Calcification on brain CT in Japan

Considering the vascular structure and blood flow, the
region is susceptible to oxygen depletion. The area
tends to be a target for the deposition of minerals. Cal-
cification easily occurs in various diseases and with age.

The present study showed that the frequencies of
calcification, approximately 20% and 1-2% in punctate
lesions and patchy lesions, respectively, in the basal
ganglia were higher than those previously reported (0.3
10% by CT in the 1980s). This is assumed be a result of
the increase in the elderly population and the higher
sensitivity of recent CT machines than before. Those
frequencies might increase up to those of calcification
seen in autopsy (40-72%). The frequency of punctate
and patchy lesions increased with age. Among patients
aged over 65 years, 24 (2.1%) and 34 (3.1%) showed
patchy lesions in Gifu UH and Niigata UH, respectively.
In contrast, the frequency of calcification of the dentate
nucleus in the cerebellum was much lower than
expected.

In autopsy, more than 10 cases of DNTC were
reported in areas near Gifu, whereas no cases of DNTC
were reported in areas around Niigata. Initially, we
expected a higher frequency of calcification in Gifu
areas than in Niigata areas; however, the number of
patients with calcification, particularly patchy calcifica-
tion, seems to be higher in Niigata areas than in Gifu
areas, but no statistically significant regional difference
was detected.

In the present study, we could not examine the clini-
cal symptoms and signs in detail in the patients with
calcification without permission of patients, following
the regulation of ethics committees. The elderly patients
with both patchy calcification in the basal ganglia and in
the dentate nucleus in the cerebellum might have
DNTC or subclinical DNTC. Unfortunately, we have
no suitable equipment for the detection of diffuse neu-
rofibrillary tangles or calcification of small vessels.
Although MRI is widely used for the study of the brain,
CT is necessary for the detection of calcification in the
basal ganglia and the dentate nucleus in the cerebellum.

The frequency of calcification in the basal ganglia was
higher, and that in the dentate nucleus was lower than
we expected. We detected a new patient who might
suffer from Fahr’s disease by searching radiological
reports in a hospital. Unfortunately in the present study,
however, there was only one patient with Fahr'’s disease,
whom we had already diagnosed in Gifu UH before this
study. Four patients in Gifu and three patients in
Niigata with calcification in both the basal ganglia and
the dentate nuclei in the cerebellum were considered to
possibly have DNTC. However, a more sensitive tech-
nique for the detection of calcification in the small
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vessels and/or diffuse neurofibrillary tangles should be
developed in the future for precise diagnosis.
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Abstract The remarkable calcification of the basal ganglia
and cerebellum has been traditionally called Fahr’s disease,
but this nomenclature is criticized for including heterogeneous
diseases. To determine the pattern of some biological metals in
the hair of patients with Fahr’s disease, we investigated the
levels of 24 bioelements in the hair of 28 patients (17 males
and 11 females) with Fahr’s disease and compared them with
those of three age-, sex-, and living region-matched controls (84
controls in total). Interestingly, we found decreases in the levels
of several bioelements [calcium (Ca), copper (Cu), iron (Fe),
mercury (Hg), iodine (1), nickel (Ni), phosphate (P), lead (Pb),
and selenium (Se)] in the hair of patients. This is in contrast to
our previous finding of increases of Cu, Fe, zinc (Zn), and
magnesium (Mg) in the cerebrospinal fluid (CSF) of patients.
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The decreased level of Cu in the hair was the most prominent
and pathognomonic, while the increased level of Cu in the CSF
had been found to be the most significant in patients. More
significant correlations between two bioelements in the hair
were recognized in patients than controls. Although Fahr’s
disease has been considered to be a heterogenous entity, the
significant tendencies of several bioelements in the hair of
patients in this study suggest metabolic disorders of bioelements,
especially biometals, on the background. Some transporters,
especially P transporter such as PiT2, of bioelements will be
involved in the different distribution of bioelements in the body
of patients.

Keywords Fahr’s disease - Hair - Calcification -
Bioelement - Biometal

Introduction

The nomenclature of Fahr’s disease has been criticized for
including heterogeneous diseases and the disease has presented
as a clinically complex syndrome [1]. Recently, the nomencla-
ture of idiopathic bilateral basal ganglia and cerebellar calcifi-
cation (IBGC) has been used because it shows simply and
precisely the condition. Most types of IBGC are sporadic and
the etiology still remains unknown. Some familial cases have
been reported to be associated with some genetic mutations:
14q (IBGC1), 2q37, and 8p (SLC2042) [2-7].

In Japan, elderly patients showing dementia and calcification
of the basal ganglia show diffuse neurofibrillary tangles with
calcification and the absence of senile plaques in pathology
(called DNTC or Kosaka—Shibayama disease) [8, 9]. A patient
with DNTC has recently been reported in the USA [10] and
many DNTC patients are assumed to exist in the country.
However, it seems difficult to distinguish DNTC from Fahr’s
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disease and physiological calcification in some elderly patients
without autopsy.

In neuropathology, the chemical composition of cerebral
stones in a patient with Fahr’s disease mainly shows hydroxy-
apatite (Ca5(PO4)OH), mucopolysaccharide, and the relatively
high levels of trace metals including zinc (Zn), iron (Fe), copper
(Cu), magnesium (Mg), lead (Pb), and others [11, 12]. How-
ever, there is no apparent explanation for the accumulation of
calcium and other metals. We have recently reported high levels
of Cu, Zn, Fe, and Mg, but not calcium (Ca), in the cerebro-
spinal fluid (CSF) of patients with Fahr’s disease [13].

Recent great advantages in high-sensitive and reliable trace
elements analysis method using inductively coupled plasma
mass spectrometry (ICP-MS) have enabled it to be applied for
estimating metals and essential minerals in human body,
showing that human blood mineral concentration reflect to
their levels in hair specimen [14, 15]. As hair sampling is least
invasive, we have examined the levels of 24 bioelements in
the hair of patients with Fahr’s disease and compared them
with those of three controls matched in age, sex, and living
region to determine if there is a pattern in the levels of some
biological metals in the hair of patients with Fahr’s disease.

Material and Methods
Subjects

We nationally collected hair from patients with idiopathic
bilateral calcification of the basal ganglia and/or cerebellum,
so-called Fahr’s disease, with informed consent. The diag-
nostic criteria for Fahr’s disease in this study were shown in
Table 1. The study was approved by the Ethics Committee
of the Gifu University Graduate School of Medicine.
Twenty-eight patients (17 males and 11 females) were
selected in accordance with our criteria (Table 1). The patients’

Table 1 Diagnostic criteria for Fahr’s disease

1. Conspicuous calcification is observed in the basal ganglia and/or
dentate nucleus by CT scan.

2. Calcification is bilateral and symmetrical.

3. Idiopathic (unknown cause to the best of our knowledge)

(a) To exclude parathyroid diseases, especially hypoparathyroidism:
Normal levels of calcium, phosphate and intact parathyroid
hormone (iPTH). No Albright’s signs: short stature, obese, round
faces, short III and IV fingers

(b) To exclude metabolic diseases: No pathognomonically
physiological or developmental disorder

(c) To exclude DNTC: No atrophy of the frontal and/or temporal lobe
in the CT or MRI scan. No low blood flow in the frontal and/or
temporal lobe in the SPECT image. No presenile or senile
progressive dementia.
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mean agexstandard deviation (SD) was 45.54+20.3 years.
Three sex-, age-, and living region-matched individuals used
as control were randomly selected from our database. There-
fore, the control group consisted of 51 males and 33 females.
The mean+SD age was 45.4+20.0 years.

Sample Collection and Treatment

Hair was cut at the proximal portion and 75 mg of hair
sample was collected from the proximal part and placed in a
small paper bag. The hair sample was washed twice with
acetone and then with 0.01 % Triton solution, in accordance
with the procedure reported by the Hair Analysis Standard-
ization Board. The washed hair sample was mixed with
10 ml of 6.25 % tetramethylammonium hydroxide (TMAH,
Tama Chemical, Kawasaki, Japan) and 50 pL of 0.1 % gold
solution (SPEX Certi Prep.), and then dissolved at 75 °C
with shaking for 2 h. After cooling the solution to room
temperature, an internal standard (Sc, Ga, and In) solution
was added. After adjusting its volume gravimetrically, the
obtained solution was used for mineral analysis [14].

Determination of Metals in Hair

The mineral levels of 24 bioelements [aluminum (Al), arsenic
(As), boron (B), bromine (Br), calcium (Ca), cadmium (Cd),
cobalt (Co), chromium (Cr), Cu, Fe, germanium (Ge), mercury
(Hg), iodine (D), potassium (K), Mg, manganese (Mn), molyb-
denum (Mo), sodium (Na), nickel (Ni), phosphate (P), Pb,
selenium (Se), vanadium (V), and Zn] were measured using
ICP-MS (Agilent-7500ce) by the internal standard method and
expressed as nanograms per hair. For quality control of the
mineral analysis, human hair certified reference materials sup-
plied by the National Institute for Environmental Studies of
Japan (NINE CRM) was used in the study [11].

Statistical Analysis

The levels of 24 bioelements were showed logarithmical
normal distributions, so the statistical analyses were done
after logarithmic transformation. The levels of all bioele-
ments were compared between patients and controls by
using analysis of variance such that matching conditions
were considered as the block effect. The correlations
among 24 bioelements in respective groups of patients
and controls were analyzed by Pearson’s correlations coef-
ficients. Moreover, a conditional multiple logistic regres-
sion analysis by the forward selection method based on
likelihood ratio was employed to determine the influence
rate of the bioelements between patients and controls. The
significant level of 0.05 was used for all statistical tests
(two tailed). Statistical analyses were performed using
IBM SPSS Statistics 20.
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Table 2 Descriptive statistics

for mineral levels in the hair of Element Patients (n=28) Controls (n=84) P value®
Fahr’s patients and controls Geometric mean (range®) Geometric mean (range®)
Al (mg/g) 2.8 (1.1-7.0) 34 (1.8-6.4) 0.174
As (pg/g) 52.3 (21.1-129.5) 52.6 (28.6-96.4) 0.976
B (ug/e) 348.2 (157.0-772.7) 307.9 (120.4-787.8) 0.458
Br (mg/g) 2.7 (1.0-6.9) 33 (1.1-9.7) 0.334
Ca (mg/g) 266.4 (133.0-533.5) 384.9 (196.5-753.9) 0.008
Cd (ng/g) 5.0 (1.2-20.7) 5.7 (2.0-16.3) 0.592
Co (ug/g) 2.3 (0.8-6.5) 3.5(1.3-9.5) 0.069
Cr (ug/g) 50.9 (30.5-84.7) 39.3 (17.2-89.9) 0.075
Cu (mg/g) 132 (7.7-22.7) 21.3 (11.7-38.6) <0.001
Fe (mg/g) 4.3 (3.4-5.5) 5.3 (3.9-7.2) 0.002
Ge (ug/g) 47.0 (24.4-90.3) 49.1 (19.1-126.0) 0.798
Hg (mg/g) 1.9 (0.6-6.0) 3.5 (1.9-6.6) <0.001
I (ng/g) 181.7 (75.8-435.5) 317.0 (108.6-924.9) 0.012
K (mg/g) 14.4 (3.3-62.7) 14.9 (5.143.2) 0.886
Mg (mg/g) 30.6 (16.2-58.1) 39.3 (20.7-74.6) 0.065
Mn (ng/g) 83.7 (34.6-202.4) 90.5 (45.0-182.2) 0.623
Mo (ug/g) 27.3 (10.7-69.8) 32.2 (20.5-50.8) 0.206
Na (mg/g) 21.6 (5.3-88.0) 18.5 (6.6-51.6) 0.537
Ni (ug/g) 64.3 (21.9-189.0) 158.8 (59.1-426.4) <0.001
*Geometric mean-geometric P (mg/g) 117.0 (91.8-149.2) 137.4 (110.1-171.6) 0.002
standard deviation range Pb (ng/e) 194.4 (42.6-887.4) 345.6 (141.5-843.8) 0.014
®The analysis of variance Se (ng/g) 557.4 (439.5-707.0) 650.4 (533.8-792.5) 0.001
with patients/control effects and V (ug/e) 7.7 (3.5-16.6) 7.8 (2.9-21.1) 0.926
block effects for matching Zn (mg/g) 131.9 (110.4-157.7) 137.6 (115.7-163.7) 0.268

was used for group comparisons

Result

The descriptive statistics for bioelements levels in the hair of
patients and controls are shown in Table 2. The geometric
mean of the level of Ca was the highest value (patients,

Table 3 Correlations among the metals in each of Fahr’s patients and
controls

Patients (n=28) Controls (n=_84)

r P value r P value
Al vs. Mn 0.63 <0.001 0.30 0.005
Alvs. V 0.62 <0.001 0.51 <0.001
As vs. Br 0.61 <0.001 -0.13 0.244
Ca vs. Mg 0.82 <0.001 0.80 <0.001
Cd vs. Mn 0.61 <0.001 0.28 0.009
Cd vs. Pb 0.62 <0.001 0.35 <0.001
Co vs. Mn 0.63 <0.001 0.40 <0.001
Fe vs. Mn 0.63 <0.001 0.60 <0.001
K vs. Na 0.83 <0.001 0.76 <0.001

The analyses used the log-transformed data
r Pearson’s correlation coefficient

31

266.4 mg/g; controls, 384.9 mg/g) and those of Zn and P
were the second and third highest values, respectively. The
mineral levels of Ca, Cu, Fe, Hg, Ni, P, and Se in the hair of
the patients were significantly decreased than those of con-
trols (p<0.01). The mineral levels of I and Pb in the patient’s
hair were also decreased than those of controls (p<0.05).
The correlations among 24 biominerals were investigated
by Pearson’s correlation coefficients, and we picked up only
the correlation coefficients having absolute values more
than 0.6. Table 3 shows the correlation coefficients in each
of patients and controls. All significant correlations were

Table 4 Adjusted odds ratio (OR) and 95 % confidence interval (CI)
of Fahr’s disease from conditional multivariate logistic regression

Element OR 95 % CI P value Wald

Cu 9.0x107° 2.1x1077-0.039 0.003 9.01
Ni 0.022 0.001-0.438 0.012 6.24
Hg 0.028 0.002-0.467 0.013 6.18
Se 48x1078 3.4x1071%-0.067 0.020 5.45

OR odds ratio, 95 % CI 95 % confidence interval

The analysis used the log-transformed data such that the units of the
original data were pg/g
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positively correlated. The correlations between Ca and Mg,
Fe and Mn, and K and Na were significant and more than
0.6 in both patient and control groups. Moreover, correla-
tions between Al and Mn, Al and V, Cd and Mn, Cd and Pb,
and Co and Mn were significant in patients group. In par-
ticular, the correlation between As and Br in patients group
showed significance (r=0.61, p<0.001), while that of con-
trol group showed insignificance (r=—0.13, p=0.244).

Table 4 shows the result of conditional multivariate logistic
regression analysis by the forward selection method based on
likelihood ratio. The decreased levels of Cu, Hg, Ni, and Se
were significant in association with Fahr’s disease and the level
of Cu was the most significant (OR 9.0 107>, p=0.003).

Discussion and Conclusion

High levels of the trace metals Cu, Fe, Mg, Pb, and Zn have
been reported in cerebral stones, which mainly contain Ca in
patients with Fahr’s disease [11, 12]. We have found high
levels of Cu, Fe, Mg, and Zn in the CSF of patients with
Fahr’s disease for the first time [13]. The change in CSF
might reflect the mineral accumulation of cerebral stones in
the brain. However, there is as yet no explanation for the
normal level of Ca in the CSF of the patients with Fahr’s
disease. The serum levels of Ca, Cu, Mg, and Zn were
within normal ranges and there were no reports on abnormal
Ca metabolism nor abnormal levels of Cu, Zn, Fe, Mg, and
other minerals in the sera of patients with Fahr’s disease to
the best of our knowledge.

In this study, unexpectedly, the levels of Ca, Cu, Fe, Hg,
I, Ni, P, Pb, and Se in the hair of the patients with Fahr’s
disease were lower than those in the controls. This is in
contrast to the increase in the levels of Cu, Fe, Mg, and Zn
in CSF in patients with Fahr’s disease [13]. This may reflect
the different bioelements distributions in the human body
due to some abnormality of a transporter that might be
associated with P and other metals including Ca. We could
not explain the imbalance of bioelements in the human body
at the present time. ’

Studies of metals in the body have been reported in
patients with Alzheimer’s disease [16], Parkinson disease
[17], and autism [18]. However, no correlation between the
metal levels in the sera and in the hair or an explanation for
the imbalance of metals among the parts of the body has
been given yet. The imbalance remains to be elucidated in
these neurodegenerative diseases.

Recently, mutations of SLC2042, encoding type III
sodium-dependent phosphate transporter 2 (PiT2), have
been found in familial IBGC, also known as Fahr’s disease,
in China. PiT2 is important in P transport activity [7] and P
is the most important element in calcification. Hypoparathy-
roidism shows conspicuous calcification in the brain, which
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is very similar to the calcification observed in Fahr’s dis-
ease. The high P level is supposed to be important in the
accumulation of Ca and other minerals.

In addition, mutations of SLC30410 encoding ZnT-10, a
Zn transporter, had recently been observed in patients with
Parkinsonism, hypermanganesemia, hepatic cirrhosis, and
polycytopenia in an autosomal recessive inheritance [19].
Mn intoxication is well-known to result in Parkinsonism.
This study shows that SLCA10, also known as ZnT-10, also
plays a role as a Mn transporter in the human body.

Interestingly, more significant correlations between bio-
elements have been recognized in patients with Fahr’s dis-
ease than controls. This may reflect different patterns of
bioelements due to interrupted transporters of bioelements.
Representatively, while the level of Cu in CSF was most
significantly increased in patients with Fahr’s disease, the
decreased level of Cu in the hair was the most prominent
and pathognomonic. The clarification of the mutations,
functions, and tissue-specific distributions of some bioele-
ments, especially P, transporters in the future will explain
the decrease in the levels of some bioelements in the hair of
patients with Fahr’s disease.
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Abstract: Metallothionein (MT) is a small molecular and multi-functional protein containing four atoms of copper (Cu)
and three atoms of zinc (Zn) per molecule. It was isolated from the horse kidney in 1957 and half a century has passed
since then. Although MT was found to work as a modulator of Zn and induce anti-oxidant reaction, the precise functions
and its functional mechanisms remain to be elucidated. Over the years, a new isoform of MT, MT-III (also called growth
inhibitory factor (GIF)), has been found in the brain, which was markedly diminished in the brain of Alzheimer’s disease
(AD). Many new findings on MT have been discovered in neurodegenerative diseases other than AD such as amyotrophic
lateral sclerosis (ALS), Parkinson’s disease (PD), prion disease, brain trauma, brain ischemia, and psychiatric diseases. In
ALS in particular, MTs were markedly diminished in the spinal cord of patients with ALS. Initially, MT, which easily
binds to cadmium (Cd) and copper (Cu),was considered to be toxic to our bodies. Molecular biological technologies en-
abled the production of recombinant MT saturated with zinc (Zn). MT has a high potential for the treatment of neurode-
generative diseases such as ALS, AD, and PD owing to its various functions including anti-oxidant properties and modu-
lators not only for Zn but for Cu in the extra- and intracellular spaces. On the other hand, there are still various problems

on MT to be elucidated in detail, including their binding proteins and functional mechanisms.

Keywords: Metallothionein, amyotrophic lateral sclerosis, Alzheimer’s Disease, Parkinson’s Disease, Fahr’s Disease.

INTRODUTION

Metallothionein (MT) is a small molecule and is consid-
ered to have multiple functions such as maintaining zinc (Zn)
and copper (Cu) homeostasis, detoxifying cadmium (Cd) and
mercury (Hg), regulating the biosynthesis and activity of Zn-
binding proteins such as Zn-dependent transcription factors,
protecting against reactive oxygen species (ROS), and mini-
mizing the side effects of chemotherapeutic drugs [1]. Al-
though MT had been considered to be a medicine, the strong
affinity with toxic heavy metals including Cd and Cu had
been thought to have detrimental effects on bodies. Recom-
binant MT proteins could be produced using various molecu-
lar biological techniques. They are saturated with Zn and
free of Cd and Cu (Zn,-MT-III). Mammalian MTs are
thought to be composed of four isoforms (MT-I to IV). MT-1
and MT-II are found in all tissues of the body. Similarities in
nucleotide and amino acid sequences make it difficult to
distinguish them indisputably by cDNA probes and antibod-
ies (therefore they are abbreviated as MT-I/II). MT-III pos-
sesses additionally seven amino acids and exists predomi-
nantly in the central nervous system (CNS). MT-III was first
characterized as an inhibitory substance for unknown neu-
rotrophic factors in Alzheimer’s disease (AD) [2]. MT-IV is
found exclusively in stratified squamous epithelia [3]. The
ratio of MT isoforms in the brain remains to be elucidated.
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One study showed that the ratio of MTmRNA expression
levels in the mouse brain is 100: 50: 70 for MT-1 :MT-II :
MT-III, respectively [4]. Some researchers suspect that MT-
III is much more abundant in the brain (personal communi-
cation), as MT-III is mainly expressed in CNS [5] and
strongly protect against ROS, particularly hydroxyl radicals
[6]. MT is considered to be associated with the pathogenesis
and progression of neurodegenerative diseases including
amyotrophic lateral sclerosis (ALS), AD, Parkinson’s dis-
ease (PD) [1], and Fahr’s disease (FD) [7]. Taken together,
MTs are promising therapeutic candidates for neurodegen-
erative diseases [1]. Here, we discuss the roles of MT and
some metals, and the therapeutic potential of MT in ALS,
PD, AD, and FD.

AMYOTROPHIC LATERAL SCLEROSIS (ALS)

Amyotrophic lateral sclerosis (ALS) is a progressive and
fatal neurodegenerative disease that is characterized by se-
lective cortical and spinal motor neuron degeneration. The
majority of ALS cases are sporadic ALS (SALS), and ap-
proximately 10% of ALS cases are familial ALS (FALS).
Genes known to cause ALS are superoxide dismutase 1
(SODI) (15%-20%) [8], ANG encoding angiogenin [9],
TARDBP encoding the TAR DNA-binding protein 43 (TDP-
43)(~5%) [10], the fused in sarcoma/translated in liposar-
coma gene (FUS, also known as 7LS) [11, 12], and, recently,
OPTN encoding optineurin [13]. The hypotheses underlying
ALS pathogenesis regarding the mechanisms are oxidative
damage, axonal strangulation from neurofilamentous disor-
ganization, toxicity from intracellular aggregates and/or fail-
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ure of protein folding or degradation, and repetitive motor
neuron firing and subsequent excitotoxic death due to the
mishandling of glutamate [1, 14]. Other mechanisms have
been reported including heavy-metal toxicity, neurotrophic
factor dysfunction, and endoplasmic reticulum stress [15,
16]. Despite these studies, the etiology of SALS remains
unclear.

Crossing G93A SOD1 Tg mice with MT-III knockout
mice accelerated the progression of ALS in their progenies
[17, 18]. The expression levels of MT-III mRNA were de-
creased in the spinal cords of patients with SALS [19]. We
previously showed that the expression of MTs was dimin-
ished in the spinal cords of patients with SALS, which sug-
gested that they are heavily involved in the pathogenesis of
SALS [20]. Recent studies have suggested that physical ex-
ercise has a beneficial effect on disease progression in ALS
patients [21] and G93A SOD1 mutant transgenic (G93A
SOD1 Tg) mice, a FALS mouse model [22]. Physical exer-
cise increases the levels of MT-1, MT-II, and MT-III in the
spinal cords of normal mice [23]. The gene therapy with an
adenovirus vector encoding the MT-III gene prevented neu-
rodegeneration following facial nerve avulsion and stab
wounds [24, 25]. Our preliminary report shows the neuropro-
tective effect and the prolongation of survival time in G93A
SOD1 Tg mice by MT-III administration at the time of dis-
ease onset by the retrograde gene delivery from skeletal
muscles to the motor neurons of the spinal cord [26].

Kanias and Kapaki reported that the levels of Cu and Zn
in CSF were higher in patients with ALS (age>40) than in
older controls (age>40) as determined by atomic absorption
spectrophotometry {27]. Studies on the spinal cord of G93A
SOD-1 transgenic mice revealed high levels of Cu and labile
Zn [28,29]. Ammonium tetrathiomolybdate, a Cu-chelating
drug, has been found to delay onset, prolong survival, and
slow disease progression in G93A SOD-1Tg mice [30]. Cu
and Zn are considered to play pivotal roles in the develop-
ment of ALS.

Several molecules and several important mechanisms on
the onset and progression of ALS have been found in recent
studies. The most important for the treatment of ALS is to
find the kingpin molecule in the mechanism of ALS. MTs
seem to locate near it. We proposed a mechanism of ALS
associated with MT in 2004 [1] and the principle still works.

ALZHEIMER'’S DISEASE (AD)

AD is characterized by the accumulation of B-amyloid
(AB) plaques, neurofibrillary tangles, and neuronal death in
the neocortex. Although the molecular mechanisms underly-
ing AD pathogenesis remain to be elucidated, the formation
of Aatee accumulation of B-amyloid (AB) plaques, neurofi-
brill assumed to lead to neuronal death in the neocortex.

The down-regulation of MT-III has been found in human
AD brains [2]. The most important point concerning MT-III
is not simply the decrease in the level of MT-III throughout
the brain, but the marked decrease of MT-III in that of in
reactive astrocytes around Af plaques. This marked decrease
in reactive astrocytes may lead to (1) the outgrowth of neu-
rites and ultimately dystrophic neuritesas proposed first by
Uchida et al, (2) an increase in the level of free Zn** which

36

Isao Hozumi

would promote the accumulation of the AP protein in senile
plaques, (3) an increase in the level of free Cu” which would
promote the Fenton reaction, and (4) an increase in the level
of free hydroxyl radicals which cause cell damage. These
processes would ultimately result in neuronal death. Neu-
ronal loss also results in the decrease in the level of MT-III
in the whole brain. Therefore, it is important to distinguish
the decrease in the level of MT-III in reactive astrocytes,
which may be considered as an accelerating factor for the
disease, from the decrease in the level of MT-III caused by
neuronal death. We proposed a mechanism of AD associated
with MT in 1998 and the principal still works [1].

A recent study has showed that serum copper level is
associated with MMSE score worsening in patients with AD
[29]. Zn level was also reported to be increased in the human
AD-affected cortex [31]. A study on Japanese American men
suggested that Zn and Cu modulate AB-42 levels in CSF
[32]. Therefore, both Cu and Zn are considered to be key
metals in the progression of AD.

Taken together, MT-III is still considered to be the king-
pin molecule in the mechanism of AD, associated with the
modulation of Cu and Zn.

PARKINSON’S DISEASE (PD)

PD is characterized by the degradation of dopaminergic
cells in the presence of Lewy bodies (LBs). LBs have a high
concentration of o-synuclein. Dopaminergic cells die owing
to a combination of the following factors: 1) genetic vulner-
ability, (2) oxidative stress, (3) proteosomal dysfunction, (4),
and environmental factors. The mutations of a-synuclein
[33], parkin [34], UCHLI [35], DJ-1 [36], PINKI [37] and
LRRK?2 [38] affect the biochemical processing of o-synuclein
and cause PD [39]. Although the cause of PD remains un-
clear, oxidative stress and proteosomal processing during
aging play important roles in sporadic PD. (Fig. 1)

The effects of MT-I/II on the dopaminergic neurotoxicity
of 6-hydroxydopamine (6-OHDA) were examined in MT-
I/IIKO mice by intraventricular injection of 6-OHDA. The
loss of dopaminergic neurons in the substantianigra induced
by the administration of 6-OHDA was significantly aggra-
vated in the MT-I/Il KO mice. This indicates that MT-I/II
exerts neuroprotective effects against dopaminergic neuro-
toxity of 6-OHDA at the nigral cell body by scavenging free
radicals [40].

The expression level of MT-IIT mRNA was examined in
the basal ganglia of hemi-parkinsonian rats lesioned by 6-
OHDA in order to clarify the changes in MT-III expression
andthe regulation by levodopa in dopaminergic neurodegen-
eration. In normal rats, levodopa/carbidopa significantly in-
creased the expression level of striatal MT-III mRNA in a
dose-dependent manner 24 hr after their administration. The
induction of MT-III mRNA expression peaked 24 hr after
levodopa/carbidopa administration. The levodopa-induced
MT-IIT mRNA expression might represent a complementary
reaction against oxidative stress. In experiments using hemi-
parkinsonian rats, the expression level of MT-III mRNA was
significantly decreased on the 6-OHDA-lesioned side in the
striatum 24 hr after the treatment. On the 6-OHDA-lesioned
side, levodopa/carbidopa treatment did not increase in the
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Fig. (1). Schematic Representation of Proposed Mechanism of PD Associated with MT. Genetic factors, environmental factors, and ag-
ing contribute to the loss of cellular function and death. The proteasomal dysfunction and oxidative stress are considered to promote neuro-
toxity through the formation of profibrils and Lewy bodies in dopaminergic neurons. Anti-oxidative agents (MT = metallotionein, GSH =

glutathione) prevent oxidative stress in dopaminergic neurons.

expression level of MT-III mRNA. These findings indicate
that free radical scavenging potency including MT-III is re-
duced in the parkinsonian brain, and that levodopa fails to
induce MT-III mRNA expression to consequently accelerate
the progression of PD [41].

Mn intoxication has been well known to cause Parkin-
sonism. A survey suggested that chronic occupational expo-
sure to metals, particularly Mn or Cu, is associated with PD
[42]. Low-level Mg intake over generations was shown to
cause the degeneration of the substantial nigra in rats [43].
MT is supposed to prevent the progression of PD by protect-
ing against oxidative stress.

FAHR’S DISEASE (FD)

Patients with marked calcification of the basal ganglia
and cerebellum have been traditionally referred to as show-
ing ‘Fahr’s disease’, but the nomenclature has been criticized
for including heterogeneous etiologies [44]. We have de-
scribed the cases of three patients with ‘Fahr’s disease’
(idiopathic  bilateral  striato-pallido-dentate  calcinosis
(IBSPDC)). We found significantly increased levels of cop-
per (Cu), zinc (Zn), iron (Fe), and magnesium (Mg) by in-
ductively coupled plasma mass spectrometry in the CSF of
these three patients [4]. The elderly patients with dementia
and calcification of the basal ganglia in Japan were reported
to show diffuse neurofibrillary tangles and the absence of
senile plaques in the autopsy [45, 46]. There is no specific
and effective treatment for IBSPDC at present. The markedly
increased levels of Cu and Zn (4 and 3 times higher than the
levels in controls, respectively) in CSF suggest a possibility
of treatment using MT, which possesses 4 atoms of Cu and 3
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atoms of Zn per molecule and is a modulator for both Cu and
Zn.

CONCLUSION REMARKS

MT was first isolated from the horse kidney by Mar-
goshes and Vallee in 1957 [47] and half a century has passed
since then. Over the years, an isoform of MT-III was found
in AD by Uchida et al. in1991 [2]. However, there are still
many enigma on MT including its precise function, its
mechanism, and binding proteins. MT works as a modulator
of biological reactions in the human body. First, MT is a
modulator not only Zn but also Cu in the intra and extracel-
lular space [48]. Second, MT forms a protective barrier
against oxidative stress [49]. Third, MT works as a modula-
tor of NFxB [50].

MT-III, in particular, possesses unique properties other
than the common features of MTs, including the inhibition of
new neurite outgrowth of neurons in vitro [1]. A discrepancy
between the abundance of MT-III protein in astrocytes and
that of MT-III mRNA in neuron in the brain remains to be
elucidated [51-53]. MT-III does not exist exclusively in the
central nervous system. MT-III also exists in the reproduc-
tive and urinary stems including the testis and prostate,
tongue [5, 54], and the epithelial cells of the blood vessels
throughout the body. MT-III is also called growth inhibitory
factor [2]. Thus, it appears that MT-III is a negative factor
for growth and regeneration, where as MT-1I/II appears to be
a positive for growth and regeneration. However, both MT-
/Il and M-III have protective effects on neurons [26, 55, 56].
MT-III showed the double-edged effects such as some tis-
sue-protective and adverse effects according to the dosage
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for stab wound injury and its regeneration [57]. “Why do MT
isoforms exist?” There is no answer yet; however, MT-I/II is
thought to be an acutely reactive (anti-inflammatory) protein,
while the reaction of MT-III is slower than that of MT-I/I1
and MT-III continues to work longer, based on the observa-
tion of the stab wounds in the rat brain [58].

Similarly there are two types of fiber (type I and type II)
in the muscle. The type 1 muscle fibers react slower and
more continuous than the type II muscle fibers. The ratio of
type I muscle fibers to type II fibers differs among muscles
according to the function. The existence of two types of fi-
bers in the muscle is similar to that of isoforms of MT.

MT-HI is abundant in the CNS. It is sure that MT-III
plays important roles in the brain and in the progression of
neurodegenerative diseases such as ALS, AD, PD, FD, as
well asprion disease [59], brain trauma [58], brain ischemia
[60], and psychiatric disorders [61]. A combination of MT-
I/I1 and MT-III will be good tools for the treatment of neu-
rodegenerative diseases.
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ALS = Amyotrophic lateral sclerosis
Cd = Cadmium

Cu = Copper

FD = Fahr’s disease

GSH . Glutathione
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