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Figure 2. Expression of mutant myotilin in cultured cells. Immunofluorescence staining of transfected Myc-wiMYOT (A), Mve-mMYOT S60C (BJ. and
Myc-mMYOT R405K (€) in C2C12 murine myoblasts. Merged images of Myc-tagged mvotilin-expressing cells (green) costained for actin stress fibers (red). and
nuclear staining with DAPT (blue). C2C12 mvoblasts expressing mMYOT S60C (B) or R405K (C) did not exhibit protein aggregates, and the mutant myotilin
colocalized with wactin stress fibers similar to wiMYOT (A). Scale bar = 20 pm.

bers contained more granular aggregates that were
larger in size. At 7 days after electroporation, Myc-posi-
tive aggregates of wiMYOT, mMYOT S60C, and mMYOT
R405K were observed in 14 = 5%, 44 = 7%, and 21 *
4% of muscle fibers, respectively (Figure 3B). At 14 days
after electroporation, the number of the fibers with aggre-
gates increased to 22 = 4% in wiMYOT, 50 * 2% in
mMYOT SB0C, and 37 % 3% in mMYOT R405K (Figure
3C). The numnber and size of Myc-positive aggregates
in 30 randomly selected Myc-positive muscle fibers
were much higher in mMYOT S60C and slightly higher
in MMYOT R405K at 14 days after electroporation than
at 7 days (see Supplemental Figure S3 at http://ajp.
amjpathol.org). These data indicate that the expressed
mutant myotilins, and mMYQOT S60C in particular are
prone to aggregate in skeletal muscles. The amounts
of expressed Myc-tagged myotilin proteins were ap-
proximately equal, as measured by immunoblotting
(Figure 3D).

Myofibril Disorganization and Z-Disk Streaming
in Muscles Expressing Mutant Myotilins

To investigate the ultrastructural characteristics of mutant
myotilin-electroporated muscles, we performed electron
microscopy at 7 and 14 days after electroporation. In
Toluicine Blue-stained longitudinal semithin sections,
partial disorganization of the Z-disk was observed in both
mMYOT SB0C-expressing and mMYOT R405K-express-
ing TA muscles, but not in control or wtMYOT electropo-
rated muscles (data not shown). Electron microscopy
also revealed myofibril disorganization with disrupted Z-
disk, such as Z-disk streaming and broaderning, in
mMYOT-expressing muscles (Figure 4, A and D). Vari-
able-sized (1 to 8 wm in diameter) electron-dense mate-
rial, with electron densities similar to that of the Z-disk,
were also seen in mMMYOT-expressing mouse muscles
(Figure 4. B and E). The inclusions were occasionally
associated with autophagic vacuoles (Figure 4. C and F).
These ultrastructural findings were commonly observed
in both mMYOT S60C- and mMYOT R405K-expressing
mouse muscles.

Mutant Myotilin Aggregates Colocalize with
Polyubiquitin and Other Z-Disk-Associated
Proteins

To compare the protein accumulations in human and
mouse muscles, we performed immunohistochemical
analysis. At 14 days after electroporation, some cyto-
plasmic inclusions were observed in mGT-stained sec-
tions of MMYQOT-expressing muscles (Figure 5, A and B).
Immunostaining of serial sections revealed that the inclu-
sions were immunopositive for the Myc tag (Figure 5, A
and B). The aggregates of Myc-mMYOT (S60C and
R405K) strongly colocalized with polyubiquitin and oB-
crystallin. Accumulations of other Z-disk~associated pro-
teins were also observed, including BAGS, actin, desmin,
and filamin C (Figure 5). These findings are similar to the
observations made in the patients’ muscles (Figure 1, F-I;
see also Supplemental Figure S2 at http.//ajp.
amjpathol.org). In the electroporated muscles, Myc-
witMYOT aggregates also colocalized with Z-disk-as-
sociated proteins, including aB-crystallin, BAG3, actin,
desmin, and filamin C (data not shown), whereas only
few wtMYOT aggregates were immunopositive for
polyubiquitin (Figure 6A).

Mutant Myotilin Proteins Display Marked
Detergent Insolubility with Polyubiquitinated
Proteins

In the muscle specimens of the two myotilinopathy pa-
tients, myotilin aggregates exhibited positive staining for
polyubiquitin (Figure 1; see also Supplemental Figure S3
at http://ajp.amjpathol.org). Similarly, in electroporated
mouse muscles, mMMYOT aggregates were positive for
polyubiquitin, and golyubiquitin-positive aggregates
were more prominently observed in mMYOT S60C-ex-
pressing muscles at 14 days after electroporation. On
the other hand, only few aggregates of Myc-wiMYOT
were positive for polyubiquitin (Figure 6A). This result
suggests that mutant myoti'in was ubiquitinated or that
the expressed mutant myotilin induced the deposition
of polyubiquitinated proteins in the muscles of patients
and electroporated mice. To characterize these aggre-
gates, we performed a solubility assay. The muscle
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Figure 3. Enhanced agaregation of mutnt myotilins in mouse skeletal muscle. A: Immunohistochemical staining of Myc-wtMYOT (WT-electroporated or
Myc-mMYOT (SO0C or R403K)-¢lectroporated mouse TA muscles. At 7 and 1+ davs after electroporation. SOOC and R405K formed many My c-positive granular
aggregites farrows) in mvofibers. compared with WT. More prominent protein aggregates were observed in the SouC-electroporated muscle. At b+ days after
clectroparation. SOUC-expressing myofibers exhibited larger aggregates. Scale bars: 20 wm. B and C: The percentage of myolibers with Myc-positive aggregates
in the electroporated fibers of the W, S60C, and R405K expression groups (12 = S mice per group). *77 < (.05 2 < 0.001. D: Immunoblotting analysis of
transfected Myc-tagged myotilin in 15 serial sections taken after the sections used for immunohistochemistry, GAPDH was used as o loading control.

specimen with the S60C mutation (patient 1) exhibited

increased amounts of myatilin in the detergent-insolu-
ble fraction, compared with the control specimens
(Figure 6, B and D). Increasing amounts of polyubig-
uitinated proteins and aB-crystallin were also detected
in the insoluble fraction. On the other hand, the solu-
bilities of myotilin and other proteins, including polyu-
biquitin, in the muscle specimen with the R405K muta-
tion (patient 2) were similar to those of controls (Figure
6B). Consistently, in the mouse muscles isolated at 14
days after electroporation, markedly increasing
amounts of insoluble mMYQOT S60C were observed
(Figure 6C). In the PBS-injected control muscle, insol-
ubility of endogenous myotilin was 31 = 12%, whereas
in the wtMYOT-, mMYOT S860C-, and mMYOT R405K-

injected muscles, the Myc-iagged myotilin amounts in the
insciuble fraction were 34 = 10%, 69 = 5%, and 48 *
9%, respectively (Figure 6E). Insolubility of Myc-wt-
MYOT was similar to that of endogenous myotilin, but
mMYOT, and S60C in particular, exhibited higher in-
solubility (Figure 6E).

These results are consistent with the number of intra-
cellular aggregates observed after electroporation. The
amount of polyubiquitinated proteins was markedly in-
creased in the insoluble fraction of mMYOT S60C-elec-
troporated muscles, similar to tha. of the muscle with the
S60C mutation (patient 1) (Figure 6, B and C). A slight
increase in the amount of detergent-insoluble potyubig-
uitinated proteins was observed in mMYOT R405K-elec-
troporated muscles (Figure 6C). The amounts of other
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Figure 4. Electron microscopy of muscles expressing mutant myotilin. mMYOT $60C (A=C); mMYOT R40SK (D-=F). A and D: mMYOT-transfected muscle fibers
exhibited myofibril disorganization with disrupted Z-disk; note broadening of Z-disks (A, brackets) and Z-disk streaming (D, asterisk). B and E: Variuble-sized
(1to 8 wm in diameter) electron-dense inclusions (arrowheads) were seen in mMYOT-expressing muscles. C and F: Inclusions were occasionallv associated with
autophagic vacuoles (AV). B and C: Seven duys after electroporation. A and D—F: Fourteen days after electroporation. Scale bars. 3.0 wm (B and E): 2.0 um (C);

1.7 pm (A and D): 1.4 wm (F).

Z-disk-associated proteins, including aB-crystailin, in the
insoluble fraction did not exhibit an increase, even in
mMYOT S60C-electroporated muscles (Figure 6C; see
also Supplemental Figure S4, A and B, at http://ajp.
amjpathol.org). We also performed an immunoprecipita-
tion assay to examine whether myotilin was polyubiquiti-
nated. Myc-tagged myotilin proteins were immunopre-
cipitated from the detergent-soluble fraction of the mouse
muscles isolated at 14 days after electroporation. Polyu-
biquitin immunoreactivity was not detected in the immu-
noprecipitated proteins (see Supplemental Figure S4C at
http://ajp.amjpathol.org), indicating that neither the wt-
MYOT nor the mMYQOT proteins in the soluble fraction
were polyubiquitinated.

Discussion

Patients with MFM, including myotilinopathy, exhibit vari-
able clinical features. Some patients exhibit progressive
weakness in proximal muscles, whereas others exhibit
distal dominant muscle involvement. Cardiomyopathy,
peripheral neuropathy. and respiratory insufficiency
may be observed.? The diagnosis of MFM is generi-
cally based on characteristic pathological findings in
biopsied muscles, namely, myofibrillar degradation
and protein aggregation.” Histochemically, the most re-
markable pathological changes were observed with mGT
staining (Figure 1). Abnormal protein aggregates were

observed, including amorphous, granular, or hyaline de-
posits of various sizes, shapes, and colors (dark blue,
blue red, or dark green). The presence of rimmed and
nonrimmed vacuoles was also a characteristic observa-
tion. Furthermore, NADH-TR staining revealed intermyo-
fibrillar network disorganization. Attenuation or absence
of NADH-TR activity in focal areas of myofibers is also
observed in MFM. 137

Here, we have presented findings for myotilinopathy
patients with similar clinical features but different patho-
logical changes. Fibers with cytoplasmic inclusions and
disorganized myofibrils were prominent in the patient with
S60C mutation, and these inclusions were strongly immu-
noreactive for myotilin (Figure 1).

Although transfected cultured cells did not show ag-
gregations, our in vivo expression studies in mice were
able to reproduce the pathological changes observed
in myotilinopathy patients. Mutant myotilin caused en-
hanced protein aggregation in TA muscles within 110 2
weeks (Figure 3). The dark blue or dark green inclusions
stained by mGT in mutant-expressing fibers (Figure 4) were
similar to those observed in the myotilinopathy patients.
Furthermore, mMYOT S60C-expressing myofibers ex-
hibited a greater number of aggregates, which is con-
sistent with the pathology of the patient with that mu-
tation (patient 1). Of note, the size of mMMYOT S60C
aggregates markedly increased over time, suggesting
that mutant myotilin may be resistant to protein degra-
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Figure 5. Mutant myotilin aggregates colocalize with polyubiquitin and other Z-disk—associated proteins in electroporated mouse muscle, mGT and immuno-
histochemical staining of mouse muscle expressing Myc-mMYOT S60C (A) or mMYOT R405K (B) at 14 days after electroporation. On mGT-stined sections of
MMYOT-expressing muscles, cytoplasmic inclusions (arrows) were seen. The inclusions were immunopositive for the Myce tag in serial sections. The Myc-positive

aggregates of S6
actin, desmin. and filamin C. Scale hars: 20 wm (A and B).

dation, as described previously for MFM-associated
mutant desmin. 3233

Focal disorganization of myotibrils, Z-disk streaming,
and accumulation of electron-dense material near the
Z-disk are characteristic electron microscopic findings in
the muscles of MFM patients.'”343% In the myotilinopathy
patient, Z-disk streamiig, numerous autophagic vacu-
oles' and cytoplasmic amorphous inclusions were ob-
served (see Supplemental Figure S2 at http://ajp.
amjpathol.org). In the present study, expression of
mMYOT by electroporation elicited myofibril disorganiza-
tion and accumulation of electron-dense material, which
are ultrastructural hallmarks of MFM (Figure 5). Au-

> and R403K strongly colocalized with polvubiquitin (poly-U and aB-crystallin (aBC). The aggregates were also immunopositive for BAG3,

tophagic vacuoles associated with inclusions were also
observed in electroporated muscles. Disorganization of
myofibrils starting from the Z-disk and material appearing
to originate from the Z-disk are commonly observed in
MFM patients,>*®% and these features were also ob-
served in the mMYOT-electroporated muscles. These
morphological findings imply that the presence of mutant
myotilin can induce characteristic pathological features
by affecting Z-disk structure.

Ectopic accumulations of multiple proteins, including
Z-disk-associated proteins, are typical pathological fea-
tures of MFM.3®37 This study and previous reports®3%®
showed that myotilin-positive protein aggregates colocal-

._.42..._
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Figure 6. Mutant myotilin displays marked detergent insolubility. along with polyubiquitinuted proteins, A: At 14 days after electroporation of Myc-
WIMYOT (WT) or Myc-mMYOT (S60C or R405K), Myc-mMYOT aggregates, particularly those of S60C, colocalized with polyubiquitin (polyl’h) tarrows).
The WT aggregates rarely costained with polvubiquitin, B-E Solubilities of myotilin, polvubiquitinated proteins, and other sarcomeric proteins in muscles
from myotilinopathy patients (B and D) and from electroporated mice (€ and E). GAPDH was used us a loading control. B: Immunoblotting of
detergent-soluble and detergent-insoluble fractions of muscles from control subjects (C1and C2) or myotilinopathy patients [P1 (patient 1) and P2 (patient
21 In the muscles from P1owith S60C. markedly increasing amounts of mvotilin. polyubiquitinated proteins, and aB-crystallin were detected in the insoluble
fraction, compared with muscles from control subjects. D: Quantification of mvotilin insolubilities reveualed highest insolubility in P1. C: Immunoblotting
of detergent-soluble and detergent-insoluble fractions of WT, S60C, or R40SK-expressing muscles at 14 days after electroporation. Increasing amounts of
insoluble Mve-tagged myartilin proteins and polyubiquitinated proteins were observed in mMY OT-clectroporated muscles, compared with WT. Particularly
in S60C-electroporated muscles, the amounts of insoluble proteins were notably increased. Er Quantification of the insolubilities of electroporated
Myc-tagged myotilin in the WT. S60C, and R405K expression groups (17 = 6 mice per group). Insolubility of endogenous myotilin was measured using
PBS-treated modse muscles. Compared with WT, insolubilities of electroporated Myc-tagged myotilin were significantly increased in S60C and R4035K.

<005 P < 0.0 P < 0,001, Scale bar = 20 um.

ize with ubiquitin and Z-disk—associated proteins (ie, aB-
crystallin, BAG3, actin, desmin, and filamin C) in the
muscles of myotilinopathy patients (Figure 1; see also
Supplemental Figure S2 at i iip./raju.anjpaiiivi.org). It has
been reported that the myotilin T571 transgenic mice de-
velop progressive myofibrillar changes, including Z-disk
streaming and accumulation of mutant myotilin with ubig-
uitin and Z-disk-associated proteins, similar to those ob-
served in myotilinopathy patients.?® Expression of
mMYOT elicited similar cytoplasmic aggregations in
mouse skeletal muscle, and within 2 weeks the aggre-
gates colocalized with polyubiquitin and other Z-disk—
associated proteins. Our results indicate that mutant
myotilin is able to nucleate aggregations of Z-disk-asso-
ciated proteins in skeletal muscle.

MFM is a proteinopathy (ie, a protein accumulation
disease). In these diseases, protein aggregates are op-
erationally defined by poor solubility in aqueous or deter-
gent solvents.®40 Such insoluble protein aggregations
are characteristic of many neurodegenerative dis-
eases.”’ In the present study, we discovered that the
mutant myotilin S60C protein, along with polyubiquiti-
nated proteins, exhibited marked detergent insolubility in
muscles from both the patient and electroporated mice.
Mutant myotilin R405K protein showed increased, but
lower, detergent insolubility in mice (Figure 6), which may
be consistent with the observation that the muscle from
the patient with the R405K mutation exhibited only mild

protein aggregation (Figure 1). The different detergent
insolubilities exhibited by the two MYOT mutations may
closely correlate with the amounts of protein aggregation.
Here, we confirmed the aggregation-prone property of
mutant myotilin, which participates in the pathogenesis of
myotilinopathy. Using an immunoprecipitation assay, we
also showed that electroporated mMYOT was not ubig-
uitinated in the detergent-soluble fraction (see Supple-
mental Figure S4 at http://ajp.amjpathol.org). A previous
study showed that transfected myotilin is degraded by
the proteasome system in cultured cells.“2 Our present
findings show that ubiquitinated mutant myotilin can form
insoluble aggregates. It is also possible that aggregation
of insoluble ubiquitinated proteins is induced by the ex-
pression of mutant myotilin.

Several causative genes have been identified for MFM;
however, in previous studies no mutations were found in
nearly half of the MFM patients.? To identify the unknown
causative genes, easy methods are required for deter-
mining the pathogenicity of novel mutations. Some mu-
tant proteins exhibit protein aggregation*® “° or biologi-
cal dysfunction, including protein-protein interaction in
vitro 2246-98 However, we could not detect any protein
aggregation in mMYOT-expressing cultured cells (Figure
2). The difficulty of in vitro investigation may be respon-
sible for the inability to identity Z-disk—-associated pro-
teins or mature Z-disk structures. Indeed, myotilin is ex-
pressed in later differentiated C2C12 myotubes with



sarcomere-like structures.*® This suggests that mutant
myotilin requires mature Z-disk and/or other sarcomeric
proteins to cause aggregations. In such cases, in vivo
examination is important for evaluating the pathogenicity
of mutations. Because in vivo electroporation can repro-
duce the pathological changes observed in MFM pa-
tients within a short time, it is a useful and powerful tool for
evaluating the pathogenicity of mutations in MFM.
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