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Abstract. Bloom syndrome (BS) is a rare autosomal genetic
disorder characterized by lupus-like erythematous telangi-
ectasias of the face, sun sensitivity, infertility, stunted growth,
upper respiratory infection, and gastrointestinal infections
commonly associated with decreased immunoglobulin levels.
The syndrome is associated with immunodeficiency of a
generalized type, ranging from mild and essentially asympto-
matic to severe. Chromosomal abnormalities are hallmarks of
the disorder, and high frequencies of sister chromatid
exchanges and quadriradial configurations in lymphocytes and
fibroblasts are diagnostic features. BS is caused by mutations
in BLM, a member of the RecQ helicase family. We deter-
mined whether BLM deficiency has any effects on cell growth
and death in BLM-deficient cells and mice. BLM-deficient
EB-virus-transformed cell lines from BS patients and embry-
onic fibroblasts from BLM” mice showed slower growth than
wild-type cells. BLM-deficient cells showed abnormal p53
protein expression after irradiation. In BLM™ mice, small
body size, reduced number of fetal liver cells and increased
cell death were observed. BLM deficiency causes the up-regu-
lation of p53, double-strand break and apoptosis, which are
likely observed in irradiated control cells. Slow cell growth
and increased cell death may be one of the causes of the small
body size associated with BS patients.

Introduction

Bloom syndrome (BS) is a rare genetic disorder caused by
mutations in BLM, a member of the RecQ helicase family (1).
There are five human RecQ-like proteins (RECQLI, BLM,
WRN, RECQL4 and RECQS5), each having 3' to 5' DNA
helicase activity, but little sequence similarity outside the heli-
case motifs (2,3). Three of these helicases (BLM, WRN and
Rothmund-Thomson) show genomic instability and cancer
susceptibility; however, each also has distinctive features
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(4.5). The unique features of BS are severe pre- and post-natal
growth retardation and a wide spectrum of cancer types that
develop at a young age. Other BS phenotypes include facial
sun sensitivity, immunodeficiency and male sterility/female
subfertility (6,7). Compared with Werner syndrome, small
body size is one of the characteristic features associated with
BS patients.

Here, we determined whether BLM deficiency has any
effects on the cell growth and death of BLM-deficient cells
and mice.

Materials and methods

BS patient. AsOk, who was identified in the BS registry as
number 97, weighed 2,250 g at birth. Café-au-lait spots and
mandibular hypoplasia were prominent. A 3-bp deletion was
detected in the BLM sequence of AsOk DNA (8). This dele-
tion caused the generation of a stop codon at amino acid 186.

Cell culture. EB-virus-transformed cell lines from BS patients
and control subjects were developed as previously reported (9).
In brief, PBMCs were isolated from the heparinized blood of
patients by gradient centrifugation in Ficoll-Paque (Pharmacia
AB, Uppsala, Sweden), and suspended at a density of 10° ml in
culture medium consisting of RPMI 1640 supplemented with
10% heat-inactivated fetal calf serum, I-glutamine (2 mmol/l),
penicillin (100 U/ml) and streptomycin (100 pg/ml). The
PBMCs (10° ml) were then cultured in the presence of 10 ug/
ml phytohemagglutinin (PHA) for 3 days.

Detection of p53 protein. PBMCs cultured with PHA for
3 days were irradiated (6 Gy). After 1 h, the cells were
collected by centrifugation and protein was extracted. Using
anti-human p53 antibody (Santacruz, USA), immunoblotting
was performed.

BLM-deficient embryonic fibroblasts. Heterozygous
BLM-deficient (BLM*") mice were kindly provided by
P. Leder. BLM™ mice were obtained by mating BLM*" mice
(10). Embryonic fibroblasts from BLM” mice were obtained
from 12.5-day embryos. None of the BLM™ embryos survived
more than 13 days.

Cell proliferation assay. Cell proliferation and cell viability
were determined by the trypan blue or MTT assays. The MTT
assay was performed following the manufacturer's protocol.
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Figuare 1. p53 protein expression in PBMCs from a control subject and a BS
patient. PBMCs cultured with PHA for 3 days were irradiated (6 Gy). After
1 h, the cells were collected and p53 protein expression was detected.
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Figure 2. Fig. 2 Cell proliferation and cell viability were determined using
trypan blue. Embryonic fibroblasts were established from BLM*" and BLM™*
mice at 12.5 days post-coitus. Embryonic fibroblasts from BLM” mice
showed a slow growth rate and a high sensitivity to MMS compared to those
from BLM* mice.

Embryonic fibroblasts were cultured with methyl methanesul-
fonate (MMS) (Sigma, Japan) for 24 h (11), then the viable cell
number was determined on trypan blue.

Detection of single-strand DNA. Paraffin and cryostat sections
were prepared from the brain of BLM™ or BLM’ mice at
12.5 days post-coitus. Polyclonal rabbit anti-ssDNA antibody
(I1gG, 100 pg/ml, Dako Japan, Kyoto, Japan) at a dilution of

BLM*-

KANEKO et al: AUGMENTED CELL DEATH IN BLOOM SYNDROME

1:300 was used to detect the formation of single-stranded
DNA (ssDNA) for 1 h at room temperature. Immunoreactivity
was detected with peroxidase-labeled goat anti-rabbit immu-
noglobulins.

Results

Abnormal regulation of p53 protein expression. After the
irradiation of PHA-stimulated PBMCs, p53 protein expression
was induced in control cells (Fig. 1). In the PBMCs of the BS
patient, high p53 protein expression was detected even without
irradiation. Irradiation slightly induced p53 protein in BS
cells. In the BS EB cell line, p53 phosphorylation by ATM was
up-regulated compared with that in the control EB cell line
(data not shown). These results suggested that BLM-deficient
cells have abnormal regulation of pS3 protein expression and
an elevated frequency of apoptosis. Next, apoptosis was inves-
tigated in vivo and in vitro using BLM-deficient cells.

Slow growth in BLM-deficient cells. The growth rate of EB
cells from BS patients was slower than that of control cells.
After irradiation, the growth rate of BS cells was slower than
that of control cells. MMS action caused double-stranded
DNA breaks. The sensitivity of BLM™” cells to MMS was
higher than that of wild type cells. Embryonic fibroblasts
originating from BLM” mice also showed a slowed growth
rate (Fig. 2).

Augmented cell death in embryonic brain of BLM™" mice.
Anti-single-stranded DNA was detected in the brain of BLM™
mice, with the number being higher than that detected in
the brain of BLM* mice (Fig. 3). This result suggested the
occurence of augmented cell death in BLM™ mice.

Discussion

In this study, we showed the abnormal regulation of p53
protein expression and augmented cell death in BLM-deficient
cells both in vitro and in vivo. Stalled replication forks can
result in double-strand breaks, thereby triggering the activa-
tion of ATM (12). Consistent with a previously reported study,
the deficiency of BLM was radiomimetic (13).

BLM -

Figure 3. Detection of single-stranded DNA. Immunohistochemical staining of BLM* and BLM™ embryos at 12.5 days post-coitus was performed.
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Originally, MMS was considered to directly cause
double-stranded DNA breaks, since homologous-recombina-
tion-deficient cells are particularly vulnerable to the effects
of MMS. However, it is now considered that MMS stalls
replication forks, and cells that are homologous-recombination-
deficient have difficulty repairing the damaged replication
forks.

Studies in yeast and human cells suggest a pivotal role of
RECQ-like helicases in maintaining genomic integrity during
the S phase (14). BS patients show small body size from birth.
This small body size persists throughout their lifetime. At
12.5 days post-coitus, BLM-deficient mice have a smaller
body size than wild-type mice (10).

BLM deficiency renders cells highly susceptible to
apoptosis, which is a possible explanation for the pre- and
post-natal growth retardation observed in BS patients. In the
absence of BLM, many cells fail to repair damage rapidly
enough, whereupon p53 signals those cells to die. Individuals
with BS may continually lose cells, owing to excessive apop-
tosis, particularly during pre- and post-natal development,
when cell proliferation is excessive (15). Excessive apoptosis
would leave many tissues with chronic cellular insufficiency,
and hence a small size, thereby explaining the pre- and post-
natal growth retardation.

p353 is crucial for the apoptosis of BS cells. This apoptosis
is not accompanied by an increase in BAX or p21 protein
expression. Thus, p53 may induce apoptosis independent of
its transactivation activity, consistent with the finding that
p53 is transcriptionally inactive during the S phase. pS3 may
mediate the death of damaged BS cells by directly inducing
mitochondria-mediated apoptosis, or by means of its transac-
tivation activity,

In conclusion, BLM deficiency causes the dysregulation of
p53 and augmented apoptosis, similar to that observed in irra-
diated wild-type cells. This slow cell growth and increased
cell death may cause the small body size associated with BS
patients.
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A rapid screening method to detect
autosomal-dominant ectodermal dysplasia
with immune deficiency syndrome

To the Editor:

A patient presented to us with autosomal-dominant anhidrotic
ectodermal dysplasia with immune deficiency syndrome (EDA-
ID). By using a rapid flow cytometric screening system, we
detected a novel mutation of the JKBA gene in the patient.

Toll-like receptors are one of the major groups of pathogen-
associated molecular pattern recognition receptors in the innate
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FIG 1. A, External abnormalities of the AD-EDA-ID patient at the age of 16 months. B and C, Flow cytometric
analysis of intracellular TNF-a production in CD14" cells in response to LPS stimulation. D, Genetic analysis
of the IKBA. E and F, Western blot analyses of expressions of wild-type and mutant types IxBa proteins. G,

NF-kB reporter gene activities.
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immune system. Following Toll-like receptor activation, intracel-
lular signaling components such as interleukin-1 receptor—
associated kinase 4 (IRAK4) and NF-kappa-B essential modulator
(NEMO) are sequentially activated. This leads to the degradation
of inhibitor of kB (IxB), which causes the activation of nuclear
factor-kB (NF-«kB) and expression of inflammatory cytokines.'
Recently, defects in various components of this signaling pathway
have been reported; IRAK4 deficiency was seen to cause high
susceptibility to bacterial infections such as Streprococcus
pneumoniae,” and NEMO deficiency was observed to lead to
X-linked recessive anhidrotic ectodermal dysplasia with immune
deficiency syndrome.® In 2003, a hypermorphic mutation of the
IkBa gene was reported as another causative gene defect for
EDA-ID.* As the hereditary form of this disease is autosomal dom-
inant, it is termed AD-EDA-ID.

The patient we assessed was a 5-month-old male infant with
some dysmorphisms (Fig 1, A). His umbilical separation date was
18 days after his birth. The patient’s body temperature regulation
was poor because of his anhidrosis. He suffered recurrent infec-
tions from his first month, including hepatitis with Cytomegalovi-
rus infection, enteritis with Rotavirus, bronchiolitis with
respiratory syncytial virus, bacterial pneumonia, urinary tract in-
fection, and acute otitis media. His family has no history of
primary immunodeficiency. The results of a blood examination
at the age of 5 months are shown in Table I. Serum immunoglob-
ulin values were normal for his age. It should be noted that his se-
rum IgA levels, but not IgM levels, increased with age (IgA, 751
mg/dL, and IgM 125, mg/dL at 9 months; normal ranges of IgA
and IgM in Japanese infants are 10-56 and 55-200 mg/dL,
respectively).

We used a previously described rapid screening method for
IRAK4 deficiency syndrome using the patient’s blood cells.’
Flow cytometric analysis of intracellular TNF-a production in
CD14" cells in response to 4 hours of LPS stimulation (1.0 pg/
mL) showed a substantially lower proportion of CD14 and
TNF-a double-positive cells in the patient than in age-matched
healthy subjects (mean, 95.7%; SD, 2.78; n = 10) (Fig 1, B).
The histogram of LPS-stimulated TNF-a positive monocytes
(blue) of this patient showed a twin peak pattern (mean fluores-
cence intensity of the peaks, 0.878 and 56.6) compared with the
histogram of nonstimulated TNF-o monocytes (red). Monocytes
from healthy subjects displayed a single right-shifted peak pattern
(mean fluorescence intensity of the peaks, 73.0; SD, 40.2; n = 10)
(Fig 1, O).

‘We next analyzed the IRAK4, MyD88, NEMO, and IKBA genes
and found a novel mutation (c. 25C>T) (p. Q9X) in the IKBA gene
(Fig 1, D). The IRAK4, MyDS8S, and NEMO genes were normal.
Other IKBA gene mutations have been previously reported in
AD-EDA-ID, namely, 8321, W11X, and E14X.**7 The serine
residues of the N terminus of IkBe, S32 and S36, are functionally
important phosphorylation sites. Phosphorylation leads to degra-
dation of this protein and release of active NF-kB. If these resi-
dues are substituted or deleted, NF-kB cannot be inactivated by
IkBa. Interestingly, a mechanism by which disease onset is
caused by gene substitution at the stop codon near the 5’ end of
the gene sequence has been reported, and this causes a hypermor-
phic effect of N terminus—truncated IkBa protein.®

We confirmed the functional effect of the Q9X mutation in the
IxBao gene in our patient by analyzing for endogenous IkBa pro-
tein in his lysed blood cells. Western blots using an anti-IkBa
antibody (C-21, Santa Cruz) showed 2 shorter bands for the
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TABLE I. Immunological findings of the AD-EDA-ID patient at the
age of 5 months

Patient Normal values
Number of blood cells (/L)
Leukocytes 21,190 6,000-17,500
Lymphocytes 11,230 4,000-13,500
Monocytes 1,270 Unknown
Lymphocytes subsets (%)
CD3 59.0 58-84
CD4 319 25-54
CD8 23.4 23-56
CD19 33.9 5-24
CD20 34,1 3-20
Serum immunoglobulin levels (mg/dL)
1gG 930 290-960
1gA 91 7-44
IgM 101 41-161
1gG subclass (%) -
IgGl1 60.4 39.3-89.0
1gG2 30.0 7.4-50.4
1eG3 9.1 1.3-12.6
1G4 0.5 0.1-7.8
Lymphocyte proliferation assay (cpm)*
First time
No stimulus 151 70-700
PHA 8,660 26,000-53,000
Con A 1,260 20,000-48,000
Second time
No stimulus 123
PHA 24,600
Con A 11,200

Con A, Concanavalin A; PHA, phytohemagglutinin.
*Lymphocyte proliferation assay was performed at the age of 10 and 11 months.

patient than for a control subject (Fig 1, E). A subsequent
in vitro protein expression study on HEK293 cells of C-terminal
FLAG-tagged IxkBa Q9X and W11X showed 2 shorter bands
compared with wild-type IkBo, while IkBa E14X showed a sin-
gle shorter band. We believe that the 2 bands are likely to be N
terminus—truncated IkBa proteins that are translated from M13
(IkBo A1-12) or M37 (IkBa A1-36) (Fig 1, F). If this is correct,
the N terminus—truncated IxkBoa A1-36 should have no serine
phosphorylation site. An NF-kB reporter gene activity assay
showed a significant dose-dependent inhibitory effect of IkBa
Q9X compared with wild-type IkBa on LPS-stimulated Toll-
like receptor 4-MD2-CD14 coexpressed HEK?293 cells (Fig 1,
G). On the basis of these results, we diagnosed this patient as
having AD-EDA-ID.

Because NF-kB is an essential component of immune responses,
some EDA-ID patients have combined T-cell dysfunction.” There
are also reports of EDA-ID patients dying from complications of
mycobacterial disease. In addition, NEMO deficiency was recently
reported to be one of the candidate deficiencies of Mendelian sus-
ceptibility to mycobacterial disease syndrome.® We therefore eval-
uated the patient’s T-cell response by using lymphocyte
proliferation assays. Lymphocytes stimulated with phytohemag-
glutinin and concanavalin A proliferated only to low levels (Table
I). As an additional feature, inflammatory bowel disease has also of-
ten been reported in XL-EDA-ID patients. The mechanism of the
onset of inflammatory bowel disease with EDA-ID remains un-
known, but our AD-EDA-ID patient also showed symptoms of in-
flammatory bowel disease.
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This is the first report of an AD-EDA-ID patient with a.novel
Q9X mutation of the IKBA gene. This case also demonstrates that
the screening method using LPS-stimulated intracellular TNE-
o~producing CD14 cells is an effective method for the rapid
diagnosis of innate immune defects, not only in IRAK4-
deficient patients but also in EDA-ID patients.
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