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% may result at least partly in the BMI1

are frequently seen in patients with RUNXT mutations,*
overexpression. Furthermore, many gene mutations have been identified in MDS patients, including
PRC2 complex proteins, and some of them showed positive associations with RUNX7 mutations.*' Our
next investigation is to clarify the effects of both expression levels and mutations of PRC2 proteins in
patients with RUNX1 mutations. There is a possibility that these gene expression patterns and mutations
may act to elevate the BM/1 expression level.

4244 in part via

BMI1 is well-known to be essential for self-renewal of hematopoietic stem cells,
repression of genes involved in senescence,* and self-renewal of hematopoietic stem cells is enhanced
by BMI1 expression in both mouse and human.***® Our results showed that overexpression of BMI1
itself in human CD34" cells or a mouse BMT model does not appear to have MDS-genic potential, as
reported previously.***® When the CD34" cells were double-transduced simultaneously with D171 N and
BMI1, the cells could proliferate with differentiation and dysplasia. Co-transduction of D171N and BMI1
into BM cells resulted in faster induction of MDS/AML in BMT mice. It is suggested that BMI1
overexpression may act as one of the partner abnormalities collaborating with master gene mutations for
MDS-genesis. BMI1 affects INK4A/ARF expression, which has been sufficiently elucidated, involved in
the leukemic phenotype. A previous report that showed that BMI1 collaborates with BCR-ABL in
leukemic transformation also supports this idea.’ We confirmed that significant enrichments of BMI1
were detected on Ink4a/Arf promoter regions in both BMI1-transduced cells and
BMI1/D171N-transduced cells, suggesting that BMI1 overexpression may help cells transform, at least
in part, due to suppressing the expression of the Ink4a/Arf tumor suppressor gene. Although a physical

1,48 was observed, it is known

association in vivo between BMI1 and D171N, as well as wild type RUNX
that D171N mutant has lost the DNA binding ability.'®> Therefore, the mechanism by which BMI1
co-expression with D171N mutant induces proliferative effects seems to be independent of the direct
physical association between RUNX1 and BMI1. Additionally, both BMI1-knockdown human CD34" cells
and Bmi1-deficient mouse cells showed elevated levels of reactive oxygen species accumulation,***°
resulting in impairment of long-term expansion and apoptosis. It may be the reason why
D171N-transduced human CD34" cells that showed reduced BMI1 expression could not proliferate. It
may also explain the phenomenon in 32Dcl3 cells, in which BMI1 fransduction seemed to rescue
D171N-transduced cells from apoptosis. However, the CD34" cells transduced with D17 1N/BMI1 did not

develop MDS/AML in NOG mice, suggesting that other factors such as EVI7 overexpression observed in
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a mouse BMT model may be still required for the development of MDS/AML in NOG mice.

Germline mutations of RUNX? have been shown to occur in FPD/AML."? FPD/AML is regarded
as familial MDS,? and the molecular mechanisms by which RUNX1 mutations promote the development
of hematopoietic malignancies seem to be identical in both MDS and FPD/AML patients. Because
decades-long asymptomatic latency period do occur in patients with FPD/AML, it appears that
RUNX1-mutated stem cells cannot promote the development of MDS without other cooperative factors.
It is suspected that additional gene abnormalities occur later on in the RUNX1-mutated cells for the
development of MDS. Therefore, we performed stepwise transduction of the D171N mutant followed by
BMI1 into CD34" cells, which could reproduce continuous slow proliferation of a low percentage of
blastoid cells, reflecting the hematological features in higher-risk MDS patients. This result indicates that
genetic alterations, such as EVI1 or BMI1 overexpression which add proliferative advantage to cells,
may occur as “second hits” after the master genetic alteration (i.e. RUNX1 mutation) that has MDS-genic
potential.

In the present study, we revealed the functional significance of the RUNX1 D171N mutant in
the pathogenesis of MDS using human CD34" cells. Thus, amino acid replacement type mutations in the
RHD, which comprise half of the RUNX1 mutations detected in patients, are suspected to have
MDS-genic potential, however, the cells with this type of mutation lack proliferation ability. This may
explain bone marrow failure status, one of the phenotypes of MDS. When the mutated cells gain partner
gene abnormality, i.e. EVIT or BMI1 overexpression, they can acquire proliferation ability through
alteration of the collaborating gene which may explain the various clinical features of patients with
RUNX1 mutations. On the other hand, the other half of the RUNX1 mutants may have different
biochemical functions that remain unclear, in particular, mutants that lack the C-terminal functional
domain but have an intact RHD may have other effects.*?> Our future investigations include the
elucidation and clarification of the molecular mechanisms by which each type of RUNX1 mutant

promotes the development of MDS.
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Table 1. Characteristics of AML mice caused by expression of D171N and BMI1

pMYs.IG/pMYs.IN D171N/ pMYs.IN D171N/BMI1
(n=3) (n=5) (n=10)

WBC (/uL) 18,550 + 1,786 129,100 + 68,089 70,838 + 16,353
Hb (g/dL) 14.8+0.4 73%25 77123
Plt (x10°/uL) 291 £ 67 246 + 80 134+ 75
MCV (fL) 46.7+0.6 53.6+£3.9 51.9+£93
BM count (x10’ cells) 2.70 +0.78 7.05 +1.67 483+1.14
Myeloblasts in BM (%) 1.8+1.0 345+16.0 59.6+8.2
Liver weight (mg) 1,668 + 129 2,008 + 482 2,015 + 527
Spleen weight (mg) 98 £ 12 605 £ 242 531 +£185

Averages and standard deviations are shown. BM cells were isolated from both tibias and femurs.

WBC indicates white blood celi; Hb, hemoglobin; Plt, platelets; and MCV, mean corpuscular volume.

-25.



From bloodjournal.hematologylibrary.org at University of Tokyo on April 5, 2013. For personal use only.

Figure Legends

Figure 1. EVI1 overexpression collaborates with RUNXT mutations in human MDS. (A) EVI1
expression levels by quantitative reverse transcription-polymerase chain reaction (QRT-PCR) in CD34"
cells of clinical samples. Relative EVI1 expression was calculated as the ratio of EVI1 to GAPDH
expression. RNA from normal bone marrow (BM) CD34" cells served as a control, and the RNA level
was defined as one. Data are expressed as mean + SD. L-MDS, lower-risk MDS; H-MDS, higher-risk
MDS; WT, wild-type; MT, mutation. (B) White blood cell (WBC) count and clinical course of a patient with
high EVI1 expression. A 78-year-old male showed pancytopenia and blast cells in peripheral blood.
Bone marrow examination showed hypocellular marrow with multilineage dysplasia and 16.5% of blast
cells. Cytogenetic analysis showed 45,XY,add(3)(q?13.2),-7. He was diagnosed with RAEB-2 and
received chemotherapy. However, his condition progressed to bone marrow failure after chemotherapy
and repeated severe infection. Blast population continued to increase gradually. Eight months after
diagnosis, his WBC count started to increasé, and he died with uncontrollable blast expansion 11.5
months after diagnosis.

Figure 2. Overexpression of D171N promotes inhibition of differentiation and increase in
self-renewal capacity. (A) Pictogram of pMXs.IG retroviral constructs of FLAG-tagged RUNX1
wild-type (WT) and D171N mutant (D171N). The difference in cDNA sequence of the mutant from the
WT is indicated by an arrow head. LTR, long terminal repeat. (B) Human CD34" cord blood cells were
transduced with the indicated vector. A typical flow cytometry profile of cells retrovirally transduced with
pMXs.IG, WT or D171N shows the transduction efficiency. The GFP-positive cells shown within the gate
were collected. (C) Anti-FLAG immunoblotting of sorted GFP-positive cells confirmed the expression of
FLAG-tagged RUNX1 proteins. Anti-B-actin antibody was used as control. (D-H) Ten thousand cells
were plated in methylcellulose culture dishes. BFU-E, burst forming unit erythroid; CFU-GM, colony
forming unit-granulocyte, macrophage; GEMM, colony forming unit-granulocyte, erythroid, macrophage,
megalocyte. Data are expressed as mean + SD of 6 independent experiments and compared with
control (pMXs.IG). *P < 0.05, **P < 0.01. (D) Colony numbers were counted after 14 days. (E)
Photomicrographs (x40) of representative colonies found in the plates with an IX71 microscope and a
DP12 camera (Olympus). (F) The cell number per colony was calculated by total GPA" cells / total
BFU-E colonies and total CD13" cells / total CFU-GM colonies. (G) GFP” cells were analyzed by flow
cytometry for the indicated surface markers. (H) Colony number and cell proliferation fold in CFC
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replating assay. (I) LTC-IC assay in bulk was carried out in duplicate, and average number of LTC-IC per
10,000 original input cells and SD of 4 independent experiments are indicated. **P < 0.01.

Figure 3. D171N-transduced cells lack long-term proliferation ability. Human CD34" cord blood
cells were transduced with the indicated vectors and cultured in complete cytokine medium (without IL-3
and IL-6). To examine proliferation ability of each transduced cell type, the cells were sorted for GFP
expression and cultured in complete cytokine medium. Four indépendent experiments were performed,
and the error bars represent the SD. (A) Proliferation curve of GFP-positive RUNX1-transduced or
control (empty vector-transduced) cells, non-sorted. (B) Growth patterns of the GFP-sorted transduced
cells displayed as proliferation fold originating from one just after sorting. (C) Representative quantitative
cell cycle analysis allowed the discrimination of cell subsets that were undergoing G0/G1 (a), S (b) or G2
+ M (c) phases of the cell cycle, or apoptosis (d). (D) Percentage of CD34" cells was determined by flow
cytometry. (E) Representative CD34/CD38 expression pattern in long-term culture. (F) Images of
Wright-Giemsa stained cytospins on days 3 and 35 obtained with a BX51 microscope and a DP12
camera (Olympus); original magnification, x1000. (G) Morphological abnormalities observed in
Wright-Giemsa stained cytospins of the D171N cells on day 35 in culture, myeloid, erythroid, and
megakaryocytic cells with dysplasia are indicated by blue, pink, and green arrows, respectively, as
captured with a BX51 microscope and a DP12 camera (Olympus); original magnification, x1000.

Figure 4. BMI1 expression pattern in human CD34" cells and enforced BMI1 expression in human
CD34" cells. (A) BMI1 expression levels in CD34" cells of clinical samples. Relative BMI1 expression
was measured by triplicated gqRT-PCR and calculated as the ratio of BMI1 to GAPDH expression. Data
are also expressed as mean * SD of each patient group. **P < 0.01. (B) BMI1 expression in transduced
CD34" cells was confirmed by qRT-PCR. CD34" cells were re-purified from GFP-positive sorted cells
after 5 and 40 days of culture in complete cytokine medium. Bar chart represents the mean * SD of 3
independent experiments. RNA from pMXs.IG-transduced celis on day 5 served as a control, and the
RNA level was defined as one. *P < 0.05, P < 0.01. (C) pMXs.IRES-DsRed-Express (pMXs.IR)
retroviral construct for the expression of BMI1. (D) Representative flow cytometry profile of cells
retrovirally transduced with pMXs.IR or BMI1 shows the transduction efficiency. The DsRed" cells shown
within the gate were collected. (E) Expression of BMI1 was confirmed by Western blotting using
anti-Bmi1 antibody. Anti-B-actin antibody was used as control. (F) Human CD34" cells transduced with
the indicated vector and sorted for DsRed expression were analyzed by CFC replating assay. Ten
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thousand cells were plated in methylcellulose culture dishes. Data are expressed as mean * SD of 3
independent experiments. (G) Growth pattern of the transduced cells cultured in complete cytokine
medium displayed as proliferation fold originating from 10° just after sorting. The error bars represent the
SD from 4 independent experiments. (H) The expression pattern of surface markers as shown by a
typical flow cytometry profile, and Wright-Giemsa stained cytospins of the DsRed” cells on day 42
culture in complete cytokine medium as captured with a BX51 microscope and a DP12 camera
(Olympus); original magnification, x1000.

Figure 5. The effect of double expression of D171N and BMI1. (A-C) IL-3-dependent 32Dcl3 cells
were stably transduced with pMYs.IP/IB, pMYs.IP/BMI1, D171N/pMYs.IB or D171N/BMI1. Before the
assay for proliferation and apoptosis, the transduced 32Dcl3 cells were subjected to drug selection with
1pg/mL puromycin and 10 yg/mL blasticidin. (A) G-CSF—induced differentiation assay in indicated
32Dcl3 transfec’;ants. Surface expression of CD11b after incubation for 6 days in the presence of 1
ng/mL IL-3 (red histograms) or 50 ng/mL G-CSF (blue histograms) was analyzed by flow cytometry. The
result of control staining is shown as a filled histogram. Data are representative of two independent
experiments. The cells cultured with G-CSF for 6 days were assessed by Giemsa staining. Images were
obtained with a BX51 microscope and a DP12 camera (Olympus); objective lens, UplanFl (Olympus);
original magnification x1000. (B) Growth curve of the transduced 32Dcl3 cells cultured in the presence of
1 ng/mL of IL-3. Data are expressed as mean + SD of 3 independent experiments. (C) Annexin V
positivity in the transduced 32Dcl3 cells cultured without IL-3. Data are expressed as mean + SD of 3
independent experiments. (D-G) Human CD34" cells were precultured for 3-4 days in expansion
medium and transduced with both GFP-tagged D171N and DsRed-tagged BMI1. After 3-4 days,
GFP*IDsRed” cells were purified by sorting. The cells were cultured in methylcellulose or long-term
culture medium. (D) Expression of BMI1 and RUNX1-D171N were confirmed by Western blotting using
anti-Bmi1 and anti-FLAG M2 antibodies, respectively. Anti-B-actin antibody was used as control. (E)
Double-transduced cells were analyzed by CFC replating assay. Data are expressed as mean + SD from
4 independent experiments. (F) LTC-IC assay in bulk and limiting dilution was carried out. (G) Growth
patterns of the transduced cells cultured in long-term culture medium displayed as proliferation fold. The
error bars represent the SD from 4 independent experiments. The growth profiles of all cells with double
transduction of GFP (empty or D171N) and DsRed (empty or BMI1) vectors are shown. (H) Cell cycle
analysis and the expression pattern of surface markers as shown by a typical flow cytometry profile, and
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Wright-Giemsa stained cytospins of D171N- and D171N/BMI1-transduced cells on day 42 as captured
with a BX51 microscope and a DP12 camera (Olympus); original magnification, x1000. (1) INK4A/ARF
(p16/p14) expression levels in D171N- and D171N/BMl1-transduced cells on day 42. Relative gene
expression was measured by qRT-PCR performed in triplicate and calculated as the ratio of INK4A/ARF
to GAPDH expression.

Figure 6. The effect of double expression of D171N and BMI1 in a mouse BMT model. (A)
Kaplan-Meier analysis of the survival of mice that received transplants of BM cells transduced with
pMYs.IG/BMI1 (n=12, green line), D171N/pMYs.IN (n=11, red line) or D171N/BMI1 (n=12, blue line). P
values were calculated using log-rank test. (B) Expression of RUNX1-D171N and BMI1 in BM cells
derived from the BMT mice transduced with pMYs.IG/IN (lane 1), D171N/pMYs.IN (lanes 2, 3) or
D171N/BMI1 (lanes 4-8). Cell lysates were immunoblotted with anti-Bmi-1, anti-FLAG M2 or anti-tubulin
antibody as control. Data are representative of 3 independent experiments. (C) Macroscopic findings of
sacrificed mice transplanted with BM cells transduced with the indicated construct. A representative
photograph is shown. Mice with D171N/pMYs.IN or D171N/BMI1 died of MDS/AML with marked
splenomegaly (right two panels), although mice with pMYs.IG/IN or pMYs.IG/BMI1 remained healthy
without any organomegaly 8 months after BMT (left two panels). (D) Cytospin preparations of BM and
spleen cells derived from indicated mice were stained with Giemsa. A representative photograph is
shown. Images were obtained with a BX51 microscope and a DP12 camera (Olympus); objective lens,
UplanF1 (Olympus); original magnification x1000. (E) Flow cytometric analysis of BM cells derived from
each transduced mouse. In pMYs.IG/IN and pMYs.IG/BMI1, apparently healthy mice were sacrificed for
analysis of BM cells 8 months after BMT. The dot plots show staining for NGFR, Gr-1, CD11b, B220 or
c-kit as detected with phycoerythrin versus GFP. (F) Histopathologic findings of spleen and liver from
mice that died of MDS/AML in the indicated BMT model, as shown by hematoxylin and eosin staining.
Images were obtained with a BX51 microscope and a DP12 camera (Olympus) with an UplanFL
objective lens (Olympus), and are shown at an original magnification x400. (G) Ink4a/Arf (p16/p79)
expression levels in BM cells of mice. Relative p76/p19 expression was measured by qRT-PCR
performed in triplicate and calculated as the ratio of p76/p79 to Gapdh expression. (H) Evi1 expression
levels in BM cells of mice. Relative Evi1 expression was measured by qRT-PCR performed in triplicate
and calculated as the ratio of Evi7 to Gapdh expression. RNA from pMYs.IG/pMYs.IN mice served as a
control, and the RNA level was defined as one.
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Figure 7. Stepwise transduction of the D171N mutant followed by BMi1 in human CD34" cells. (A)
Human CD34" cells were precultured for 3 to 4 days in expansion medium and transduced with
GFP-tagged D171N-mutant. After 3 or 4 days, GFP" cells were sorted and cultured in long-term culture
medium for 28 days. Then, CD34" cells were re-selected by the CD34 MicroBead Kit again, and
transduced with DsRed-tagged BMI1. We also transduced the DsRed vector as a control. Finally, 35
days after the D171N transduction, GFP*/DsRed” cells were sorted and cultured in methylceliulose or
long-term culture medium. (B) CFC replating assay in 3 independent experiments. (C) Representative
flow cytometry analyses of the first colonies. (D) Proliferation fold in 3 independent experiments. Day 0
was the day of the second (DsRed vectors) transduction. (E) Flow cytometric analysis for CD34
expression, and Wright-Giemsa stained cytospins on day 39 as captured with a BX51 microscope and a

DP12 camera (Olympus) at x400 and x1000 original magnifications.
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