxiety, emotional learning and memory, and sensorimotor ability.

Key words

The tenascin family constitutes a group of extracellular
matrix (ECM) glycoproteins with a characteristic structure.
Four members of this family [tenascin-C (TNC), tenascin-R
(TNR), tenascin-X (TNX) (known as tenascin-Y in birds),
and tenascin-W (TNW)] have so far been identified in verte-
brates,” and they all have a cysteine-rich segment at the
amino terminus followed by epidermal growth factor (EGF)-
like repeats, fibronectin type III (FNIII)-like repeats, and a
fibrinogen-like domain at the carboxy terminus.

TNX is the largest member of the tenascin family with a
size of about 450kDa. Complete deficiency of TNX in hu-
mans leads to a rare recessive form of Ehlers-Danlos syn-
drome (EDS), and TNX haploinsufficiency is associated with
hypermobility type of EDS.>~ There are several lines of ev-
idence suggesting that TNX participates in collagen fibrillo-
genesis,>® collagen deposition,” modulation of collagen
stiffness,” and development and maintenance of elastic
fibers.” TNX-deficient (TNX—/—) mice generated by TNX
gene targeting in murine embryonic stem (ES) cells showed
progressive skin hyperextensibility, similar to individuals
with EDS. Biomechanical analyses indicated reduced tensile
strength of their skin.!”® Furthermore, TNX—/— mice
showed enhanced tumor invasion due to activation of matrix
metalloproteinase (MMP)-2 and MMP-9.'" TNX—/— mice
also displayed increased amount of triglyceride and altered
composition of triglyceride-associated fatty acids.'?

TNX is expressed much more widely than other
tenascins.'® TNX is also present in the leptomeningeal tra-
becula and connective tissue of choroid plexus in the brain'®
as well as in the peripheral nerves'® and in developing spinal
cord meninges.'® Interestingly, single nucleotide polymor-
phism (SNP) analysis has revealed a strong association be-
tween the TNX locus and schizophrenia.'”'® Previously, we
investigated the distribution of TNX in sciatic nerves by im-
munohistochemical staining.!” TNX was found to be local-
ized in the perineurium and the endoneurium of sciatic nerve
fibers. These results suggested that TNX plays an important
role in neural functions.

In the present study, we analyzed behaviors relevant to af-
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fect, cognition, and motor control in the TNX—/— mice to
better elucidate the role of endogenous TNX.

MATERIALS AND METHODS

Animals TNX-—/— mice were generated by TNX gene
targeting in ES cells as described previously.!" TNX—/—
mice were further established by backcrossing original
TNX—/— mice into a congenic line, C57BL/6J, for 10 gener-
ations. Male C57BL/6J mice (CLEA Japan, Tokyo, Japan)
were used as wild-type (TNX+/+) mice. The animals were
housed in the Department of Experimental Animals, Center
for Integral Research in Science, Shimane University at room
temperature of 23*2 °C, humidity of 55+10% and ventila-
tion of 10—13 times per hour. The mice were kept on a
12:12h light-dark schedule (lights on at 7:00 a.m.) with
commercial chow (NMF, Oriental Yeast, Tokyo, Japan) and
water given ad libitum. This study was approved by the Ethi-
cal Committee for Animal Research of Shimane University,
and all of the experimental procedures were performed ac-
cording to the institutional guidelines.

Behavioral Testing Male mice were tested at 8, 9, 10,
11 weeks of age for light—dark preference, open-field, passive
avoidance, and rotorod tests and at 9, 13, 17 weeks of age for
a home-cage activity test. All experiments were performed
during the light period.

Light-Dark Preference Test The light-dark preference
test measures the conflict between the tendency to explore a
novel environment versus the aversive qualities of a lighted
space. Longer time spent in the dark side of the apparatus is
indicative of increase in anxiety-like behavior. Mice at 8
weeks of age were examined in a light-dark apparatus con-
sisting of a light (illuminated) compartment (10 cmX25 cmX
25 cm) with a 100 W bulb (luminescence: 2000 lux) connect-
ing to a dark compartment (30 cmX30 cmX30 cm) separated
by a board (Muromachi-Kikai Co., Ltd., Tokyo, Japan). Mice
were placed in the center of the light box for 5 min to accli-
mate to the test environment. Then the separation board was
removed and the connecting gate to the dark compartment

© 2011 Pharmaceutical Society of Japan



April 2011

was opened. The trials were each 10 min, and the percentage
of cumulative time spent in the light compartment and the
total number of transitions between the two compartments
were scored live by an experimenter.

Open-Field Test The open-field test is used to evaluate
exploratory behavior and measures of anxiety by counting
small movements such as grooming, large movements such
as ambulation, and rearing. Intense anxiety causes mice to
suppress grooming, ambulation, and rearing. Each mouse at
10 weeks of age was placed in a 56.5cmX56.5cmX6cm
brightly lit open arena (300lux) equipped with a near-in-
frared sensor interfaced with a computer (SCANET-MV-10,
Toyo-Sangyo Co., Ltd., Okayama, Japan) for 35 min. By the
near-infrared sensor, small movements such as grooming
were detected at a minimum distance of 6.0 mm (Grooming).
A square of 15.0cm was set, and when mice moved out of
the square, the movement was counted as a large locomotion
(Ambulation). In addition, the number of rearing movements
was counted by detecting movement over a height of 4cm
(Rearing). The apparatus was cleaned with 70% ethanol be-
tween trials.

Rotorod Test To assess sensorimotor ability, mice at 9
weeks of age were tested using a rotorod apparatus (SN-445,
Shinano Manufacturing Co., Ltd., Tokyo, Japan). Each
mouse was habituated on the rotating rod (3.0 cm in diame-
ter) for 1 min before testing began. The trials were conducted
at turn speed of 15rpm. The number of turns before the
mouse fell from the rotating rod was counted. Mice were
tested once per day on three consecutive days.

Passive Avoidance Test The passive avoidance test was
used to examine emotional learning and memory. On day 1
of testing, each mouse at 11 weeks of age was placed in a
light compartment connected to a dark compartment sepa-
rated by a board, the same apparatus as that used in the
light-dark preference test (Muromachi-Kikai Co., Ltd.).
After 5min of acclimation, the separation board was re-
moved and the connecting gate to the dark compartment was
opened. A mouse preferring the darkened side moves quickly
through the gate to the dark compartment. Upon doing so,
the mouse received a 0.3mA electrical shock (3s in dura-
tion) from the grid floor (Shock Generator SGS-002T, Muro-
machi-Kikai Co., Ltd.). On day 2, the same procedure was
used except for removal of the shock. Cumulative time spent
in the light compartment was measured.

Home-Cage Activity Test Pentobarbital anesthesia
(50 mg/kg intraperitoneally (i.p.)) was used for all surgical
procedures. A battery-operated free-floating transmitter
(model TA10TA-F20, Data Sciences International, St. Paul,
MN, US.A.) was inserted into the abdominal cavity of the
mice at 9, 13, 17 weeks of age. The peritoneal muscle and
skin layers were closed with sutures. Immediately after sur-
gery, each mouse was returned to its home cage. Locomotor
activity was continuously monitored using the Dataquest
AR.T. system (Data Sciences International). Locomotor ac-
tivity was obtained by counting the number of impulses, de-
tected by changes in signal strength at 10-min intervals. The
signal was received by an antenna under each mouse’s cage
and transferred to a computer. After 24 h of acclimation, the
data of cumulative locomotor activity (counts) during light
and dark periods were collected separately every 12h.

Statistics Data were analyzed for statistical significance
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by Student’s #-test or ANOVA with post hoc by Scheffé’s test
in six to ten experiments, where p<<0.05 was considered sta-
tistically significant. These analyses were performed using
StatView version 4.0 (SAS Institute Inc., Cary, NC, U.S.A.).
Results are expressed as means*S.E.

RESULTS

TNX—/— Mice Show Increased Anxiety-Like Behavior
In the light—dark preference test, TNX—/— mice spent less
time in the light compartment (p<<0.01) (Fig. 1A) and moved
less (p<<0.01) (Fig. 1B). These results indicated that
TNX—/— mice show more anxiety-like behavior than do
wild-type mice.

Consistent with the increased anxiety-like behavior in the
light—dark preference test, increased anxiety-like behavior in
TNX—/— mice was also revealed in the open-field test.
Small movements such as grooming (p<<0.01) (Fig. 2A) and
large movements such as ambulation (p<<0.05) (Fig. 2B) as
well as rearing (p<<0.01) (Fig. 2C) in TNX—/— mice were
significantly less frequent than those in wild-type mice.

TNX~—/— Mice Display Superior Sensorimotor Coordi-
nation and Emotional Learning and Memory TNX-—/—
mice were superior to wild-type mice in the rotorod test as
indicated by longer latency to fall from the rotorod. This ten-
dency was strengthened as the number of trials increased
(»<<0.05) (Fig. 3A). The results indicated that TNX—/—
mice have ability superior to sensorimotor coordination (Fig.
3B).

In the passive avoidance test of learning and memory,
TNX~—/— mice showed higher latency than did wild-type
mice to re-enter the dark compartment (p<<0.01) (Fig. 4).
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Fig. 1. Light-Dark Preference Test in TNX—/— and Wild-Type Mice

(A) Percentage of cumulative time spent in the light compartment during a period of
10 min. (B) Cumulative light and dark compartment transitions of mice during a period
of 10 min. Data represent means+S.E.. #* p<<0.01 versus age-matched C57BL/6J wild-
type mice, Student’s #-test. n=10 mice per genotype.
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Fig. 2. Open-Field Test in TNX-/~ and Wild-Type Mice

(A) Small movement. (B) Ambulation. (C) Rearing. Counts were done every 35 min.
Data represent means*S.E. **p<0.01 and #p<0.05 versus age-matched C57BL/6J
wild-type mice, Student’s r-test. n= 10 mice per genotype.
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Fig. 3. Rotorod Test in TNX~—/— and Wild-Type Mice

(A) Number of turns before mice fell from the rotating rod. Mice were tested once
per day on three consecutive days. * p<<0.05 versus age-matched C57BL/6] wild-type
mice, Scheffé’s test. (B) Average number of turns for three days. Data represent
means*S.E. ** p<<0.01 versus age-matched C57BL/6J wild-type mice, Student’s #test.
n=10 mice per genotype.
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Fig. 4. Passive Avoidance Test in TNX—/— and Wild-Type Mice

After 24 h from electrical shock to mice, cumulative time spent in the light compart-
ment is shown. ** p<<0.01 versus age-matched CS7BL/6J wild-type mice, Student’s #-
test. n=6—10 mice per genotype.
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Mice

Locomotor activities of free moving mice were counted using telemetry and a data
acquisition system in the light and dark periods at the ages of 9 weeks (A), 13 weeks
(B), and 17 weeks (C) for 12 h. Note that there is no genotype difference in locomotor
activity at any age. n=9—10 mice per genotype.

Home-Cage Activity Test in TNX—/— and Wild-Type (C57BL/6J)

This result indicated that TNX—/— mice have superior pas-
sive avoidance memory retention.

Home-Cage Activity Test To assess diurnal locomotor
activity in free moving TNX—/— and wild-type mice,
telemetry and a data acquisition system were used. All of the
mice used for this test appeared lively throughout the study,
and we observed no behavioral differences compared with
mice without transmitters. In consideration of circadian
rhythms in locomotor activity, locomotor activities were sep-
arately recorded during the light period (07:00 to 19:00h)
and during the dark period (19:00 to 07:00 h). Figure 5 shows
the locomotor activity at indicated ages. Although circadian
rhythms in locomotor activity were observed in both geno-
types (low during the light period and high during the dark
period), there was no difference in locomotor activity be-
tween the two genotypes at any age.
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DISCUSSION

Our data indicated that TNX deficiency alters measure of
anxiety. TNX—/— mice showed hypoactivity and increased
anxiety-like behavior in the two anxiety tests used
(light—dark preference and open-field tests). The knockout
mice also displayed superior emotional learning and memory
in the passive avoidance test and superior sensorimotor abil-
ity in the rotorod test. However, no difference in diurnal lo-
comotor activity was detected in TNX—/— mice in the
home-cage test.

Among the tenascin family members, TNC has been re-
ported to influence cerebellar granule cell migration and
guide postnatal granule cell neurons from the external to the
internal cell layer in the cerebellum.?” Behavioral abnormali-
ties such as hyperlocomotion have been observed in
TNC—/— mice due to a decreased level of dopamine trans-
mission in the brain.2!*» Furthermore, TNR plays an impor-
tant role in neurite outgrowth, axon targeting, neural cell ad-
hesion, and migration and differentiation during nervous
morphogenesis in the central nervous system.”” TNR—/—
mice showed alterations of the extracellular matrix and de-
creased axonal conduction velocities in the central nervous
system.”” On the other hand, although the localization of
TNX in the cerebral cortex has not been disclosed, TNX is
localized in the leptomeningeal trabecula and in the connec-
tive tissue of the choroid plexus in the brain.'® In the periph-
eral nervous system, TNX is localized in the perineurium
and endoneurium of nerve fibers.” Although we previously
showed that individual axons in the sciatic nerves of
TNX—/- mice do not differ from those of wild-type mice in
ultrastructure,'” morphological and biochemical analyses of
the brains of TNX—/— mice have not been done. Interest-
ingly, SNP analysis in human showed that TNX is signifi-
cantly associated with schizophrenia.'™!® This evidence in-
dicates an important role of TNX in the central nervous
system.

It is known that a hyperlocomotive and anxiolytic-like
phenotype is characteristic of rodent models of schizo-
phrenia® and could correspond to psychomotor agitation
present in schizophrenic patients. In contrast to the beha-
viors exhibited in schizophrenia model animals, TNX—/—
mice showed reverse phenotypes such as increased hypoac-
tivity and anxiety-like behavior. SNP analysis in schizophre-
nia patients suggested an important non-synonymous substi-
tution such as Glu2578Gly located in exon 23 of TNX.!™!®
Thus, such point mutation in 7NX might be necessary for a
factor of schizophrenic illness rather than the null mutation
in the TNX-deficient mice. In TNX—/— mice, some abnor-
malities such as collagen deposition alteration,'” enhanced
activation of MMP,'>%9 triglyceride accumulation and altered
composition of triglyceride-associated fatty acids,'” have
been reported. The behavior alterations in TNX—/— mice in
this paper might appear as comprehensive outcome of some
abnormalities to be seen in TNX—/— mice. Further bio-
chemical and morphological studies are needed to elucidate
the relationship between schizophrenia and function of TNX.

In conclusion, this study suggests an important role for
TNX in anxiety-like behavior, emotional learning and mem-
ory, and sensorimotor ability. Future biochemical and phar-
macological studies should be done to reveal the precise
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mechanism underlying the effects of TNX on behavior. Mor-
phological and biochemical analyses of the brains of
TNX~—/— mice would be also useful for this purpose.
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