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PATHOGENIC GLUT9 MUTATIONS CAUSING RENAL HYPOURICEMIA
TYPE 2 (RHUC2)
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o Renal hypouricemia (MIM 220150) is an inherited disorder characterized by low serum
uric acid levels and has severe complications such as exercise-induced acule renal failure and
wrolithiasis. We have previously reported that URATI1/SLC22A12 encodes a renal urate-anion
exchanger and that its mutations cause renal hypouricemia type 1 (RHUCI). With the large health-
examination database of the Japan Maritime Self-Defense Force, we found two missense mutations
(R198C and R380W) of GLUTY9/SLC2A9 in hypouricemia patients. R198C and R380W occur
in highly conserved amino acid motifs in the “sugar transport proteins signatures” that are observed
in GLUT family transporters. The corresponding mutations in GLUTI1 (R153C and R333W) are
known to cause GLUTI deficiency syndrome because arginine residues in this motif are reportedly
important as the determinants of the membrane topology of human GLUT1. Therefore, on the basis
of membrane topology, the same may be true of GLUT9. GLUTY mutants showed markedly reduced
urate transport in oocyte expression studies, which would be the result of the loss of positive charges
in those conserved amino acid motifs. Together with previous reports on GLUT9 localization, our
findings suggest that these GLUT9 mutations cause renal hypouricemia type 2 (RHUCZ2) by their
decreased wrate reabsorption on both sides of the renal proximal tubule cells. However, a previously
reported GLUT9 mutation, P412R, was unlikely to be pathogenic. These findings also enable us
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to propose a physiological model of the renal urate reabsorption via GLUT9 and URATI and can
lead to a promising therapeutic target for gout and related cardiovascular diseases.

Keywords Renalhypouricemia; GLUTY/SLC2A9; GLUT1/SLC2A1; gout/hyperuricemia;
urate reabsorption transporter

INTRODUCTION

Renal hypouricemia is a common inherited disorder that is character-
ized by low serum uric acid (urate) levels and impaired renal urate transport;
it is typically associated with severe complications such as exercise-induced
acute renal failure and nephrolithiasis.[!?) We have previously reported that
a causative gene for renal hypouricemia is URATI/SLC22A12. 3] However,
the existence of renal hypouricemic patients without URATI mutations!*5!
implies the presence of another urate transporter. Recent genome-wide as-
sociation studies have revealed that the most significant single-nucleotide
polymorphisms (SNPs) are associated with urate concentrations map within
GLUT9/SLC2A9.16-8] Therefore, we decided to search an actual human
health examination database to genetically identify and investigate human
hypouricemia patients with GLUT9 deficiency.

MATERIALS AND METHODS
Clinicogenetic Analysis of Hypouricemia with GLUT9 Mutations

We used a large human database in our approach, and finally succeeded
in identifying the GLUT9 gene as the novel causative gene for renal hy-
pouricemia. To collect a sufficient number of hypouricemia cases, we used
the health examination database for about 50,000 Japan Maritime Self-
Defense Force (JMSDF) personnel. We selected 21,260 personnel data sets
in which serum urate data were available. Among them, 200 persons showed
serum urate levels of <3.0 mg/dl (178 uM) (0.94%). 50 JMSDF persons who
gave written consent and an additional 20 outpatients with hypouricemia
(70 hypouricemic cases in sum) participated in this clinicogenetic study.
First, we excluded the URATI W258X mutation, the most frequent muta-
tion in Japanese hypouricemia patients. After 47 cases having the URATI
W258X mutation were excluded, the remaining 23 hypouricemic cases were
analyzed to find mutations in GLUT?Y.

Mutation Analysis and Functional Analysis of GLUT9

For the GLUT9 sequence determination, we used primers described by Li
etal. with slight modifications.[®! Some primer sequences were newly selected
according to the genomic structure of the human GLUTY. High molecular
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weight genomic DNA was extracted from peripheral whole blood cells! and
was amplified by PCR. The PCR products were sequenced in both directions
using a 3130x1 Genetic Analyzer (Applied Biosystems). Functional analysis of
GLUT9 mutants was performed using the Xenopus oocyte expression system,
as described elsewhere.!”!

RESULTS
GLUT9 Mutations in Patients with Renal Hypouricemia

The human GLUT?9 gene contains 14 exons (1 noncoding and 13 cod-
ing) and is located on chromosome 4p15.3-p16. The alternative splicing of
the GLUT9 gene results in two main transcripts: GLUT9 isoform 1 (long iso-
form, GLUT9L) and isoform 2 (short isoform, GLUT9S). Two heterozygous
missense mutations were identified in the patients with renal hypouricemia.
Both are missense mutations from the basic amino acid arginine to neutral
amino acids. GLUT9L mutations were R380W and R198C, and GLUT9S mu-
tations were R351W and R169C, which correspond to R380W and R198C in
GLUTIL.

Urate Transport Activity in Oocytes

High urate transport activities were observed in oocytes that express each
wild-type GLUT9 isoform. In contrast, urate transport activity in oocytes
was markedly reduced (4.6%-10.8%) both in GLUTIL mutants (R198C
and R380W) (Figure 1A) and in GLUT9S mutants (R169C and R351W)
(Figure 1B). The P412R mutation!!% is unlikely to be a pathogenic mutation
for renal hypouricemia because neither the P412R mutation in GLUT9L nor
the P383R mutation in GLUT9S, which corresponds to P412R in GLUT9L,
reduced their urate transport activities at all (Figure 1). The results from the
GLUT9L mutants (Figure 1A) are quite similar to those from the GLUT9S
mutants (Figure 1B), suggesting the reproducibility and reliability of the
results.

Amino Acid Conservation in GLUT Family Transporters

GLUT9 mutations (R198C and R380W) are observed at the well-known
conserved motif (D/E-x(2)-G-R-R/K) and another conserved motif (Y-x(2)-
Ex(6)-R-G) that is 100% conserved in all GLUT family transporters. These
motifs are a part of the consensus patterns 1/2 that are demonstrated in
the PROSITE database (http://au.expasy.org/prosite/) as “sugar transport
proteins signatures 1/2.” The mutation sites in GLUT9 would be key residues
in these consensus patterns.
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FIGURE 1 Urate transportactivity via wild-type and mutant GLUT9 expressed in oocytes. Urate transport
activity in oocytes was markedly reduced both (A) in GLUT9L mutants (R380W and R198C) and (B)
in GLUT9S mutants (R351W and R169C, which correspond to R380W and R198C in GLUT9L). These
figures also show that a P412R mutation in the GLUT9 gene had less effect on the transport function.

DISCUSSION
Physiological Importance of GLUT9 in Human Urate Transport

The urate metabolism in humans is quite different from that in mice due
to the lack of uricase.l'! Therefore, it is of great significance to identify the
nonfunctional mutations in human GLUT9 using the large human database.
In MDCK cells, GLUT9L and GLUT9S show basolateral and apical localiza-
tion, respectively.l'?] Since nonfunctional mutations of either GLUT9L or
GLUT9S dramatically reduced the urate transport activity in our in vitro
studies (Figure 1), renal hypouricemia caused by these mutations may be
ascribed to the decreased urate reabsorption on both sides of the renal
proximal tubules, where GLUT9 expresses.[!¥] Based on our findings, we
propose a physiological model in which GLUT9 mediates renal urate reab-
sorption. These findings are also supported by Dinour etal., who reported on
severe renal hypouricemia patients with GLUT9 homozygous mutations.!!*]

GLUT9 Mutations and Perturbation of Membrane Topology

Interestingly, these GLUT9 mutations (R198C and R380W) correspond
to the GLUTI pathogenic mutations (R153C and R333W), which cause
GLUT!1 deficiency syndrome.['3! Sato and Mueckler reported that the loss
of positive charges of GLUT1 result in the perturbation of the membrane
topology and aberrant “flipping” of the corresponding cytoplasmic loop
into the exogenous compartment.!'®! This showed that the positive charge
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FIGURE 2 Pathogenic GLUT9 mutations causing renal hypouricemia type 2 and possible mechanisms.
Both mutations are at equivalent positions within the cytoplasmic loops, which causes a loss of positive
charge and results in diminished urate transport function via GLUT9.

of arginine residues in this conserved motif plays a critical role in forming
cytoplasmic anchor points that are involved in the membrane topology of
human GLUT1. The marked reduction of the urate transport activity in mu-
tated GLUT9 may be ascribed to the loss of cytoplasmic anchor points and
the local perturbation of the membrane topology (Figure 2).

GLUT9: Promising Therapeutic Target for Gout/Hyperuricemia

Taken together, we have identified GLUT9 as a causative gene for renal
hypouricemia type 2 (RHUC2) and demonstrated that human GLUT9 phys-
iologically regulates serum urate levels in vivo. Since another urate reabsorp-
tion transporter, URATI, is known to be a therapeutic target of a uricosuric
agent benzbromarone, our results suggest that a urate reabsorption trans-
porter GLUT9 can also be a promising therapeutic target for hyperuricemia
and gout.
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ABSTRACT

Genome-wide association studies identified that SLCZA9 (GLUT9) gene polymorphisms were associated with
serum uric acid (SUA) levels. Among the Japanese, a C/T polymorphism in intron 8 (rs11722228) was reported
to be highly significant, though the function and strength of association were unknown. This study aimed to
confirm the association, estimating the means of SUA according to the genotype, as well as OR of the genotype.
Subjects were 5024 health checkup examinees (3413 males and 1611 females) aged 35 to 69 years with
creatinine <2.0 mg/dL. Since SLC22A12 258X allele and ABCG2 126X allele are known to influence SUA levels
strongly, the subjects with SLC22A12 258WW and ABCG2 126QQ (3082 males and 1453 females, in total 4535
subjects) were selected. The genotype frequency of SLC2A9 1511722228 was 2184 for CC, 1947 for CT, and 404
for TT, being in Hardy-Weinberg equilibrium (p = 0.312). Mean SUA was 6.10 mg/dL for CC, 6.25 mg/dL for CT,
and 6.45 mg/dL for TT among males (p = 1.5E-6), and 4.34 mg/dL, 4.59 mg/dL, and 4.87 mg/dL among females
(p=4.6E-11), respectively. Males with SUA less than 5.0 mg/dL were 14.7% for CC, 10.6% for CT, and 7.8% for
TT (p=2.3E-4), and females with SUA less than 4.0 mg/dL were 34.1%, 25.5%, and 15.4% (p=3.7E-6),
respectively. This study was the first report to estimate the impact of SLC2A9 rs11722228 on SUA levels. Since
the allele frequency of rs11722228 is similar among different ethnic groups, the impact remains to be

examined in other ethnic groups.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Serum uric acid (SUA) levels are partly regulated by genetic traits.
ATP-binding cassette subfamily G member 2 (ABCG2) gene in chromo-
some 4q22, coding a uric acid transporter, has a functional
polymorphism, Q126X (rs72552713), which was reported to reduce
transportation activity, resulting in hyperuricemia [1-3]. Uric acid
transporter 1 (URAT1) encoded by SLC22A12 in chromosome 11q13 is
a uric acid anion exchanger, which reabsorbs uric acid in renal tubules
[4,5]. SLC22A12 W258X polymorphism with the reduced function
causes renal hypouricemia [6-8]. Glucose transporter 9 (GLUT9)
encoded by SLC2A9 in chromosome 4p16-15.3 is also the molecule to

Abbreviations: ABCG2, ATP-binding cassette subfamily G member 2; bp, base pairs;
Cl, confidence interval; GLUT9, glucose transporter 9; GWAS, genome-wide association
study; OR, odds ratio; PCR-CTPP, polymerase chain reaction with confronting two-pair
primers; SUA, serumn uric acid; URAT1, uric acid transporter 1.
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reabsorb uric acid in kidney. The rare mutations of SLC2A9 were found
in hypouricemia patients; R380W and R198C in Japanese [9], L75R in
an Israeli-Arab family, exon 7 deletion in Ashkenazi-Jewish [10], and
lle118HisfsX27 (g.27073insC at exon 3, causing Ile118His and stop
codon at position 27) in a Czech family [11].

A genome-wide association study (GWAS) on SUA for 28,141
participants of European descent demonstrated the associations with
nine genes including SLC22A12, SLC2A9, and ABCG2[12]. The poly-
morphism of SLC2A9 selected in the GWAS was 15734553, whose
minor allele frequency was reported to be 0.011 in a Japanese
population (HapMap-JPT, ss80703). Another GWAS for 1017 African
American detected four polymorphisms (rs3775948, rs7663032,
rs6856398, and rs6449213) of SLC2A9 associated with SUA [13]. For
14,700 Japanese, a GWAS identified the associations with SLC22A12,
SLC2A9, and ABCG2[14]. In the Japanese GWAS, a C/T polymorphism in
intron 8 of SLC2A9 (rs11722228) was identified as a highly significant
polymorphism (p=7.1E-24).

In this study, we aimed to confirm the association with
rs11722228, and further to examine the strength of the association
in terms of odds ratio (OR), after eliminating the effects of SLC22A12



