

Fig. 1. Biopsy findings of DNM2-CNM (A-G) and non-DNM2-CNM (H). Hematoxylin and eosin stain of muscle sections from Patients 1-1 (A), 2-1 (B), 3-2 (C), and 3-6 (D). Numerous centronuclear fibers (up to 55%) and interstitial fibrosis were observed. Histochemical findings in muscle sections from Patient 3-6 (E-G). Type 1 predominance and hypotrophy (E, ATPase staining pH 10.6), a few type 2C fibers (F, ATPase pH 4.6), and radial distributions (G, NADH-TR) were observed. Radial distributions were also observed in some non-DNM2-CNM muscles (H. NADH-RT).

neither ptosis nor ophthalmoplegia was observed in the affected family members.

Clinical features of the CNM patients without *DNM2* mutations (non-DNM2-CNM) along with the number of patients are given below: proximal weakness (2/18), floppy infant (8/18), scoliosis (1/18), mental retardation (1/18), dysphagia (1/18), myalgia (1/18), and high-arched palate (8/10). Furthermore, only 1 of 10 patients with non-DNM2-CNM showed joint contracture. The clinical features of non-DNM2-CNM varied more widely than those of DNM2-CNM.

3.3. Summary of the pathological features

In all patients with DNM2-CNM, the pathological findings were rather similar: (1) radial distribution of myofibrils in scattered fibers, (2) type 1 fiber atrophy, (3) type 1 fiber predominance, and (4) a small number of type 2C fibers (Table 1, Fig. 1). In addition, the frequency with which muscle fibers with centrally placed nuclei were observed in DNM2-CNM patients was $63.1 \pm 6.1\%$ (mean \pm SD), range, 55-70%, which is much lower than that observed in non-DNM2-CNM patients ($24.7 \pm 13.2\%$, range, 8-50%).

In contrast, none of the non-DNM2-CNM patients had all the 4 abovementioned pathological features. Definite radial distribution of myofibrils was seen only in 2 of 18 cases. In 4 of 18 cases, equivocal radial distribution was observed. Among the 18 cases, type 1 fiber atrophy was noted in 12 patients; type 1 fiber predominance, in 16 patients; and type 2C fibers, in

12 patients. In addition, type 2 fiber atrophy was seen in 2 of 18 patients.

4. Discussion

This is the first report to document *DNM2* mutations in CNM patients in Japan with a low frequency, similar to the cases found in Europe, the United States, Central Africa, and Argentina [7,10,11]. All affected family members had distal muscle atrophy, finger and ankle contractures, and *pes cavus* caused by plantar muscle atrophy in their childhood (Table 1, Fig. 3A–D). Atrophy and fatty changes in the gastrocnemius muscle were the earliest signs observed on CT and were noted in the second decade of their lives (Fig. 3E). Thigh flexor, gluteus maximus, and paraspinal muscles were involved in the later stages (Fig. 3F).

The clinical and pathological features of DNM2-CNM were rather homogeneous in our series, as in previous reports [6,10,16]. This can be helpful in establishing a working diagnosis in CNM patients. The phenotypes of the mutations identified here (E368K, R465W) were almost identical to those identified in previous cases [7], although only 1 patient with E368K and 1 with R369W showed ptosis and ophthalmoplegia. In addition, the early death of Patient 1-1 and the respiratory failure of Patient 3-2 are unusual occurrences for DNM2-CNM, although we could not obtain detailed information.

A high occurrence of ptosis (9/10 [10], 7/11 [18]) and ophthalmoplegia (2/10 [10], 5/11 [18]) among DNM2-CNM patients is observed in other countries [10], while in our series, ptosis was much more rare (2/8), and ophthalmoplegia was not seen in our

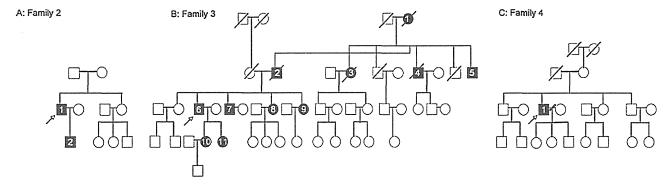


Fig. 2. The DNM2-CNM family tree. Families 2 and 3 had obvious autosomal dominant inheritance. On the contrary, Patient 4-1 had a sporadic onset. His parents and children did not show any symptoms.

cohort. In previous studies, most patients who did not have ptosis and ophthalmoplegia were from a p.R522H family, and most of them were infants [17]. The Japanese patients in our study, including those with the p.R465W mutation that causes DNM2-CNM with ptosis and ophthalmoplegia, as shown in a European study, did not have ophthalmoplegia, and only 2 (p.R465W and R369W) patients exhibited ptosis. Ethnic background may be a contributing factor to the occurrence of ptosis because there are some anatomical differences between the eyelids

of Asian and European populations: Asians have shallower eyelids than Europeans [18,19]. Since the severity of ptosis is correlated to the severity of myopathy, ptosis caused by mutations in the middle domain in *DNM2* in *DNM2-CNM* patients could be mild enough not to be recognized in the eyelids of Asians.

On the other hand, among non-DNM2-CNM patients, ptosis or ophthalmoplegia was also seen in 4 of 18 cases, suggesting that ocular symptoms may not be a specific indicator of *DNM2* mutations

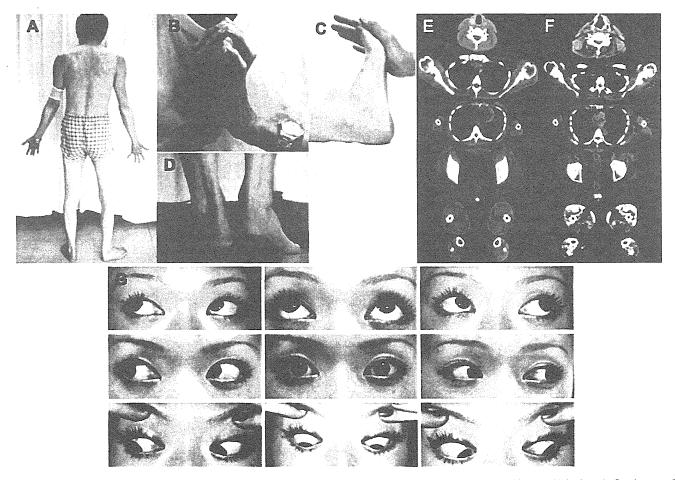


Fig. 3. Photograph of Patient 3-6: distal muscular atrophy (A), joint contracture of fingers (B), and ankle contracture (C); patient could not put his heels on the floor because of the ankle contracture (D). Muscle CT of Patient 3-6 (F) and Patient 3-11 (E) depicting lower-leg muscle atrophy of the posterior compartment (gluteus maximus, hamstrings, gastrocnemius, and soleus), thigh abductor, and paraspinal muscles. Note the early involvement of the biceps femoris, gastrocnemius, and soleus in Patient 3-11 when she was 19 years old. Ophthalmoplegia and ptosis are not observed in most patients (G: Patient 3-11).

in CNM patients, at least in Japanese patients, further highlighting the importance of the frequency of ocular involvement as a genetic factor.

Other symptoms of the central nervous system and peripheral neuropathy were also observed in our cohort and were reported as subtle complications of DNM2-CNM [17]. Among the non-DNM2-CNM patients, other causative genes for CNM were considered. MTM1 mutations are implicated in CNM, but in our cohort, MTM1 mutations were excluded. Compound heterozygous mutations in hJUMPY, a gene that encodes a phosphoinositide phosphatase, were reported as a cause of sporadic CNM [8]. Additionally, BIN1 is a newly identified causative gene for autosomal recessive CNM [9]; patients with autosomal recessive CNM show typical CNM muscle pathology and proximal-dominant muscle weakness, which is more severe than observed in DNM2-CNM patients. The pathology of CNM with BIN1 mutations does not have a radial distribution, which is thought to be a hallmark of DNM2-CNM [9]. Notably, some of our non-DNM2-CNM patients showed a radial distribution. However, none of our non-DNM2-CNM patients had a family history that would indicate autosomal recessive inheritance and merit further mutational analysis of the hJUMPY and BIN1 genes. Other candidate genes include Srpk3 [20] and PTPLA [21], which were thus far implicated as causative genes of CNM in mice and dogs.

DNM2 mutations were also identified in AD Charcot–Marie–Tooth disease (CMT) [22]; in fact, some DNM2–CNM patients also show very mild reductions in nerve conduction velocities in the lower legs [10] or pathological changes in both myelinated and unmyelinated nerve fibers [18]. Nevertheless, none of our patients showed any abnormality in nerve conduction studies, suggesting that peripheral nerve involvement does not occur frequently in DNM2-CNM patients.

Although the precise pathomechanism of DNM2-CNM is not known, mutations are thought to hinder either the transport of DNM2 to the centrosome or its interaction with some centrosomal component [7]. Interestingly, in our study and past reports of *DNM2* mutations in the middle domain, characteristic features were observed in muscle pathology, as opposed to neonatal DNM2-CNM with PH domain mutations in which centrally nucleated fibers and radial distribution of myofibers are less prominent [11].

Acknowledgements

This work was supported in part by Research on Intractable Diseases of Health and Labour Sciences Research Grants, Comprehensive Research on Disability Health and Welfare, Health and Labour Science Research Grants, Intramural Research Grant (23-5 23-4) for Neurological and Psychiatric Disorders of NCNP and Young Investigator Fellowship from Translational Medical Center, National Center of Neurology and Psychiatry.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.clineuro.2011.10.040.

References

- North K. In: Engel AG, Franzini-Armstrong C, Myology, editors. Congenital myopathies. 3rd ed. New York: McGraw-Hill; 2004. p. 1494–5.
- [2] Jeannet PY, Mittaz L, Dunand M, Laforêt P, Urtizberea JA, Rouche A, et al. Clinical and histologic findings in autosomal centronuclear myopathy. Neurology 2004;11:1484–90.
- [3] Wallgren-Petterson C, Clarke A, Samson F, Fardeau M, Dubowitz V, Moser H, et al. The myotubular myopathies: differential diagnosis of the X linked recessive, autosomal dominant, and autosomal recessive forms and present state of DNA studies. J Med Genet 1995;32:673–9.
- [4] Sakuma T, Nakajima H, Fujimura C, Kimura F, Hanabusa T. A case of centronuclear myopathy with Charcot-Marie-Tooth disease-like lower leg muscle atrophy. Naika 2004: 54:192–4 [in Japanese]
- atrophy. Naika 2004;54:192–4 [in Japanese].
 [5] Wakabayashi Y, Arimura Y, Sawaguchi Y, Koike F, Yoshino K. A case of myotubular myopathy with autosomal dominant inheritance. No to Shinkei 1980;32:715–22 [in Japanese].
- [6] Bitoun M, Bevilacqua JA, Eymard B, Prudhon B, Fardeau M, Guicheney P, et al. A new centronuclear myopathy phenotype due to a novel dynamin 2 mutation. Neurology 2009;6:93–5.
- [7] Bitoun M, Maugenre S, Jeannet PY, Lacène E, Ferrer X, Laforêt P, et al. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 2005;37:1207–9.
- [8] Tosch V, Rohde HM, Tronchère H, Zanoteli E, Monroy N, Kretz C, et al. A novel Ptdlns3P and Ptdlns (3,5) P₂ phosphatase with an inactivating variant in centronuclear myopathy. Hum Mol Genet 2006;1:3098–106.
- [9] Nicot AS, Toussaint A, Tosch V, Zanoteli E, Monroy N, Kretz C, et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 2007;39:1134–9.
- [10] Fischer D, Herasse M, Bitoun M, Barragán-Campos HM, Chiras J, Laforêt P, et al. Characterization of the muscle involvement in dynamin 2-related centronuclear myopathy. Brain 2006;129:1463–9.
- [11] Bitoun M, Bevilacqua JA, Prudhon B, Barragán-Campos HM, Chiras J, Laforêt P, et al. Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol 2007;6:666–70.
- [12] Jones SM, Howell KE, Henley JR, Cao H, McNiven MA. Role of dynamin in the formation of transport vesicles from the trans-Golgi network. Science 1998:23:573-7.
- [13] Schafer DA, Weed SA, Binns D, Karginov AV, Parsons JT, Cooper JA. Dynamin2 and cortactin regulate actin assembly and filament organization. Curr Biol 2002;29:1852–7.
- [14] Thompson HM, Cao H, Chen J, Euteneuer U, McNiven MA. Dynamin 2 binds gamma-tubulin and participates in centrosome cohesion. Nat Cell Biol 2004;6:335–42.
- [15] Schessl J, Medne L, Hu Y, Zou Y, Brown MJ, Huse JT, et al. MRI in DNM2-related centronuclear myopathy: evidence for highly selective muscle involvement. Neuromuscul Disord 2007;17:28–32.
- [16] Jeub M, Bitoun M, Guicheney P, Kappes-Horn K, Strach K, Druschky KF, et al. Dynamin 2-related centronuclear myopathy: clinical, histological and genetic aspects of further patients and review of the literature. Clin Neuropathol 2008:27:430–8.
- [17] Echaniz-Laguna A, Nicot AS, Carré S, Franques J, Tranchant C, Dondaine N, et al. Subtle central and peripheral nervous system abnormalities in a family with centronuclear myopathy and a novel dynamin 2 gene mutation. Neuromuscul Disord 2007;17:955–9.
- [18] Susman RD, Quijano-Roy S, Yang N, Webster R, Clarke NF, Dowling J, et al. Expanding the clinical, pathological and MRI phenotype of *DNM2*-related centronuclear myopathy. Neuromuscul Disord 2010;20:229–37.
- [19] Liu D, Hsu WM. Oriental eyelids. Anatomic difference and surgical consideration. Ophthal Plast Reconstr Surg 1986;2:59–64.
- [20] Nakagawa O, Arnold M, Nakagawa M, Hamada H, Shelton JM, Kusano H, et al. Centronuclear myopathy in mice lacking a novel muscle-specific protein kinase transcriptionally regulated by MEF2. Genes Dev 2005;19:2066-77.
- [21] Pele M, Tiret L, Kessler JL, Blot S, Panthier JJ. SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs. Hum Mol Genet 2005;1: 1417-27
- [22] Züchner S, Noureddine M, Kennerson M, Verhoeven K, Claeys K, De Jonghe P, et al. Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot–Marie–Tooth disease. Nat Genet 2005;37: 289–94.

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Neuromuscular Disorders 23 (2013) 84-88

Respiratory dysfunction in patients severely affected by GNE myopathy (distal myopathy with rimmed vacuoles)

Madoka Mori-Yoshimura ^{a,*}, Yasushi Oya ^a, Yukiko K. Hayashi ^{b,c}, Satoru Noguchi ^b, Ichizo Nishino ^{b,c}, Miho Murata ^a

^a Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8551, Japan

Received 28 March 2012; received in revised form 23 July 2012; accepted 25 September 2012

Abstract

GNE myopathy is a rare and mildly progressive autosomal recessive myopathy caused by *GNE* mutations. Respiratory dysfunction has not been reported in GNE myopathy patients. In this study, we retrospectively reviewed the respiratory function of 39 severely affected GNE myopathy patients (13 men, 26 women) from medical records, and compared these parameters with various other patient characteristics (e.g., *GNE* mutations, age at onset, creatine kinase levels, and being wheelchair-bound) for correlations. The mean % forced vital capacity [FVC] was 92 (26) (range, 16–128). In 12/39 (31%) patients, %FVC was <80%. Of these 12 patients, 11 (92%) were entirely wheelchair-dependent. These patients exhibited significantly earlier onset (20 [4] vs. 30 [8] years, p < 0.001) and lower creatine kinase levels (56 [71] vs. 279 [185] IU/L) than patients with normal respiratory function. Two patients exhibited severe respiratory failure and required non-invasive positive pressure ventilation. Patients with a homozygous mutation in the *N*-acetylmannosamine kinase domain exhibited lower %FVC, while only one compound heterozygous patient with separate mutations in the uridinediphosphate-*N*-acetylglucosamine 2-epimerase and the *N*-acetylmannosamine kinase domains had respiratory dysfunction. Our results collectively suggest that GNE myopathy can cause severe respiratory failure. Respiratory dysfunction should be carefully monitored in patients with advanced GNE myopathy characterized by early onset and homozygous homozygous mutations in the *N*-acetylmannosamine kinase domain.

© 2012 Elsevier B.V. All rights reserved.

Keywords: GNE myopathy; Distal myopathy with rimmed vacuoles (DMRV); Hereditary inclusion body myopathy; Respiratory dysfunction; Uridinediphosphate-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase domain; N-acetylmannosamine kinase domain

1. Introduction

GNE myopathy, also known as distal myopathy with rimmed vacuoles (DMRV), Nonaka myopathy, or hereditary inclusion body myopathy (hIBM), is an early adultonset, slowly progressive myopathy that preferentially affects the tibialis anterior muscle but relatively spares the quadriceps femoris muscles [1,2]. Respiratory dysfunction has not been reported in GNE myopathy [3]. Nonaka

et al. reported that respiratory muscles were rarely involved even in bed-ridden patients, but no data were presented [1]. However, we had noticed that a few patients with GNE myopathy exhibited mild but progressive respiratory loss, with some experiencing recurrent pneumonia due to reduced airway clearance. Recent recommendations suggest training patients with neuromuscular disease with respiratory dysfunction using the air stacking technique to increase their thorax capacity and assisted cough peak flow (CPF) from an early stage to maintain lung compliance and chest mobility, and to clean the airways [4]. If respiratory dysfunction is not rare in patients with GNE

0960-8966/\$ - see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.nmd.2012.09.007

^b Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan

^c Translational Medical Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan

^{*} Corresponding author. Tel.: +81 341 2711: fax: +81 342 1852. E-mail address: yoshimur@ncnp.go.jp (M. Mori-Yoshimura).

myopathy, then, physicians should punctually monitor their respiratory function with pulmonary function tests to look for early signs of respiratory dysfunction, perform respiratory training, coup with airway infection using a mechanical in-exsufflator (MI-E), and induce mechanical ventilation if required, as they do for patients with neuromuscular disease who exhibit respiratory failure.

The aim of this study is to evaluate past and present clinical respiratory function test parameters of GNE myopathy patients, and analyze factors that correlate with disease severity.

2. Patients and methods

2.1. Study population

Medical records of all genetically confirmed GNE myopathy patients who underwent pulmonary function tests at the National Center Hospital, National Center of Neurology and Psychiatry, were retrospectively reviewed. We collected data on genetic diagnosis, respiratory function (% vital capacity [%VC], % force vital capacity [FVC], cough peak flow [CPF]), creatine kinase (CK), chest X-ray and/or CT scan and body mass index (BMI) for analysis.

2.2. Data handling and analysis

Data were summarized using descriptive statistics, and each variable was compared against age, sex, respiratory dysfunction (whether their %FVC was up to or over 80%), and domain mutation (i.e., within the UDP-GlcNAc 2-epimerase domain: ED or N-acetylmannosamine kinase domain: KD). The t-test was used to compare the means of each group. Data for the two study populations were calculated using chi-square contingency table analysis. Multivariate regression analysis was performed with %FVC as the dependent variable. Explanatory variables included age at disease onset, CK and BMI. We found that the variables age, duration from onset to present, age upon wheelchair use, age at loss of ambulation, were highly correlated (over 0.5) with age at disease onset. As such, we eliminated these three due to multicolinearity in the multivariate regression analysis. When past %FVC data were available, the present data were compared with serial changes in respiratory function during the preceding 5-7 years, and changes in %FVC over time were determined by calculating the difference between past and present data. All analyses were performed using SPSS for Macintosh (Version 18; SPSS Inc., Chicago, IL).

3. Results

3.1. General characteristics

A total of 39 Japanese patients (13 men, 26 women) were recruited. The mean age at the time of data collection was 43.1 (11.3) years (mean [standard deviation, SD]) (Table 1).

The mean age at first appearance of symptoms was 26.8 (9.0) years (range, 15–58 years; median, 25 years). Present age, age at disease onset, age at wheelchair use, and present ambulation status were not significantly different between men and women; 20.5% (8/39) had symptom onset before age 20. Of the 39 patients, 51.3% (20/39) could walk but needed assistance, and 69.2% (27/39) were wheelchair-bound (8/27 and 19/27 were partially and totally wheelchair-bound, respectively). Age at first use of a wheelchair was 33.3 (10.8) years (range, 18–59 years; median, 31.5 years) and that for loss of ambulation was 36.9 (11.9) years (Table 1).

3.2. GNE mutations

Of the 39 patients, 30.7% (12/39) carried homozygous mutations, while 69.2% (27/39) harbored compound heterozygous mutations (Supplementary Table 1). Among the homozygous patients, 66.7% (8/12) harbored the p.V572L mutation. Among the compound heterozygous patients, 25.9% (7/27) exhibited the p.D176V/p.V572L genotype, while the other patients each had a different mutation. With respect to the location of the mutation (i.e., protein domain), 28.2% (11/39) homozygous patients carried mutations only in ED (ED/ED), 46.2% patients (18/39) were compound heterozygotes with 1 mutation each in the ED and KD (ED/KD), and 25.6% patients (10/39) had a mutation in the KD of both genes (KD/ KD) (Table 2). The allelic frequencies of p.V572L, p.D165V, p.C13S, and p.R129Q were 35.9% (28/78), 28.2% (22/78), 11.5% (9/78), and 2.6% (2/78), respectively, while all other mutations had only 1 allele each (Supplementary Table 1).

3.3. Respiratory function

None of the patients had lung and/or thoracic diseases that could affect their respiratory function in chest X-ray and/or chest computed tomography. The %VC and %FVC in patients with GNE myopathy were 91.9 (26.9) (range, 18.2–126.3; median, 100.3) and 92.0 (25.8) (range, 16.4–128.5; median, 100.5; Table 1), respectively.

3.4. Patients with respiratory dysfunction

In 30.7% of patients (12/39), %FVC was <80. Of these 12 patients, 91.6% (11/12) were wheelchair-dependent and 83.3% (10/12) had already lost ambulation. Their onset was significantly earlier (19.3 [4.4] vs. 30.3 [8.4], p < 0.001) and mean CK level was significantly lower (55.8 [71.6] vs. 279.0 [184.7], p = 0.004) than those of patients with normal respiratory function. Four patients exhibited advanced respiratory dysfunction (%FVC < 50% and cough peak flow [CPF] < 160 L/min) (Table 2). All 4 patients had experienced recurrent pneumonia, and 2 patients required nocturnal NPPV. They were all early onset (before 20 years old) and non-ambu-

Table 1 Patient characteristics by respiratory function.

	Total	%FVC ≥ 80%	%FVC < 80%	
n	39	27	12	p
Age (years)	43.0 ± 11.3	44.3 ± 11.7	39.9 ± 10.3	0.267
Age at onset (years)	26.8 ± 9.0	30.2 ± 8.4	19.2 ± 4.4	< 0.001
GNE/GNE	10 (25.6%)	7 (70.0%)	3 (30.0%)	0.640
GNE/MNK	18 (46.2%)	16 (88.9%)	2 (11.1%)	0.018
MNK/MNK	11 (28.2%)	4 (36.4%)	7 (63.6%)	0.009
Duration from onset of disease to present	16.2 ± 8.4	14.1 ± 7.8	20.8 ± 8.2	0.021
Wheelchair use (%)	27 (69.2%)	16 (59.3%)	11 (40.7%)	0.141
Wheelchair use since (years)	33.3 ± 10.8	37.9 ± 11.3	26.6 ± 5.1	0.002
Lost ambulation	19 (48.7%)	8 (42.1%)	11 (57.9%)	0.014
Age at lost ambulation (years)	36.9 ± 11.9	41.2 ± 11.7	28.2 ± 6.4	0.018
CK (IU/L)	201.3 ± 187.5	279.0 ± 184.7	55.8 ± 71.6	0.004
BMI	21.1 ± 4.2	20.8 ± 3.2	21.9 ± 5.8	0.457
FVC (%)	91.9 ± 26.9	106.9 ± 12.5	58.2 ± 18.7	< 0.001
VC (%)	92.0 ± 25.8	106.4 ± 11.6	59.5 ± 17.6	< 0.001
CPF (L/min)	334.2 ± 139.5	378.0 ± 105.7	250.2 ± 161.5	0.008

Most patients with reduced respiratory function had already lost ambulation and were entirely wheelchair-dependent. Their onset was significantly earlier and CK levels significantly lower than those of patients with normal respiratory function. FVC: forced vital capacity, VC: vital capacity, CPF: cough peak flow, BMI: body mass index, CK: creatine kinase.

Table 2 Patients with FVC < 50% and CPF < 160 L/min.

Case	Age	Sex	Mutation	Mutant domain	Ambulation status	Disease onset		Age at lost ambulation	%VC	%FVC	C CPF (L/ min)	Reccurent pneumonea	NPPV	CK (IU/ L)	BMI
1	51	Man	p.C13S homozygote	ED/ED	Non- ambulant	17	34	25	18.2	16.4	48.0	Yes	Nocturna	1 13	18.6
2	42	Woman	p.V572L homozygote	KD/KD	Non- ambulant	16	26	23	37.6	34.4	141.6	Yes	Nocturna	1 13	22.2
3	45	Woman	p.V572L homozygote	KD/KD	Non- ambulant	17	28	31	49.0	48.3	147.6	Yes	No	8	31.6
4	37	Woman	p.V572L homozygote	KD/KD	Non- ambulant	16	21	24	53.7	48.6	118.8	Yes	No	No data	20.4

Table 3 Multivariate regression analysis of predictive factors for respiratory dysfunction.

	Regression coefficient	р	Lower limit of 95% confidence interval	Upper limit of 95% CI
Age at onset	0.949	0.042	0.038	1.86
CK	0.068	0.008	0.02	0.115
BMI	-1.8	0.09	-3.811	0.302

Multivariate linear regression analysis was performed to evaluate the relationship between %FVC and other clinical parameters. Age at onset and CK were significantly correlated with %FVC.

lant. The majority (7/12) of patients had KD/KD mutations, whereas significantly fewer patients with respiratory dysfunction had ED/KD mutations.

In order to identify predictive factors for respiratory dysfunction in GNE myopathy, we performed multivariate analysis to determine the relationship with %FVC. This revealed age at onset (p=0.042) and CK (p=0.008) as significantly correlated to %FVC (Table 3, Fig. 1).

Past (5–7 years ago) data were available for 9 patients. The %FVC decrements in 5 patients with respiratory dys-

function were significantly greater than those of patients without dysfunction (20.9 [6.0] vs. 0.8 [9.7], p = 0.004; Supplementary Table 2).

4. Discussion

To our knowledge, we are the first to report respiratory dysfunction in GNE myopathy. Our study demonstrates that (1) certain GNE myopathy patients in Japan exhibit respiratory dysfunction, and (2) early onset and lower CK levels resulting from severe muscle atrophy and weakness, and KD/KD mutations can be risk factors for respiratory dysfunction.

Malicdan et al. reported that pathological changes in the diaphragms of the GNE (-/-) hGNED176V-Tg model mice were variable and ranged from almost normal to the presence of marked fibrosis and rimmed vacuoles. On the other hand, the gastrocnemius muscles of all mice exhibited myopathic features [5]. The features in these mice correspond to individual differences observed in the patients of our study. The fact that not all cases in our study exhibited respiratory dysfunction as observed in the GNE (-/-)

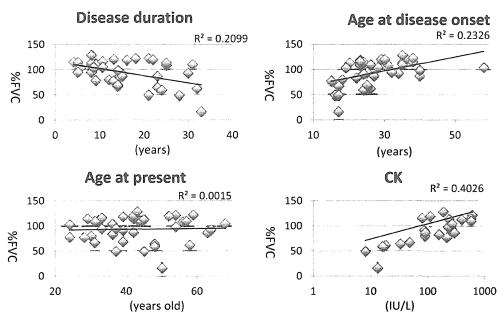


Fig. 1. Scatterplots of %FVC as functions of age, age at disease onset, disease duration, and creatine kinase (CK) level. Age at disease onset, disease duration, and CK level were correlated with %FVC.

hGNED176V-Tg mice indicates that severe respiratory muscle involvement is not a constant feature of GNE myopathy. Yet, since about 30% of patients had decreased %FVC and severe respiratory dysfunction was overlooked by neurologists or physicians, clinicians should be made more aware of the possibility of respiratory dysfunction, particularly in patients with advanced GNE myopathy. If %VC decreases to 70%, patients should be taught air stacking as with other neuromuscular disorders [4,6]. CPF should be routinely measured in patients with GNE myopathy, given that its decrement was associated with recurrent pneumonia in our study. Early induction of assisted CPF and/or MI-E is required if patients with reduced CPF have an airway infection. Serial data suggest that %FVC decreased from the normal range to %FVC < 80, indicating that continuous monitoring is required even in patients with normal respiratory function. Moreover, respiratory function parameters may provide quantitatively useful data for clinical trials, particularly those directed to non-ambulant patients.

All 4 patients with severe respiratory dysfunction exhibited early onset, homozygous mutations, and advanced muscle weakness. However, not all early onset, homozygous, or non-ambulant patients exhibited severe respiratory dysfunction. Although the underlying reasons are unclear, we also found that ED/KD mutations were less associated with decreased respiratory function, while many patients with KD/KD mutations showed respiratory dysfunction. A large scale, cross-sectional study could better identify key factors responsible for respiratory dysfunction and genotype-phenotype correlations.

We are aware that the recruitment of patients from NCNP, highly specialized for muscle disease, is a potential

source of selection bias, because they may be particularly more severely affected than the general patient population. Therefore, our study may not correctly reflect the general patient population. Investigations of small populations may underestimate the statistical significance as well. However, our previous GNE myopathy questionnaire study revealed a similar correlation between genotypes and phenotypes [7]. We are currently in the process of establishing a Japanese national GNE myopathy patient registry called Registration of Muscular Dystrophy (REMUDY, http:// www.remudy.jp) to perform a broader epidemic investigation of associated conditions, including respiratory dysfunction. To clarify the relationship between respiratory dysfunction and other clinical/laboratory factors, we have initiated a prospective observational study on GNE myopathy.

Three of 4 patients with severe respiratory dysfunction had homozygous p.V572L mutations. Given the frequency of the p.V572L mutation in the Japanese population, it will be interesting to determine whether non-Japanese individuals harboring this mutation also exhibit respiratory dysfunction.

In conclusion, advanced GNE myopathy patients are at risk for respiratory dysfunction. The KD/KD genotype, early onset, loss of ambulation/wheelchair use, and low CK level resulted in advanced muscle atrophy may be associated with respiratory dysfunction.

Acknowledgments

We thank members of the Patients Association for Distal Myopathies in Japan (PADM). This work was partly supported by Research on Intractable Diseases of Health

and Labour Sciences Research Grants, Comprehensive Research on Disability Health and Welfare Grants, Health and Labour Science Research Grants, Intramural Research Grant (23-5/23-4) for Neurological and Psychiatric Disorders from the NCNP, and Young Investigator Fellowship from the Translational Medical Center, National Center of Neurology and Psychiatry.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.nmd.2012.09.007.

References

[1] Nonaka I, Sunohara N, Satoyoshi E, Terasawa K, Yonemoto K. Autosomal recessive distal muscular dystrophy: a comparative study with distal myopathy with rimmed vacuole formation. Ann Neurol 1985;17:51-9.

- [2] Argov Z, Yarom R. "Rimmed vacuole myopathy" sparing the quadriceps. A unique disorder in Iranian Jews. J Neurol Sci 1984;64:33–43.
- [3] Udd B, Griggs RC. Nonaka myopathy. In: Engel AG, Franzini-Armstrong C, editors. Myology. New York: McGraw-Hill; 2004. p. 1178–9.
- [4] Bach JR. Noninvasive respiratory muscle aids. In: Bach JR, editor. Management of patients with neuromuscular disorders. Philadel-phia: Hanley & Belfus; 2004. p. 211–69.
- [5] Malicdan MC, Noguchi S, Nonaka I, Hayashi YK, Nishino I. A Gne knockout mouse expressing human GNE D176V mutation develops features similar to distal myopathy with rimmed vacuoles or hereditary inclusion body myopathy. Hum Mol Genet 2007;16:2669–82.
- [6] Bach JR. Pulmonary defense mechanisms and cough peak flow. In: Bach JR, editor. Management of patients with neuromuscular disorders. Philadelphia: Hanley & Belfus; 2004. p. 193–9.
- [7] Mori-Yoshimura M, Monma K, Suzuki N, et al. GNE myopathy (distal myopathy with rimmed vacuoles) patients with mutations in the UDP-GlcNAc 2-epimerase and in the *N*-acetylmannosamine kinase domains of the GNE gene exhibit less severe phenotypes than patients with mutations only in MNK domain. J Neurol Sci, 2012. [Epub ahead of print].