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FIGURE 1: COL4AT mutations in patients with porencephaly or schizencephaly. (A) Functional domains of COL4A1 protein.
The locations of 12 mutations, including 10 missense mutations (bottom), a nonsense mutation, and a frameshift mutation (top)
are indicated by arrows. The 7S domain is highlighted with blue and the NC1 domain with red. Gly-X-Y repeats within the col-
lagen triple helical domain are highlighted with yellow. All of the missense mutations occurred at evolutionary conserved
amino acids. The positions of the conserved Gly residues in the Gly-X-Y repeats are highlighted in gray. Homologous sequen-
ces were aligned using CLUSTALW (http://www.genome.jp/tools/clustalw/). (B) The ¢.1121-2dupA mutation in intron 20 is col-
ored red. Sequences of exons and introns are presented in upper and lower cases, respectively. (C) Reverse transcriptase (RT)-
polymerase chain reaction (PCR) analysis of patient 4 and his parents. {D) Schematic presentation of the wild-type (WT; upper)
and mutant (lower) transcripts and primers used for analysis. A single band (500bp), corresponding to the WT allele, was ampli-
fied using the mother's cDNA template. Conversely, a lower band was detected from the ¢cDNA from the patient and his fa-
ther. In the mutant transcript, the 165bp exon 21 was deleted. Sequences of exons and introns are presented in upper and
lower cases, respectively. (E) The ¢.1382-1G>C mutation in intron 22 is colored red. (F) RT-PCR analysis of patient 7 and a con-
trol. (G) Schematic representation of the WT and mutant transcripts, and primers used for analysis. A single band (183bp), cor-
responding to the WT allele, was amplified using a control cDNA template. Conversely, upper and lower bands were detected
from the patient’s cDNA. The upper band (244bp), which was observed only in cycloheximide (CHX)-treated cells, had a 61bp
insertion of intron 22 sequences, leading to a frameshift. Absence of the upper band in untreated lymphoblastoid cell lines
strongly suggests that the mutant transcript may undergo nonsense-mediated mRNA decay. The lower band had a 33bp inser-
tion of intron 22 and 84bp deletion of the whole of exon 23, leading to an in-frame 51bp deletion.
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FIGURE 2: Computed tomography (CT) scan (A, D) and magnetic resonance imaging (MRI; B, C, E-L) of patients with COL4AT muta-
tions. (A-C) Images of patient 1. (A) The CT scan shows calcification along with the dilated lateral ventricular wall. (B) T2-weighted
and (C) T1-weighted images (WIs) at 5 years of age showing bilateral porencephaly. (D) The CT image of patient 2 with schizence-
phaly shows calcification of the lateral ventricular wall and brain parenchyma. (E, F) T1-Wis of patient 3 show unilateral schizence-
phaly at 15 months of age. (G) T2-WI of patient 4 at 3 years of age shows parenchymal defect of the left thalamus and basal ganglia
due to subependymal hemorrhage. (H) Fluid-attenuated inversion recovery image of patient 7 at 6 years of age showing unilateral
porencephaly. {I) T2-WI, (J) T2*-weighted gradient-echo image (WGRE), and (K) T1-WI of patient 9. () The MRI at 2 months of age
shows bilateral porencephaly with low-intensity lesions along with a deformed ventricular wall, which has hemosiderin deposition
and calcification. (J) T2*-WGRE showing hemosiderin deposition in the atrophic cerebellum. The atrophic pontocerebellar structures
are also shown in (K). {L) T1-Wi of patient 15 showed schizencephaly in the left hemisphere at 2 years of age.
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FIGURE 3: Histopathological features of the resected fron-
tal tissue of patient 4 (A-F) and biopsied rectus abdominis
muscle of patient 7 (G, H). (A) Low-magnification view of
the cortex showing architectural abnormalities. (B, C) Two
examples of neuronal clustering. (D) Many neurons scat-
tered within the subcortical white matter. (E, F) Two serial
sections demonstrating the superficial layer of the cortex.
Note that the basal lamina of the pia mater (arrows in each
panel) is continuously labeled with antibodies against colla-
gen type IV (E) and laminin (F). (A-D) Kliiver-Barrera stain.
(E, F) Immunostained and then counterstained with hema-
toxylin. (G) Hematoxylin and eosin staining showing varia-
tion in fiber size, slightly increased endomysial connective
tissue, and internal nuclei. (H) Adenosine triphosphatase (pH
4.5) staining showing type 2B fiber deficiency. There was no
increase in number of type 2C fibers. Scale bars indicate
175pum (A, E, F), 30um (B, C), 80um (D), and 30um (G, H).

would cause a truncation of the NC1 domain rather
than mRNA degradation by NMD as the mutation was
located within 50bp of the exon—intron boundary of the
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second to last exon (exon 51).2° The NC1 domains are
the sites for molecular recognition through which the
stoichiometry of chains in the assembly of triple-helical
formation is directed”; therefore, these 2 mutations may
alter the assembly of the collagen IV alala2 hetero-
trimers. In addition, the effect of 2 splice site mutations
was examined using LCL, suggesting that in-frame dele-
tion/insertion mutant protein should be produced. Thus,
it is highly likely that impairment of the collagen IV
alalo2 heterotrimer assembly caused by mutant ol
chain is a common pathological mechanism of COL4A1
mutations. The ¢.2931dupT mutation found in patient 6
and his father might cause severe truncation of COL4A1
protein. It is possible that the truncation of COL4Al
protein can also impair alala2 heterotrimer assembly
similar to substitutions of conserved Gly residues in the
Gly-X-Y repeat. Alternatively, the mutant transcript
might undergo NMD, and haploinsufficiency of
COL4Al might cause a weakness of basement mem-
brane. Biological analysis using patients’ cells will clarify
these possibilities.

COL4AIl mutations in schizencephaly were first
demonstrated in this study. Schizencephaly was used by
Yakovlev and Wadsworth in 1946 to describe true clefts
formed in the brain as a result of failure of development
of the cortical mantle in the zones of cleavage of the pri-
mary cerebral fissures.'® Schizencephaly is differentiated
from clefts in the central mantle that arise as the result
of a destruction of the cerebral tissues, which they called
encephalocrastic porencephalies, now known simply as
porencephaly.’® Schizencephaly has been understood as a
neuronal migration disorder, because the clefts are lined
by abnormal gray matter, described as polymicrogyria.
Conversely, porencephaly is understood to be a postmi-
gration accident resulting in lesions, without gray matter
lining the clefts or an associated malformation of cortical
development. It has been suggested that both schizence-
phaly and porencephaly are caused by encephaloclastic
regions, and can be distinguished depending on time of
insult.'®” The present study clearly demonstrated that
COL4AI mutations caused both porencephaly and schi-
zencephaly, supporting the same pathological mechanism
for these 2 conditions.

The genes responsible for FCD have been elusive,
despite extensive investigation. The pathological features
of the cortical tubers of tuberous sclerosis (TSC) may be
indistinguishable from those of FCD. Apart from FCD
due to TSC, there is only 1 gene that may explain the
genetic basis of FCD, where a homozygous mutation in
CNTNAP2 has been identified in Amish children with
FCD, macrocephaly, and intractable seizures.”’” Surpris-
ingly, the present study discovered a patient with FCD
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and porencephaly, in whom aberrant splicing was dem-
onstrated and FCDI1A was pathologically confirmed
using resected brain tissues. A recent report revealed
COL4AIl mutations in 2 patients with MEB/WWS
showing cobblestone lissencephaly,'® and abnormal corti-
cal development has been observed in mouse models of
COL4A1 mutations.'™*® Thus, it is possible that
COL4A1 mutations are involved in cerebral cortical mal-
formations, including FCD. Identification of a greater
number of cases is required to confirm the association
between COL4A1 mutations and cortical malformations
in humans.

In a few children, the sequelac were much more
severe than would be expected on the basis of their imag-
ing findings. This is of importance when counseling
parents with regard to prediction of neurodevelopmental
outcome.

Two patients with COL4AI mutations showed in-
tracranial calcification, pontocerebellar atrophy, ocular
abnormalities, and hemolytic anemia associated with
severe bilateral porencephaly (patient 9) or schizence-
phaly (patient 5). Severe hemorrhagic destructive lesions
in the cerebrum were observed in these patients, and T2*
images also showed hemorrhage in the cerebellum, which
may have resulted in a thin brainstem and severe cerebel-
lar atrophy. Thus, these 2 patients could be considered as
the most severe manifestations affecting the developing
brain and eyes. A common featute of the 2 patients is
hemolytic anemia of an unknown cause, which required
frequent blood transfusions. Five of 15 patients with
COL4AI mutations showed hemolytic anemia. Interest-
ingly, 2 reports have demonstrated that mouse Coldal
mutants showed a significant reduction in red blood cell
(RBC) number and hematocrit.*®* Given that Coldal
mutations lead to hemorrhage, chronic hemorrhage is
possibly involved in RBC loss. Alternatively, the Col4al
mutation may directly affect blood progenitor cells, as
they transmigrate across basement membranes before
entering the peripheral blood.>® Hemolytic anemia in
patients with COL4AI mutations would imply the latter
explanation. Further studies are required to clarify how
COL4A1/Col4al mutations are involved in anemia.

In summary, we found 15 mutations in COL4AI
among 71 patients with porencephaly or schizencephaly,
showing an unexpectedly high percentage of mutations
(about 21%) in these patients. Fourteen patients with
COL4Al mutations had no family history of cerebral
palsy. The 15 patients with COL4AI mutations showed a
variety of phenotypes, further expanding the possible
clinical spectrum of COL4AI mutations to include
schizencephaly, FCD, pontocerebellar atrophy, and he-
molytic anemia. Genetic testing for COL4AI should be

Month, 2012

25

Yoneda et al: COL4AT Mutations

recommended for children with porencephaly and
schizencephaly.
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Reply

Aron S. Buchman, MD,"* Joshua M. Shulman, MD, PhD, 3.4
Sue E. Leurgans, PhD, L2 ]uhe A. Schneider, MD, MS, 12
and David A. Bennett, MD"?

We thank Drs Jellinger and Attems for their interest in our
study. In agreement with prior reports, we found that Parkinson
disease (PD) pathology, including nigral neuronal loss and
Lewy body pathology, is common in older adults without PD.
Furthermore, we provide evidence that PD nigral pathology is
related to parkinsonian motor signs in persons without a clini-
cal diagnosis of PD.! This contrasts with prior studies of inci-
dental Lewy body disease, which found associations with subtle
electrophysiologic changes but not with overt motor signs.”
Interestingly, in the current study, we also found that Alzheimer
disease (AD) and cerebrovascular pathology showed independ-
ent associations with the severity of parkinsonian motor signs.l
As requested, the correlations among these common brain path-
ologies are included in the accompanying Table. It is interesting
that Dr Attems and colleagues did not find an association of
nigral pathology or cerebrovascular disease with parkinsonian
signs among persons with AD.> We and others have reported
such associations.*® Overall, the findings in the current study
have important public health implications. They suggest that
mild parkinsonian signs, reported in up to 50% of older adults
by age 85 years and associated with significant morbidity and
mortality, may be caused by a range of pathologies including
PD pathology, AD, and cerebrovascular pathologies. These data
underscore the need for more sensitive clinical measures and
biomarkers that can detect and differentiate the various neuro-
pathologies underlying the development of parkinsonian signs
in old age.
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Whole Exome Sequencing Identifies KCNQ2
Mutations in Ohtahara Syndrome

Hirotomo Saitsu, MD, PhD Mitsuhiro Kato, MD, PhD 2
Ayaka Koide, MD, PhD Tomohide Goto, MD PhD,?
Takako Fujita, MD,* Klyorrn Nishiyama, PhD,!

Yoshinori Tsurusaki, PhD," Hn‘oshl Doi, MD, PhD,}
Noriko Miyake, MD, PhD,' Kiyoshi Hayasaka MD, PhD,?
and Naomichi Matsumoto, MD, PhD*

Recently, Weckhuysen et al revealed that KCNQ2 mutations are
involved in a substantial proportion of patients with a neonatal
epileptic encephalopathy.! Some cases showed a suppression—
burst pattern on electroencephalogram (EEG), tonic seizures,
and profound intellectual disability, resembling Ohtahara syn-
drome (OS). By whole exome sequencing analysis of 12

TABLE: Intercorrelation of Postmortem Indices

0.07, 0.068

Macroinfarcts -

0.02, 0.628
0.39, 0.056

Nigral neuronal loss

M1cromfarcts
Arteriolosclerosis

AD pathology

298

0.13, <0.001 0.14, <0.001
0.26, <0.001 0.09, 0.017
0.15, <0.001 0.04,0315  —0.10, 0.075
— 0.03, 0.385 0.03, 0.491

— 0.07, 0.052

0.38, <0.001
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Summary of the Clinical Features of Subjects with KCNQ2 Mutations
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Letter/Replies

patients with OS, we found 3 missense mutations in
KCNQ2  (25%): ¢341C>T  (p.T114l), ¢.1010C>G
(p.A337G), and ¢.794C>T (p.A265V) in 3 patients. All 3
patients showed initial seizures early in the neonatal period
and a characteristic suppression~burst pattern on EEG, lead-
ing to diagnosis as OS (Table). Seizures were temporarily
well controlled in 2 patients. Consistent with Weckhuysen’s
report, in which 6 of 8 mutations arose de novo, the 3
mutations in our series are de novo changes. Thus, it is
likely that de novo KCNQ2 mutations are among the com-
mon causes of early onset epileptic encephalopathies, includ-
ing OS. KCNQ2 mutations have been shown to cause be-
nign familial neonatal seizures, which is distinct from 08.23
We unexpectedly found KCNQ2 mutations by whole exome
sequencing. Exome sequencing using familial trios (patients
and their parents) can identify de novo mutations.® Novel
associations between unexpected gene mutations and early
onset epileptic encephalopathies may be validated by such
new technologies.
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Brain Death in Children: Why Does It Have to Be
So Complicated?

Thomas Nakagawa, MD,} Stephen Ashwal, MD 2
Mudit Mathur, MD,? and Mohan Mysore, MD

The authors appreciate the editorial comments by Wij-
dicks and Smith! and would like to address concerns about
why the diagnosis of brain death in pediatric patients has to be
“so complicated.”

This revised clinical guideline focused specifically on
determining brain death and deliberately excluded issues related
to ethical concerns and organ donation. Failure to mention the
Child Neurology Society (CNS) as the third sponsoring society
of this guideline is a major oversight of the editorial,'! CNS
provided significant review by Practice Committee members
and the society’s Executive Board.? The quality of evidence pro-
vided in this guideline was equivalent to, if not more compre-
hensive than, the revised American Academy of Neurology
(AAN) guideline, which reported only class III or IV evidence
for 4 of 5 questions posed.®> We used the GRADE system to
develop a consensus guideline because no class I or II studies to
determine pediatric brain death exist.” Interestingly, the AAN is
currently revising guideline development for practicing neurolo-
gists to use a modification of the GRADE system.

A wide range of clinical entities can result in brain death in
newborns, children, and adolescents. The guideline, the checklist,
and Table 3 clearly state that all reversible conditions should be
excluded prior to the first brain death examination. However,
some uncertainty in the newborn period still exists leading to age-
based observation periods. These consensus based recommenda-
tions reflect extensive clinical experience across several pediatric dis-
ciplines. Additionally, provisions for pediatric trauma patients and
neonates were included. Virtually every committee member has
cared for acutely injured children who met examination criteria for
brain death within the initial 24 hours. Some recovered brain
function although most did not which is why 2 examinations over
defined time periods is recommended. The recommended time
periods are consensus based rather than arbitrary time periods.
Neurologic examination findings remaining unchanged and con-
sistent with brain death throughout the observation period was
one of the recommended criteria for determining brain death in
the 1987 guidelines. The committee retained this recommendation
in the current update. We agree that apparent neurologic improve-
ments reported in anecdotal cases are due to diagnostic errors
when critically examined; this is precisely the reason why a change
in findings between examinations implies the neurological process
is potendally reversible, precluding the diagnosis of brain death.

The revised guideline repeatedly states that brain death is
a clinical diagnosis, and factors influencing the neurologic
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examination must be corrected before initiating brain death
evaluation and apnea testing. Ancillary studies do not trump
the neurological examination, and we clearly state that ancillary
studies should not be viewed as a substitute for the neurologic
examination. However, situations exist where ancillary studies
are helpful to determine death. The revised guideline and
checklist have simplified and clarified many previous sources of
confusion. Additionally, the checklist will help standardize
determination and documentation of brain death in children.*

Prolonging declaration of death does not appear to be a
major concern in children—perhaps differing from the experi-
ence in adults. Families appreciate the added certainty conferred
by the second examination. Patients in children’s hospitals rely
on assessments by pediatric specialists who understand the
unique needs of children and their families. The approach to
caring for children is very different and likely more family cen-
tered. These issues are further addressed in the full guideline
and we encourage readers to review the entire document pub-
lished in Critical Care Medicine and Pediatrics. >

Declaring brain death in children is complicated and
should be undertaken by physicians who are adequately trained
in the complexities involved in this important determination.
We agree more research is needed to address some of the other
issues raised in the editorial, and we again thank Drs Wijdicks
and Smith for their opinion.
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SUMMARY

Purpose: Ohtahara syndrome (OS) is one of the most
severe and earliest forms of epilepsy. STXBPI and ARX
mutations have been reported in patients with OS.
In this study, we aimed to identify new genes involved
in OS by copy number analysis and whole exome
sequencing.

Methods: Copy number analysis and whole exome
sequencing were performed in 34 and 12 patients with
OS, respectively. Fluorescence in situ hybridization, quan-
titative polymerase chain reaction (PCR), and break-
point-specific and reverse-transcriptase PCR analyses
were performed to characterize a deletion. Immunoblot-
ting using lymphoblastoid cells was done to examine
expression of CASK protein.

Key Findings: Genomic microarray analysis revealed a
111-kb deletion involving exon 2 of CASK at Xpll.4in a
male patient. The deletion was inherited from his mother,
who was somatic mosaic for the deletion. Sequencing of
the mutant transcript expressed in lymphoblastoid cell

lines derived from the patient confirmed the deletion of
exon 2 in the mutant transcript with a premature stop
codon. Whole exome sequencing identified another male
patient who was harboring a ¢.|A>G mutation in CASK,
which occurred de novo. Both patients showed severe cer-
ebellar hypoplasia along with other congenital anomalies
such as micrognathia, a high arched palate, and finger
anomalies. No CASK protein was detected by immuno-
blotting in lymphoblastoid cells derived from two
patients.

Significance: The detected mutations are highly likely to
cause the loss of function of the CASK protein in male
individuals. CASK mutations have been reported in
patients with intellectual disability with microcephaly and
pontocerebellar hypoplasia or congenital nystagmus, and
those with FG syndrome. Our data expand the clinical
spectrum of CASK mutations to include OS with cerebel-
lar hypoplasia and congenital anomalies at the most
severe end.

KEY WORDS: CASK, Ohtahara syndrome, Male, Cerebel-
lar hypoplasia.

Ohtahara syndrome (OS), also known as early infantile
epileptic encephalopathy with suppression-burst, is one of
the most severe and earliest forms of epilepsy (Ohtahara
et al.,, 1976). It is characterized by early onset of seizures,
typically frequent epileptic spasms, seizure intractability,
characteristic suppression-burst patterns on electroencepha-
lography (EEG), and poor outcome with severe psychomo-
tor retardation (Djukic et al., 2006; Ohtahara & Yamatogi,
2006). Brain malformations such as cerebral dysgenesis,
hemimegalencephaly, Aicardi syndrome, and porencephaly
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are often associated with OS (Yamatogi & Ohtahara, 2002).
However, mutations of the ARX and STXBPI gene have
been reported in individuals with OS who showed no brain
malformations, indicating that mutated genes are involved
in OS (Kato et al., 2007, 2009, Fullston et al., 2010; Giord-
ano et al., 2010; Saitsu et al., 2008, 2010).

CASK (Genbank accession number NM_003688.3) at
Xpll.4 encodes a calcium/calmodulin-dependent serine
protein kinase of 921 amino acids belonging to the mem-
brane-associated guanylate kinase protein family (Hsueh,
2006). Accumulating evidence indicates that CASK is
essential for synapse formation at both presynaptic and post-
synaptic junctions. In addition, CASK enters the nucleus
and regulates expression of genes involved in cortical
development (Hsueh, 2006). Recently, heterozygous
loss-of-function mutations in CASK were found in four
female patients with X-linked intellectual disability (ID);
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microcephaly and pontocerebellar hypoplasia (MICPCH)
and a hemizygous synonymous ¢.915G>A mutation, which
caused skipping of exon 9 of CASK in about 20% of the
mutant transcripts, was found in a male patient with the
same disease and presentation (Najm et al., 2008). To date,
32 additional female cases have been reported, suggesting
that ID, MICPCH, growth retardation, axial hypotonia with
or without hypertonia of extremities, and optic nerve hypo-
plasia are caused by loss-of-function mutations of CASK in
female cases (Moog et al., 2011; Hayashi et al., 2012). On
the other hand, a missense mutation causing a partial skip-
ping of exon 2 of CASK was found in affected male individ-
vals in an Italian family with FG syndrome, which is
characterized by multiple congenital anomalies and ID
(Piluso et al., 2009). More recently, five missense mutations
and a splice mutation, causing amino acid changes or
in-frame deletions of the CASK protein, were found in male
patients and variably affected carrier female patients with
ID, often accompanied by congenital nystagmus (Tarpey
et al., 2009; Hackett et al., 2010). Therefore it has been
postulated that hypomorphic CASK alleles cause ID in male
individuals. Coilectively, mutations of CASK could cause a
wide spectrum of ID, ranging from nonsyndromic mild ID
to syndromic severe ID with structural brain abnormalities
in both male and female patients.

Herein, we report on two male patients with OS, cerebel-
lar hypoplasia, and multiple congenital anomalies. One
patient had a CASK deletion and the other had a mutation at
the translation initiation codon, both likely leading to a loss
of CASK function. Detailed clinical and molecular data are
presented.

METHODS

Patients

A total of 34 Japanese patients (20 male and 14 female)
with OS were analyzed for copy number aberrations.
Twelve of them were additionally analyzed by whole exome
sequencing. The diagnosis was made based on clinical fea-
tures and characteristic patterns on EEG. Mutations in
STXBP1 were not identified in these patients (including
Patients 1 and 2) by high-resolution melting analysis. Thir-
teen male patients, including Patient 1, and three female
Patients were negative for ARX mutation. The experimental
protocols were approved by the Yokohama City University
School of Medicine Institutional Review Boards for Ethical
Issues. Written informed consent was obtained from all
individuals and/or their families in compliance with the
relevant Japanese regulations.

Genomic microarray and cloning of deletion breakpoint

Genomic DNA obtained from peripheral blood leuko-
cytes was used. Copy number alterations were studied by
using Cytogenetics Whole-Genome 2.7M Array (Affyme-
trix, Santa Clara, CA, U.S.A.) for 30 patients and GeneChip
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Human Mapping 250K Nspl (Affymetrix) for four patients.
Copy number alterations were analyzed using the Chromo-
some Analysis Suite (ChAS; Affymetrix) with NA30.1
(hg18) annotations (for 2.7M Array) or using CNAG2.0 (for
250K) (Nannya et al., 2005). The junction fragment span-
ning the deletion was amplified by long polymerase chain
reaction (PCR), using several primer sets based on putative
breakpoints from the microarray data. The junction
fragment was amplified using following primers: forward,
5-ACCCAGCGTTTCACCAAGGTCTCT-3"; reverse, 5'-
GTGGCTTCAGAATTAGGCCCACAAA-3’ (product size =
1,136 bp). PCR products were electrophoresed in agarose
gels, stained with ethidium bromide, extracted from the gels
using a QIAquick Gel extraction kit (Qiagen, Tokyo,
Japan), and sequenced.

Quantitative real-time PCR

The deletion of CASK was analyzed using the patient’s and
parental genomic DNA by quantitative real-time PCR
(qPCR) on a Rotor-Gene Q thermal cycling system (Qiagen).
DNA extracted from two independent blood samples each
from the patient and mother were used for analysis. PCR was
performed in a volume of 15 ul containing 10 ng of genomic
DNA, 1x Rotor-Gene SYBR Green PCR Master Mix (Qia-
gen), and 1.0 um each primer. gPCR was carried out using
the two standard curve relative quantification method with
four standard samples including 30, 10, 3.33, and 1.11 ng
DNA, respectively. Three primer sets for exons 2, 3, and 4 of
CASK, and one reference primer set for an area on chromo-
some 9 were used. Relative copy number of test regions was
calculated in comparison with that of the reference region.
The experiments were independently repeated three times.
The data were averaged, and the standard deviation was cal-
culated. Primer information is available on request.

Fluorescent in situ hybridization (FISH)

RP11-977L20 covering the deletion of CASK was labeled
with SpectrumGreen -11-dUTP (Abbott, Tokyo, Japan) by
nick translation. Probe-hybridization mixtures (15 ul) were
denatured at 70°C for 5 min, applied to chromosomes, incu-
bated at 37°C for 20 h, and then washed and mounted with
antifade solution (Vector Laboratories, Burlingame, CA,
U.S.A.) containing 4,6-diamidino-2-phenylindole. Photo-
graphs were taken on an AxioCam MR Charge Coupled
Device camera fitted to an Axioplan2 fluorescence micro-
scope (Carl Zeiss, Tokyo, Japan). The mosaic ratio was
examined by two independent investigators, who each
counted 100 interphase nuclei.

RNA analysis

RNA analysis using lymphoblastoid cell lines was per-
formed as described previously (Saitsu et al.,, 2011).
Briefly, total RNA was extracted using an RNeasy Plus
Mini Kit (Qiagen); 2 ug of total RNA was subjected to
reverse transcription, and 1 ul of cDNA was used for PCR.
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Primer sequences are ex1-F (5-ATGTGTACGAGCTGT
GCGAGGTGAT-3") and ex4-R (5’-AGCGTCAGCTCGCT
TTACGATTTCA-3"). Two separately extracted RNA sam-
ples were used in each duplicated experiment. The DNA in
each PCR band was purified using a QIAquick Gel extrac-
tion kit (Qiagen) and sequenced.

Whole exome sequencing

DNAs were captured using the SureSelect™™ Human All
Exon 50 Mb Kit (Agilent Technologies, Santa Clara, CA,
U.S.A.) and sequenced with one lane per sample on an Illu-
mina GAIIx platform (Illumina, San Diego, CA, U.S.A.)
with 108-bp paired-end reads. Image analysis and base call-
ing were performed by sequence control software real-time
analysis and CASAVA software v1.7 (Illumina). A total of
94,106,348 paired-end reads were obtained for Patient 2 and
aligned to the human reference genome sequence (GRCh37/
hg19) using MAQ (Li et al., 2008) and NextGENe software
v2.00 with sequence condensation by consolidation (Soft-
Genetics, State College, PA, U.S.A.). Single nucleotide
variants (SNVs) were called using MAQ and NextGENe.
Small insertions and deletions were detected using Next-
GENe. Called SNVs were annotated with SeattleSeq Anno-
tation. The number of variants identified by exome
sequencing in Patient 2 is shown in Table S1.

Immunoblotting

Lymphoblastoid cells were washed twice in ice-cold
phosphate-buffered saline (PBS), and lysed in sodium dode-
cyl sulfate sample buffer. Samples were size-fractionated
by sodium dodecy! sulfate—polyacrylamide gel electrophor-
esis, transferred to the polyvinylidene fluoride membrane,
and analyzed with anti-CASK monoclonal antibody, which
is produced by a synthetic peptide corresponding to residues
surrounding Glu327 of human CASK protein (1:1,000 dilu-
tion, D24B12; Cell Signaling, Tokyo, Japan). Anti-Lamin B
polyclonal antibody (1:500 dilution, sc-6217; Santa Cruz
Biotechnology Inc., Santa Cruz, CA, U.S.A.) was used as a
control. Secondary antibody was peroxidase-conjugated
goat anti-rabbit IgG or bovine anti-goat IgG (Jackson
ImmunoResearch, West Grove, PA, US.A.). Blots were
detected using the Supersignal West dura (Pierce, Yoko-
hama, Japan). Chemiluminescence was visualized using a
FluorChem 8900 (Alpha Innotech, San Leandro, CA,
U.S.A.). Experiments were repeated twice using two sepa-
rately prepared samples.

RESULTS

Clinical information

Patient 1 is a 4-year-old boy born to nonconsanguineous
parents. The pregnancy was uneventful, and he was born at
term (gestational age 41 weeks and 2 days) with induced
labor but no asphyxia. His body weight was 2,606 g (2.0
standard deviation [SD]), his height was 47.5 cm (~1.4 SD),

and his head circumference was 32.2 cm (—1.2 SD). An
apneic event with cyanosis, which was not improved by
positioning or oxygen inhalation, was evident 2 days after
birth. Brain magnetic resonance imaging (MRI) demon-
strated prominent cerebellar hypoplasia (Fig. 1A). EEG
showed multifocal epileptic discharges with a short period
(1 s) of flat basic thythm (Fig. 1C, left). Phenobarbital was
administered at 21 days and was effective for the apneic
event. At the age of 2 months, he developed daily clustering
of tonic seizures with suppression-burst pattern on both
awake and asleep EEG (Fig. 1C, right)and poor feeding.
EEG at 5 months demonstrated hypsarrhythmia, which is
characteristically seen in West syndrome. He exhibited long
slender fingers, micropenis, micrognathia, and a short neck
with obstructive respiration, and then required tracheostomy
with laryngotracheal separation and gastrostomy. His head
circumference was 47.1 cm (—2.7 SD) at 1 years and
4 months. On examination at 4 years, he was bedridden and
unable to track objects. Tonic seizures lasting 10-30 s sev-
eral times a day and frequent myoclonic seizures were seen
regardless of treatment with phenobarbital, pyridoxal phos-
phate, zonisamide, clobazam, and lamotrigine. EEG during
sleep at 3 years of age demonstrated multifocal sharp and
slow-wave complexes and diffuse low-voltage fast-wave
bursts or a desynchronization pattern.

Patient 2 is a 4-year-old boy born to nonconsanguineous
parents. He was born at 39 weeks of gestation without
asphyxia after uneventful pregnancy. His body weight was
2,000 g (—3.3 SD), his height was 43.0 cm (-2.8 SD), and
his head circumference was 29.5 cm (—2.7 SD). He was
poorly fed with milk and referred to us at 27 days after birth.
Multiple anomalies were recognized such as micrognathia,
high arched palate, shortened upper arms, bilateral overlap-
ping fingers and clinodactyly, and persistent hypertrophic
primary vitreous. He underwent ophthalmic surgery at
33 days after birth. Brain MRI demonstrated prominent cer-
ebellar hypoplasia (Fig. 1B). At3 months of age, he showed
frequent generalized tonic seizures, and EEG showed a sup-
pression-burst pattern in both awake and asleep states
(Fig. 1D). He showed normal auditory brain responses.
Laboratory data, including lactate, pyruvate, and very long
fatty acids, were all normal. Phenobarbital was initiated and
only partially effective for his seizures. Topiramate, cloba-
zam, and sodium bromide were added, and seizure frequen-
cies were decreased from daily to weekly. His development
was severely delayed with no head control or eye pursuit.
His deep tendon reflexes are exaggerated, with positive
bilateral Babinski signs. He shows muscle hypertonus with
rigidity of both upper and lower limbs.

Copy number analysis

Through screening for copy number alterations by geno-
mic microarray analysis, we identified an approximately
110-kb microdeletion involving exon 2 of CASK at Xpl1.4
in Patient 1 (Fig. 2A). Breakpoint-specific PCR analysis of
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Figure 1.

Brain MRI findings in the patients.
(A) T|-weighted midline sagittal
image of Patient | atage 2| days.
(B) T,-weighted midline sagittal

image of Patient 2 at age 3 months.
Both patients showed prominent
cerebellar hypoplasia (arrows).
(C) EEG of Patient | showed
multifocal sharp wave or irregular
sharp-and-slow wave complex but
no diffuse epileptic discharges at
age 22 days (left) and diffuse high-
amplitude slow-wave burst mixed
with irregular spike or sharp wave

2 months, asleep

interrupted by low-amplitude
activity (suppression-burst) atage
2 montbhs (right). (D) EEG of

o 100V

fzec

5

Patient 2 at age 3 months.
High-voltage bursts alternate with
almost flat suppression phases atan
approximately regular rate in both
awake and asleep states.

Epilepsia © ILAE

3 months, awake

3 months, asleep

. 0
Isec

the family showed that the deletion was inherited from his
mother (Fig. 2B). The sequence of the junctional fragment
confirmed a 111,172-bp deletion (NG_016754.1: g.17883_
129055del) (Fig. 2C). Sequencing also identified S5-bp
duplicated sequences as well as a 2-bp insertion at the
deletion junction. We were surprised that the healthy mother
possessed this deletion, because the deletion is predicted to
lead to a frameshift with presumably premature termination
of the translation. The deletion was further examined by
gPCR and FISH analyses. Whereas the relative copy
numbers of exons 3 and 4 (not deleted) were nearly 1.0 in
the two maternal DNA samples, as expected, those for
deleted exon 2 in the two samples were 0.67 and 0.81
(Fig. 2D). Because the relative copy number is expected to
be 0.5 if one of two copies is deleted (as the healthy father
showed), this result suggested that the mother may be

Epilepsia, 53(8):1441-1449, 2012
doi: 10.1111/1.1528-1167.2012.03548.x

34

somatic mosaic for the deletion. In fact, FISH analysis
revealed that only 40 of 200 interphase nuclei showed one
clear signal and another weaker signal, consistent with par-
tial deletion within the bacterial artificial chromosome
probe (Fig. 2E). Based on these findings, we concluded that
the mother is somatic mosaic for the deletion, and that the
percentage of mosaicism is approximately 20%. To explore
the effect of the deletion on the transcription of CASK,
reverse transcriptase PCR designed to amplify exons 1-4
was performed using total RNA extracted from lymphoblas-
toid cell lines (LCLs) derived from the patient and his
mother (Fig. 2F). A single band (299-bp) corresponding to
the wild-type CASK allele was amplified using a comple-
mentary DNA (cDNA) template from a control LCL
(Fig. 2F). By contrast, only a smaller band, in which exon 2
had been deleted, was detected from the patient’s cDNA



Epilepsy in Male Patients with CAS

A +1 4?00&17 1438k +14400kb 44500k 414600k 414700k 44 4?90&1‘:

GPR34 1 R GPR8Z
RP11-977L20

B c chriX: 41,543,176
Proximal ;:

Dreletion

ChX: 41,654,348

#Patl-Ist  ®Mother-Ist & Control
"1 mParl-2nd & Mother-2nd = Father

F - . "
(el [ B2 (60 [ 6d | et
et p = Deletion
186-bp
Patient Mathar

Conwrol RT(») RT() RT{(*) RI()

Exon | Exon 3

Figure 2.

A 111-kb deletion involving exon 2 of CASK. (A) The 2.7M array profile clearly shows a deletion involving exon 2 of CASK at Xp| | 4.
The x- and y-axes show the genomic location from the p telomere of chromosome X (UCSC coordinates, May, 2006) and log, signal
ratio values, respectively. Four RefSeq genes including CASK and RP11-9771.20 clone used for FISH are shown. (B) Breakpoint-specific
PCR analysis of the family. Primers flanking the deletion were able to amplify a 1,136-bp product from both the Patient | and his
mother. Pt, patient; Mo, mother; Fa, Father; Neg, negative control (no template DNA). (C) Deletion junction sequence. Top, middle,
and bottom strands show proximal, deleted and distal sequences, respectively. The two nucleotides inserted are presented in lower
case. A 5-bp sequence that appears twice at the breakpoint region is colored red or underlined. (D) gPCR analysis of the family, and a
female control. Two DNA samples extracted from two independent blood samples were used for analysis of the patient and his
mother. Relative copy numbers of deleted exon 2 were 0.67 and 0.81 (both above 0.5) in the mother, suggesting somatic mosaicism of
the deletion. (E) FISH images of RPI1-977L20, covering the deletion, on the mother’s chromosomes. One-hundred sixty nuclei
showed two clear signals (left), and 40 nuclei showed one clear signal and a weaker signal (right, white arrow) consistent with partial
deletion within the probe. (F) Schematic representation of the transcript from exons |—4 of CASK. Exons and primers are depicted as
boxes and arrows, respectively (top). A single wild-type amplicon was detected in a control and the mother. A smaller product was
amplified only from the patient’s cDNA. RT (+): with reverse transcriptase, RT (—): without reverse transcriptase as a negative con-
trol. Sequence of a smaller amplicon clearly demonstrated the exon 2 deletion (bottom).
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(Fig. 2F). The smaller mutant band was not detected from
the mother’s cDNA (Fig. 2F). Human androgen receptor
assay showed that X-inactivation was random (70:30) in the
mother (data not shown). However, because the percentage
of mosaicism was low (20%), it remains possible that the
deletion allele may undergo X-inactivation in cells possess-
ing it, leading to diminished expression of the deletion allele
in LCL.

Whole exome sequencing

To find potential pathologic mutations, whole exome
sequencing of 12 patients was performed. We focused on
mutations in CASK, and identified a hemizygous ¢.1A>G
mutation of the first ATG codon in Patient 2 (Fig. 3A,B).
This mutation is anticipated to result in alternative ATG
codon usage. By using the next downstream in-frame ATG
codon positioned at ¢.202_204 (Fig. 3C), a truncated pro-
tein without the first 67 amino acids containing calmodulin-
dependent kinase domain could be produced, although this
ATG codon (CATATGC) does not conform to the Kozak

consensus. The parental DNA did not have the mutation,
suggesting that the mutation occurred de novo (Fig. 3B). No
CASK mutations were found in any of the other patients.

Immunoblotting

To evaluate mutational effect for CASK expression in
two patients, immunoblotting was performed using total
lysate of LCL. A strong signal at 104 kDa was detected in a
control and the mother of Patient 1, showing strong expres-
sion of wild-type CASK protein in LCLs (Fig. 4, top). How-
ever, both Patients 1 and 2 did not show any detectable
signal (Fig. 4, top), whereas the Lamin B showed compara-
ble expression in all samples loaded (Fig. 4, bottom). Thus
these data suggest that expression of CASK protein was
severely decreased in two patients.

DiscusSsION

We describe two male patients possessing an intragenic
CASK deletion (only exon 2) or a hemizygous c.1A>G
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Figure 3.
¢.| A>G mutation identified by exome sequencing. (A) From top to bottom, genomic sequence (plus strand), coding amino acids, and
sequence reads covering the site of the pathogenic mutation. In genomic sequence and amino acids, upper and lower indicate refer-
ence and mutant alleles, respectively. There are six reads showing a hemizygous T>C transition at position 41,782,240 of chromo-
some X. (B) Validation of the c¢.l A>G mutation and inheritance analysis by Sanger sequencing. The mutation position is indicated by
the arrow. (C) Possible open reading frames within the coding region of the CASK transcript (NM_003688.3). Open reading frames
longer than 100 bp are shown in blue squares. The second in-frame ATG codon is positioned at ¢.202_204 (arrow). Any proteins
longer than the protein utilizing the second in-frame ATG codon are not predicted.
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CASK

Lamin B

Figure 4.

Expression of CASK protein in LCL. Immunoblot analysis by
using a monoclonal CASK antibody (top). Expression of CASK
protein was not detected in LCL derived from two patients,
whereas LCL of a control and Patient I’s mother showed
strong CASK expression. The observed differences in expres-
sion were not due to difference of loading conditions, because
the level of Lamin B protein was similar in all cases (bottom).
Epilepsia © ILAE

mutation. In Patient 1, the deletion is likely to be an
almost nuil mutation as the mutant CASK transcript with
exon 2 deletion has a frameshift with premature termina-
tion. Deletions in CASK have been reported in 16 female
patients, and a skewed X-inactivation pattern was
observed in two of them (the others had random inactiva-
tion pattern or not determined) (Froyen et al., 2007;
Hayashi et al., 2008; Najm et al.,, 2008; Moog et al,,
2011; Hayashi et al., 2012). Of interest, partial skipping
of the exon 2 of CASK (approximately 3—6% of the un-
skipped transcripts) has been reported in male patients
with FG syndrome showing ID, relative macrocephaly,
hypotonia, severe constipation, and behavioral disturbance
(Piluso et al., 2003, 2009). By contrast, our Patient 1 with
complete deletion of exon 2 showed a more severe pheno-
type, suggesting that he showed one of the most severe
phenotypes caused by CASK abnormalities. In Patient 2,
the mutation of the first ATG codon could produce a trun-
cated protein without the amino terminal 67 amino acids.
However, this alternative in-frame ATG codon does not
conform to the Kozak consensus, suggesting that its trans-
lation would be significantly reduced. In fact, CASK
protein was not detected in the LCL of two patients,
suggesting that expression of CASK protein should be
extremely low. Because only partial skipping of exon 9
(about 20% of the mutant transcripts) (Najm et al., 2008)
or of exon 2 (3—6% of the unskipped transcripts) (Piluso
et al., 2009) is sufficient to cause ID and other features in
male cases, it is likely that the maintenance of expression
level of functional CASK protein is essential.

Two male patients with CASK abnormalities showed
typical OS features, revealing an association between OS
and CASK abnormalities in male patients, which has to date
never been shown. Microcephaly and prominent cerebellar
hypoplasia were also recognized, consistent with previous

reports (Najm et al., 2008; Moog et al., 2011; Hayashi
et al., 2012). Of interest, our patients also showed reduced
body size and multiple congenital anomalies such as high
arched palate, micrognathia, finger anomalies, and persis-
tent hypertrophic primary vitreous. This suggests that CASK
may be involved in overall body growth and development of
these organs in humans. Supporting this idea, growth retar-
dation and small jaw have been reported in patients with
CASK abnormalities (Najm et al., 2008; Hackett et al.,
2010; Moog et al., 2011). In addition, CASK-deficient mice
showed micrognathia and cleft palate with male lethality
(Laverty & Wilson, 1998), and hypomorphic CASK mutant
mice are significantly smaller than littermate control mice
(Atasoy et al., 2007). Therefore, it is likely that loss-of-
fonction mutations in CASK cause reduced body size and
multiple congenital anomalies, as well as OS and cerebellar
hypoplasia.

The same deletion was found in both the mother and the
affected son, indicating a germline mosaicism in the mother
associated with recurrence risks. This information is useful
for genetic counseling in the family. The maternal somatic
mosaicism was confirmed by different methods including
FISH, gPCR, and breakpoint-specific PCR analyses. We
would like to emphasize the importance of breakpoint-
specific PCR analysis, in which a specific band undoubtedly
indicates the presence of the deletion allele. Because PCR is
a powerful tool for amplifying target sequences, we could
easily detect the somatic mosaic, even though it existed in
approximately 20% of cells. In addition, it has been reported
that PCR analyses of the deletion junction can detect
extremely low-level mosaicism not detected by array
comparative genomic hybridization (Zhang et al., 2009).
The increasing density of available oligonucleotide arrays
allows us to design long (or even regular) PCR primers for
junctional cloning. Once junctional cloning is successful
(though it is sometimes difficult), it is highly useful for
examining parental states.

It has been determined that mutations in three genes
(STXBP1, ARX, and CASK) cause OS. Screening for
STXBP1 mutations should be considered in OS patients with
no brain anomalies in both male and female patients.
Screening for ARX mutations would be reasonable in male
patients with OS, and the presence of micropenis may
encourage its screening (Kato et al., 2007). Based on this
study, CASK mutations should be considered in patients
with OS and cerebellar hypoplasia.

In conclusion, we report for the first time CASK abnor-
malities in male individuals with OS. Maternal somatic
mosaicism of a CASK deletion is also described, suggesting
that somatic and germline mosaicism of a microdeletion
should be carefully considered in the examination of paren-
tal samples. Our data expand the clinical spectrum of CASK
mutations to include OS with cerebellar hypoplasia and
congenital anomalies at the most severe end of clinical
presentation.
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Mutations affecting components
of the SWI/SNF complex cause
Coffin-Siris syndrome

Yoshinori Tsurusaki!, Nobuhiko OkamotoZ2, Hirofumi Ohashi?,
Tomoki Kosho, Yoko Imai®, Yumiko Hibi-Ko®, Tadashi Kaname®,
Kenji NaritomiS, Hiroshi Kawame”-, Keiko Wakui?,

Yoshimitsu Fukushima®, Tomomi Homma®, Mitsuhiro Kato?®,
Yoko Hirakill, Takanori Yamagata!2, Shoji Yano!3, Seiji Mizuno!4,
Satoru Sakazume'’, Takuma Ishii!*!, Toshiro Nagail®,

Masaaki Shiinal?, Kazuhiro Ogatal?, Tohru Ohtal$,

Norio Niikawa!8, Satoko Miyatake!, Ippei Okadal,
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By exome sequencing, we found de novo SMARCB1 mutations
in two of five individuals with typical Coffin-Siris syndrome
(CSS), a rare autosomal dominant anomaly syndrome.

As SMARCBT encodes a subunit of the SWltch/Sucrose
NonFermenting (SWI/SNF) complex, we screened 15 other
genes encoding subunits of this complex in 23 individuals
with CSS. Twenty affected individuals (87 %) each had a
germline mutation in one of six SWI/SNF subunit genes,
including SMARCB1, SMARCA4, SMARCA2, SMARCET,
ARID1A and ARID1B.

Chromatin remodeling factors regulate the gene accessibility and
expression by dynamic alteration of chromatin structure. SWI/SNF
complexes have important roles in lineage specification, maintenance
of stem cell pluripotency and tumorigenesis'~>. These complexes are
composed of evolutionarily conserved core subunits and variant sub-
units. Brahma-associated factor (BAF) and Polybromo BAF (PBAF)
complexes constitute two major subclasses’->. It has been suggested
that the BAF complex is similar to the yeast SWI/SNF complex and
that the PBAF complex is more like the chromatin remodelling
complex (RSC) in yeast, which is required for cell cycle progression
through mitosis®. However, several subunits that are common

to both BAF and PBAF complexes are predicted to be related to the
regulation of lineage- and tissue-specific gene expression?.

Coffin-Siris syndrome (MIM 135900) is a rare congenital anomaly
syndrome characterized by growth deficiency, intellectual disability,
microcephaly, coarse facial features and hypoplastic nail of the fifth
finger and/or toe (Fig. 1 and Supplementary Table 1)”. The majority
of affected individuals represent sporadic cases, which is compatible
with an autosomal dominant inheritance mechanism. The genetic
cause for this syndrome has not been elucidated.

To identify the genetic basis of CSS, we performed whole-exome
sequencing of five typical affected individuals (Supplementary
Methods). Taking into account our model that assumes that an abnor-
mality in a causal gene would be shared in two or more subjects,
51 variants were identified as candidates (Supplementary Table 2).
All the variants were also examined by Sanger sequencing of PCR prod-
ucts amplified using genomic DNA from the five affected individuals
and their parents. Nine variants were found to be false positives,
40 were inherited from either the father or mother, and 2 de novo hetero-
zygous mutations of SMARCBI were found in 2 affected individuals
(c.1130G>A (p-Arg377His) and ¢.1091_1093del AGA (p.Lys364del))
(Table 1, Supplementary Fig. 1 and Supplementary Methods).
Two de novo coding-sequence mutations occurring within a spe-
cific gene is an extremely unlikely event?, supporting the idea that
SMARCBI is a causative gene in CSS. Next, we screened SMARCBI
in 23 individuals with CSS by high-resolution melting analysis® and
identified the mutation encoding the p.Lys364del alteration in two
additional individuals, including one of Arab descent (subject 22)
(Table 1 and Supplementary Fig. 1). As the mutation detection rate
was relatively low (4 of 23, only 17.4%), we screened 15 additional
genes encoding other SWI/SNF subunits (Supplementary Table 3).
Unexpectedly, four other subunits, SMARCA4 (also known as BRGI),
SMARCEI1, ARIDIA and ARIDIB were also found to be mutated
(Table 1 and Supplementary Figs. 2-5). In subject 10, a, ¢.2144C>T
mutation in ARIDI1B (encoding p.Pro715Leu) was found in addition
to the ¢.5632delG mutation in ARID1B. RT-PCR products that were
amplified from total RNA from this subject’s lymphoblastoid cells
were cloned into the pCR4-TOPO vector. The two mutations were
present on different alleles, according to sequencing of clones con-
taining each allele (data not shown). As the ¢.5632delG mutation is
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