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Figure 6. Results of Goldmann-Weckers dark adaprometry. Lower line indicates averaged value and irs standard deviation resulted from normal contrals,
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Abstract To report a case of bilateral, acquired,
and acute dysfunction of short-wavelength-sensitive
(SWS) cone systems. The case was a healthy 39-year-
old man. He noticed sudden onset of bilateral abnormal
color vision. Ophthalmic examinations revealed nor-
mal fundi in both eyes. Farnsworth panel D-15 test and
Farnsworth—-Munsell 100-hue test showed tritanopia.
White-on-white static perimetry showed no abnormal-
ity; however, blue-on-yellow static perimetry detected
remarkably reduced sensitivity at the lower visual field
in both eyes. ISCEV-standard full-field electroretino-
grams (ERGs) were normal; however, blue-on-yellow
ERGs showed reduced amplitude of b-wave that was
derived from SWS cone systems in both eyes. He was
observed for 1 year, and no improvement in color
vision was found during the observation. This is a
unique case which showed bilateral, acquired, and
acute dysfunction of SWS cone systems. The cause of
the acquired tritanopia remains to be known.
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Introduction

Acquired tritanopia is shown in various retinal
diseases and optic nerve diseases [1], or after exposure
to toxic chemicals [2].

In this paper, authors report a case with bilateral,
acquired, and acute dysfunction of short-wavelength-
sensitive (SWS) cone systems which had no history
of general or ophthalmic diseases.

Case

The case was a healthy 39-year-old man. He had no
past history of general disease or medication. He was
working as an office worker. He noticed abnormal
color vision in both eyes when he woke up on the
morning of June 2, 2009. He complained that yellow
color looked whitish, human skin of Asian looked
vivid pink, and it was difficult to distinguish between
blue and green. He had not been exposed to strong
light nor chemical materials such as organic solvents
that were reported as cause of acquired color discrim-
ination impairment. He did not take much alcoholic
drinks before the symptoms, nor tobacco, except
several electronic cigarettes. He visited a nearby clinic
and was referred to us for further examinations.

At the first visit to our clinic, the corrected visual
acuity was (1.2) in both eyes with normal intraocular
pressure. Ophthalmic examinations revealed that
the anterior segments, optic media, and fundi were
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unremarkable in both eyes (Fig. 1). Fluorescein fun-
dus angiography, indocyanine-green fundus angiog-
raphy, and optical coherence tomography were
performed, and they were also unremarkabl_e (Figs. 2,

3). Farnsworth panel D-15 test and Farnsworth—
Munsell 100-hue test showed tritanopia in both eyes
(Fig. 4). Goldmann kinetic perimetry and white-on-
white static perimetry showed no abnormality in either

Fig. 1 Fundus photographs. No abnormality was found in both eyes

Fig. 2 Results of fluorescein and indocyanine-green fundus angiograms (FA and IA). FA and IA were performed simultaneously using

HRA™2 (Heidelberg Engineering, Heidelberg, Germany)

Fig. 3 Results of optical coherence tomography (OCT).
Horizontal section of macular area was shown. Retinal structure
was normal including photoreceptor layer, middle layer, and

@ Springer

nerve fiber layer. OCT was performed using Cirrus™ HD
spectral-domain optical coherence tomography (Cirrus™ HD-
OCT; Carl Zeiss Meditec, Dublin, CA)
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Fig. 4 Results of Farnsworth panel D-15 test (upper row) and Farnsworth-Munsell 100-hue test (lower row). Tritanopia is suggested

clearly in both eyes

eye; however, blue-on-yellow static perimetry
detected remarkably reduced sensitivity at the lower
visual field in both eyes (Fig. 3).

ISCEV-standard  full-field electroretinograms
(ERGs) [3] were normal (Fig. 6); however, blue-on-
yellow ERGs [4] showed attenuated b-wave that was
derived from SWS cone systems in both eyes (Fig. 7).

Optic nerve and central nervous system were
investigated using magnetic resonance imaging and
recording of visual evoked potentials, and they were
unremarkable.

The patient quitted smoking the electronic cigarette
after the symptom, and he was observed for 1 year.

However, his condition was stationary with no
improvement or worsening of color vision, visual
acuity, and fundus appearance.

Discussion

The SWS cone system is vulnerable in retinal diseases
compared to middle- and long-wavelength-sensitive
(MWS and LWS) cone systems [5—8].

The results of color vision test indicated distinct
tritanopia (Fig. 4). And the reduction in SWS-cone
ERG (Fig. 7) indicated that the tritanopia was caused
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Fig. 5 Results of Goldmann kinetic perimetry (GP upper row), No visual field defects were detected except in blue-on-yellow
Humphrey white-on-white static perimetry (W/W middle row), static perimetry
and Humphrey blue-on-yellow static perimetry (B/Y lower row).
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Fig. 6 ISCEV-standard ERGs [3]. Responses from both eyes
were superimposed. Photopic and flicker ERG that were derived
from middle- and long-wavelength-sensitive (MWS and LWS)
cone systems showed normal responses

by dysfunction of SWS cone systems in the retina, in
spite of the fact that the fundus appearance was
normal. LWS and MWS cone systems seemed to
be healthy in this case, because Farnsworth—-Munsell
100-hue test showed very few errors in red-green color
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vision, and full-field photopic and flicker ERG that
were derived from MWS and LWS cone systems
showed normal responses (Figs. 4, 6). These facts
suggest a selective functional disturbance of SWS
cone systems in this case.

The patient reported that he had used electronic
cigarettes several days before the symptom. Although
World Health Organization (WHO) has denied safety
of the electronic cigarette [9], relationship between the
electronic cigarette and the SWS cone dysfunction
was not clear in this case, because authors did not
examine the electronic cigarettes he took.

To our knowledge, acquired tritanopia and acute
tritanopia due to SWS cone system dysfunction with
no ophthalmic diseases have never been reported
except by Okuno et al. [10]. They reported a case of
sudden-onset tritanopia with no ophthalmic nor gen-
eral disease. The color vision abnormality in the
Okuno’s case [10] was unilateral, which is different
from our case.

Bilateral and acute dysfunction of SWS cone
systems in the case presented here is quite unique.
Authors were not able to find any causes of this
dysfunction during the 1-year follow-up.
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(M, L) were normal in both eyes. Luminance of the yellow
background was 640 cd/m?, and duration of the blue photo-
stimuli was 2 ms
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The photopic negative response (PhNR) in response to a brief flash is a negative-going wave following the b-wave of the cone
electroretinogram (ERG) that is driven by retinal ganglion cells (RGCs). The function of RGCs is objectively evaluated by analysing
the PhNR. We reviewed articles regarding clinical use of the PhNR. The PhNR was well correlated with the visual sensitivity
obtained by standard automated perimetry and morphometric parameters of the inner retina and optic nerve head in optic nerve
and retinal diseases. Moreover, combining the PhNR with focal or multifocal ERG techniques enables the objective assessment
of local function of RGCs. The PhNR is therefore likely to become established as an objective functional test for optic nerve and

retinal diseases involving RGC injury.

1. Introduction

Retinal ganglion cells (RGCs) are selectively or preferentially
damaged by diseases of the optic nerve and inner retina.
Currently, there are surprisingly few methods to quantify
RGC function. Visual field testing is used to determine visual
function in patients with glaucoma and optic nerve disease,
but it produces abnormal findings in the event of damage
anywhere along the anterior visual pathway. Accordingly,
this test method is not necessarily capable of selectively
determining RGC function.

Objective tests of RGC function include visual evoked
potentials (VEPs) and pattern electroretinograms (PERGs).
The VEP measures potentials generated by the visual cortex,
50, like visual field testing, it cannot directly measure RGC
function. The PERG, on the other hand, reflects RGC
function but still yields abnormal findings in patients with
damage to the middle and outer layers of the retina. Standard
ERGs must be recorded simultaneously in order to evaluate
the function of the middle and outer retinal layers. Moreover,
special equipment and refractive correction are required to
perform this electrophysiological test.

The standard ERG is conventionally thought to reflect
electrical potentials mainly from photoreceptors and bipolar
cells (or Miiller cells). Recently, however, it was discovered

that the RGC potentials contribute to the cone-driven
ERG [1] in the form of the photopic negative response
(PhNR) [2]. The PhNR in response to brief stimuli is
the negative-going wave following the b-wave of the cone
response (Figure 1). An advantage of the PhNR is that
it can be recorded using a conventional ERG recording
device. Furthermore, the PhNR is a component of the cone
ERG, so a- and b-waves can be recorded simultaneously
enabling the function of middle and outer retinal layers to
be evaluated at the same time. This benefit is not available
when assessing RGC function with the conventional means
of the VEP or PERG. In addition, refractive corrections
are not required when recording the PhNR. This simple
recording and evaluation of the PhNR opens the way for
clinical applications. The present paper therefore describes
the potential clinical use of the PhNR in diseases of the optic
nerve and inner retina.

2. Basic Research on the PhNR

2.1. Discovery of PhNR in Monkeys. RGC component in the
cone ERG was discovered by Viswanathan et al. in 1999 [2].
They reported that the PhNR following the b-wave of the
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FIGURE 1: A representative waveform of the cone electroretinogram recoded from a normal subject by red stimuli on a blue background.

PhNR: photopic negative response.

cone ERG disappeared from eyes of macaques after intrav-
itreal injection of tetrodotoxin (TTX) which blocks voltage-
gated sodium channels and thus blocks action potentials
produced by RGCs and spiking amacrine cells [3, 4]. They
also demonstrated that PANR amplitudes were decreased in
glaucomatous eyes with laser-induced ocular hypertension
in monkeys. These experimental results implied that the
PhNR arises from RGCs and/or their axons. However, one
may have question why spiking action potentials produced
by RGCs shape a slow negative waveform. Experimental
evidence suggests that glial mediation generates the PhNR:
an intravitreal injection of Ba?* blocks K* current in glia
cells with the subsequent elimination of the PhNR in cats
[5]. This suggests that glial mediation could contribute to
shaping waveform of the PhNR.

Caution is needed when attempting to determine the
origin of the PhNR because of its species specificity. In cat
[6], monkeys [2], and humans [7] it derives from RGCs,
but in animals such as rodents it originates from amacrine
cells [8, 9]. The scotopic threshold response (STR) [10]
which is elicited by very dim light under dark adaptation is
a functional indicator of RGCs in rodents [8]. In rodents,
the STR consists of positive and negative components. The
positive STR is more affected by RGC damage than the
negative STR [8].

2.2. PhNR Recording Conditions. The International Society
for Clinical Electrophysiology of Vision (ISCEV) recom-
mends that cone ERGs be recorded using white-flash stimuli
on a white background light (“white-on-white”; W/W) [11].
On the other hand, Viswanathan et al. [2], who published
the first study on the PhNR, used red-flash stimuli on a blue
background (“red-on-blue”; R/B) to record the PhNR. The
colored flash stimuli and background are generated by light-
emitting diodes (LEDs), giving them a narrow, half-width
spectrum. It has been shown that R/B elicited the PhNR with
more RGC responses than did W/W especially in the low
and intermediate stimulus range [12]. While future studies
are needed to determine the ideal stimulus conditions for
evaluating PANR, RGC-derived potentials are reflected in the
PhNR recorded under either W/W or R/B conditions.

The S-cone ERG can be recorded by blue stimuli under
a vellow background to suppress responses of the M- and
L-cones. The PhNR of the S-cone ERG is reported to be

especially vulnerable to glaucoma and diabetic retinopathy
[13, 14].

2.3. PhNR in Focal ERG (Focal PhNR). The focal ERG
developed by Miyake et al. [15] consists of the a-wave,
b-wave, oscillatory potentials, and PhNR (focal PhNR)
(Figure 2). The focal ERG stimulus system is built into an
infrared fundus camera and delivers stimuli onto the local
retina using a 5-15° stimulus spot while viewing the ocular
fundus (Figure 2(a)). This allows the device to acquire very
reliable data from the macula, even in individuals with poor
fixation. Colotto et al. [16] firstly applied the focal PhNR
to patients with glaucoma, although they used a different
recording system from Miyake’s one.

Like the PhNR obtained by full-field stimuli (full-
field PhNR), the focal PhNR also disappeared following
intravitreal injection of TTX in monkey eyes [17]. Moreover,
the amplitude of both focal and full-field PhNR was reduced
in patients with optic nerve atrophy [18]. Based on these
results, the focal PhNR is also believed to originate from
RGCs of the local retinal area.

2.4. PhNR in Multifocal ERG (Multifocal PhNR). In the
standard multifocal ERG, the stimulus frequency is set high
at 75Hz. A stimulus is delivered once every 13.3 msec,
making it hard to record the entire part of the PhNR, which
has a peak latency of approximately 70 msec. The amplifier
settings also eliminate the most part of PhNRs because the
low-cut filter is usually set at 10 Hz. It is therefore essential to
reduce the stimulus frequency and low-cut filter in order to
record PhINRs with the multifocal ERG.

With this in mind, we attempted to record the multifocal
ERG by setting the stimulus frequency at 6.25 Hz and low-cut
filter at 3 Hz using a stimulus display with a dartboard pat-
tern (Figure 3(a)). The respective patterns are inverted from
white to black and vice versa in a pseudorandom sequence.
Waveforms resembling focal ERG containing PhNRs were
obtained from each element (Figure 3(b})). Kaneko et al. [19]
have demonstrated that the multifocal PhNR amplitudes
were deteriorated by optic nerve atrophy, indicating that
the multifocal PhNR also originates from RGCs. While the
clinical significance of the PhNR in the multifocal ERG is a
topic for future research, the use of the multifocal ERG may
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F1GURE 2: (a) Stimulus spot centered on the macula for recording the focal macular electroretinogram (ERG). (b) The focal macular ERG
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FrGure 3: (a) A dartboard pattern of stimuli for recording the multifocal electroretinogram (ERG). (b) Normal waveforms of multifocal

ERG recorded from each element.

allow us to evaluate the RGC function in each part of the
retina in the posterior pole of the ocular fundus.

2.5. Evaluation of PhNR. The PhNR is a relatively slow wave
modified by positive i-waves, so its peak is often difficult to
determine. This in turn makes it difficult to accurately eval-
uate peak Jatency of the PhNR. Measuring PhNR amplitude
in healthy individuals at 5ms intervals yielded a maximum
amplitude at 65 ms for full-field PhNR and 70 ms for focal
PhNR. Full-field and focal PhNR amplitudes at 65 and
70 ms, respectively, have therefore been measured from the
baseline (Figures 1 and 2(b)). However, the waveform of the
PhNR changes with recording conditions, such as stimulus
parameters and amplifier settings. Adequate settings of low-
cut filters are required for reliable recordings of the PhNR by
avoiding low-frequency drift of the baseline. Therefore, each

laboratory has to choose a fixed implicit time for measuring
the PhNR amplitude based on own data. This method of
measuring PhNR amplitude is believed to be the simplest
and least biased, but there is still no consensus on a uniform
method. In fact, various studies use different measurement
procedures, so care needs to be exercised in this regard.

3. Clinical Applications of PhNR

3.1. Optic Nerve Atrophy. The PhNR has been studied in
patients with optic nerve atrophy induced by trauma [20],
gene mutation [21], inflammation [22], compression [23,
24], and ischemia [25]. In these studies, the PhNR has
been shown to be selectively or predominantly affected by
these diseases. In our previous study examining changes in
the cone ERG of patients with traumatic optic neuropathy,
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FIGURE 4: (a) Retinal nerve fiber layer thickness (RNFLT) around the optic nerve head measured by optical coherence tomography in a patient
with traumatic optic neuropathy at 1 week and 1, 3, and 6 months after the injury. (b) Cone electroretinograms recorded simultaneously.
PhNR: photopic negative response (reproduced with permission from [20]).

we found that ERG was virtually normal immediately after
the injury but that the PhNR amplitude alone decreased
selectively upon the onset of optic disc atrophy and optic
nerve pallor [20]. This finding suggests that PhINRs reflect
the state of RGCs and do not appear abnormal when the
lesion is confined to the optic nerve behind the eye and when
mtraocular RGCs are normal.

We previously conducted a prospective study of the rela-
tionship between the PhNR amplitude following traumatic
optic neuropathy and retinal nerve fiber layer thickness
(RNFLT) surrounding the optic disc [20] (Figure 4). Even
when RNFLT was maintained at 1 month after the injury,
the PhNR amplitude declined dramatically. This decrease
in the PhNR amplitude preceded thinning of RNFLT. In
other words, RGCs undergo a functional decline before the
occurrence of morphological changes.

The full-field PhNR is believed to be characteristic of
overall RGC function and could therefore be used to evaluate
function in optic nerve diseases with extensive RGC damage.
However, many patients with optic nerve disease have central
scotoma in which extensive RGC injury is not necessarily
present. Therefore, if the focal ERG could be used to
determine the RGC function in the local retina, this could
conceivably lead to improvements in diagnostic capability.

In our previous study in which the full-field cone
and focal macular ERGs were recorded in patients with
localized optic nerve atrophy, we compared the full-field
and focal PhINRs [18]. In a representative case, a slight
pallor was observed on the temporal side of the optic disc
corresponding to abnormally thinning area of ganglion cell
complex (GCC) thickness in the central area of the ocular
fundus (indicated by red areas), and central scotoma was

also observed (Figure 5(a)). GCC consists of the retinal
nerve fiber, ganglion cell, and inner plexiform layers. The
full-field PhNR amplitude remained normal, but the focal
PhNR amplitude diminished considerably (Figure 5(b)).
This finding implies that the focal PhNR is an indicator of
local RGC damage. Previously, we examined both central
and diffuse types of optic nerve atrophy [18]. The central
type manifests as central scotoma whereas the diffuse type is
characterized by a diffuse decrease in the visual sensitivity.
In patients with diffuse-type of optic nerve atrophy, both
focal and full-field PhNR amplitude fell below the lower limit
of normal. Meanwhile, those with the central type of optic
nerve atrophy exhibited normal full-field PhNR amplitude
but a decline in the focal PhNR amplitude to below the
normal limit. These results imply that the focal PhNR is
useful in diagnosing localized optic nerve atrophy.

3.2. Glaucoma. Glaucoma is a typical disease involving
damage to RGCs. As shown in Figure 6(a) in a glaucomatous
eye, the cone a- and b-wave amplitudes are normal but the
PhNR amplitude of the full-field cone ERG is diminished
[7, 26, 27]. This decrease in full-field PhNR amplitude
grew as the glaucoma became more severe (Figure 6(b)).
It was also reduced as the mean deviation determined
by static automated perimetry (SAP) worsened [26, 27].
Significant correlations have been identified between full-
field PhNR amplitude and the morphological indicators of
RNFLT surrounding the optic disc, the optic disc rim area,
and cup/disc area ratio [26, 27]. Put simply, the full-field
PhNR is a feasible indicator of glaucoma-induced functional
and morphological impairment of RGCs.
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FIGURE 5: A representative case of optic nerve atrophy. (a) Optical coherence tomography detected abnormally thinning area of ganglion cell
complex thickness (indicated by red area). Standard automated perimetry demonstrated central scotoma. (b) The full-field cone and focal
macular electroretinograms (ERGs) recorded from a normal subject and the representative case. PANR: photopic negative response.

The sensitivity and specificity to detect glaucoma by full-
field PhNRs were 77% and 90%, respectively. However, the
sensitivity declined to 57 [26] or 38% [27] for early-stage
glaucoma, so the full-field PhNR was not a viable method
of detecting the disease at the early stage. In early-stage
glaucoma the RGC axons are locally damaged, so the full-
field PhNR (which reflects the RGC function of the entire
retina) is not suitable for determining localized RGC injury.
On the other hand, changes in early-stage glaucoma could
be detected if it were possible to record focal PhNRs from
damaged RGCs using the focal ERG.

Glaucoma-induced RGC damage begins in the paramac-
ular region (Bjerrum’s area). Therefore, detection of early
glaucomatous lesions would be difficult if the focal ERG
was recorded only in macular region. With this in mind, we
recorded the focal ERG not only in the macular region but
also in the superotemporal and inferotemporal areas of the
macula (Figure 7(a)) [27, 28, 31]. With this protocol, it is
possible to record evaluable focal PhNRs from all stimulus
sites (Figure 7(b)). As seen in the representative case of
early glaucoma with a visual field defect in the inferonasal
quadrant, the only decrease in the focal PhNR amplitude
was seen in the superotemporal retina corresponding to the
visual field defect (indicated by an asterisk, Figure 8(a)).
Thus, the focal PhNR amplitude only decreased in 1 or 2 of
the 3 recording sites in patients with early or intermediate
glaucoma. When the focal PhANR amplitude was abnormally
reduced in either recording sites, the eyes were defined to
be glaucomatous. Consequently, sensitivity and specificity
were no less than 90% even for early glaucoma when this
diagnostic criterion was employed. In advanced glaucoma

with severe visual field defects, the focal PhNR amplitude
decreased at all recording sites (indicated by asterisks,
Figure 8(b)).

The high sensitivity of the focal PhANR indicates that the
focal PhNR is more suitable than the full-field PhNR for
detecting functional loss of early glaucoma. However, the
signal of the ERG is much smaller than that of the full-
field ERG and thus the signal/noise ratio is smaller for the
focal ERG, raising a possibility that the focal PhNR is less
reliable than the full-field PhNR. Intersession variability is
represented by the coefficients of variation (CV = standard
deviation/mean X 100), and it was higher for the focal PhNR
than for the full-field PhNR [26, 31]. In addition, variations
of the PhNR amplitude among individuals were greater
for the focal PhNR amplitude than for the full-field PhNR
amplitude [26, 31]. However, this disadvantage of the focal
PhNR can be reduced by using the amplitude ratio of the
PhNR to the b-wave amplitude [31]. Therefore, the PANR/b-
wave amplitude ratio is recommended for measuring the
effectiveness of the focal PhNR.

The relationship between the focal PhNR amplitude and
visual sensitivity (dB) determined by SAP at either ERG
recording site was nonlinear [31]. That is, even a slight drop
in the visual sensitivity (dB) resulted in a major decline in the
focal PhNR amplitude. Furthermore, even when the visual
sensitivity (dB) fell, the focal PhNR amplitude remained
nearly unchanged (Figure 9(a)). These findings suggest that
the focal PhNR is a useful indicator in the early diagnosis of
glaucoma. Put differently, the focal PhNR is unsuitable for
use in following up patients with intermediate or advanced
glaucoma, and the visual sensitivity (dB) should instead be
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FIGURE 6: (a) Representative waveforms of the full-field cone electroretinogram recorded from a normal subject and a patient with advanced
glaucoma. (b) PhNR amplitudes were plotted for normal subjects (n = 42) and patients with early (n = 41), intermediate (n = 28), and
advanced glaucoma (n = 34). PhANR: photopic negative response (reproduced with permission from [27]).
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Figure 7: (a) Recording sites of focal electroretinograms. (b) Representative waveforms of the focal electroretinogram recorded from a
normal subject. PANR: photopic negative response.
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FIGURre 9: (a) The PhNR amplitude of the focal macular electroretinogram was plotted against mean visual sensitivity (dB) obtained by
standard automated perimetry 10-2 program. The fitting curve was obtained by the equation based on Hood model {29, 30]. (b) The mean
visual sensitivity (dB) was converted to a linear value (1/Lambert). PhNR: photopic negative response (reproduced with permission from

(31]).

used for this purpose. The curve in Figure 9(a) was fit to the
following equation based on the Hood model [29, 30]:

R=Ax10%16730 4 g (1)

where R is the focal PhNR amplitude; A is the focal PANR
amplitude of normal RGCs; S is mean of visual sensitivity
determined by SAP; B is the basal level of the focal PANR
amplitude when a patient has lost sensitivity to light.

The fact that the focal PhNR amplitude and visual sensi-
tivity (dB) have a nonlinear relationship can be attributed to
the fact that dB is a logarithmic value that can be expressed
as follows:

dB=1010g( L jponas (2)

et
Lambert/ " " Lambert
When converting the visual sensitivity (dB) from a log value
to a linear value (1/Lambert) using the previously mentioned
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equation, the relationship between the focal PhANR amplitude
and visual sensitivity became linear (Figure 9(b)). The focal
PhNR amplitude is also significantly correlated with local
changes in RNFLT, rim area, cup/disc area ratio, or GCC
thickness [16, 32, 33]. This indicates that the focal PhNR
reflects the morphological changes associated with glaucoma
of local area of the retina or optic disc.

3.3. Inner Retinal Diseases. Depression of the b-wave ampli-
tude with leaving the a-wave unchanged is a well-known

ERG finding in patients with central retinal artery occlu-
sion (CRAQ). Figure 10 shows the full-field ERG recorded
from the fellow eye and affected eye of a CRAO patient.
Focusing on the cone response, we can see that the full-
field PhNR amplitude was dramatically decreased by CRAO
[34]. When the respective wave amplitudes of the CRAO
eye are expressed as a ratio of those of the healthy fellow
eye (i.e., amplitude ratio), it became apparent that the
full-field PhNR amplitude was predominantly lower than
the a- and b-wave amplitudes. This is consistent with the
pathological finding that damage to the inner retinal layers
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is greatest among CRAO patients. When early recanalization
of blood flow occurs in CRAO patients, fundus findings may
be subtle (Figure 11(a)), necessitating differential diagnosis
from acute optic nerve diseases. Even in these patients,
however, the full-field PhNR amplitude was considerably
depressed (Figure 11(b)). It has been reported that the full-
field PhNR could be used to evaluate degree of ischemia or
visual prognosis in patients with CRAO [35, 36].

Diminished PhNR amplitude of the full-field ERG is also
observed in central retinal vein occlusion [37] and early
diabetic retinopathy [38, 39]. In other words, the full-field
PhNR may also be useful in the diagnosis and functional
assessment of ischemic retinal diseases.

Indocyanine green (ICG) is used during macular hole
surgery to visualize inner limiting membrane. The toxicity of
ICG on RGCs has previously been demonstrated in an ani-
mal study [40]. The PhNR amplitude was reduced in patient
who has developed visual field defects following macular hole
surgery (Figure 12(a)). Ueno et al. [41] reported that the full-
field PhINR was significantly reduced even in patients without
developing visual field defects after surgeries. Figure 12(b)
shows the time-course changes in the cone ERG before
and after macular hole surgery. In the fellow eye there was
virtually no change in the ERG, but in the operated eye
there was a delay in the b-wave peak and slight decline in
the PhNR amplitude at 1 month after surgery. At 3 months
after surgery, this delay in the b-wave peak disappeared

but the PhNR amplitude remained mildly depressed. While
the decline in PhNR amplitude is slight, it may indicate
subclinical RGC damage incurred during vitreous surgery to
repair macular holes.

4. Conclusions

The use of the PhNR has enabled objective evaluation of
RGC function. The PhNR can also be measured in clinical
settings due to the ease with which it can be recorded and
evaluated. Moreover, combining the PhNR with focal or
multifocal ERG techniques enables the objective assessment
of local function of RGC. The PhNR is therefore likely to
become established as an objective functional test for optic
nerve and retinal diseases involving RGC injury. However,
further studies on the prognostic value of the PhNR in these
diseases are required to establish the clinical utility of this
technique.
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