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Taurine Ameliorates Impaired the Mitochondrial Function
and Prevents Stroke-like Episodes in Patients with MELAS

Mitsue Rikimaru', Yutaka Ohsawa', Alexander M. Wolf?, Kiyomi Nishimaki’,
Harumi Ichimiya®, Naomi Kamimura®, Shin-ichiro Nishimatsu®,
Shigeo Ohta® and Yoshihide Sunada'

Abstract

Objective Post-transcriptional taurine modification at the first anticodon (“wobble”) nucleotide is deficient
in A3243G-mutant mitochondrial (mt) (RNA"*""™ of patients with myopathy, encephalopathy, lactic acidosis,
and stroke-like episodes (MELAS). Wobble nucleotide modifications in tRNAs have recently been identified
to be important in the accurate and efficient deciphering of codons. We herein examined whether taurine can
alleviate mitochondrial dysfunction in patient-derived pathogenic cells and prevent clinical symptoms in
MELAS patients.

Methods and Results The addition of taurine to the culture media ameliorated the reduced oxygen con-
sumption, decreased the mitochondrial membrane potential, and increased the oxidative stress in MELAS
patient-derived cells. Moreover, high dose oral administration of taurine (0.25 g/kg/day) completely prevented

stroke-like episodes in two MELAS patients for more than nine years.

Conclusion Taurine supplementation may be a novel
like episodes associated with MELAS.

Key words: MELAS, post-transcriptional modification,

(Intern Med 51: 3351-3357, 2012)
(DOI: 10.2169%/internalmedicine.51.7529)

Introduction

An A3243G or T3271C transition in the mitochondrial
(mt) t(RNA"™ gene has been identified in approximately
80% and 10% respectively, of patients with mitochondrial
myopathy, encephalopathy, lactic acidosis, and stroke-like
episodes (MELAS) (1). Nearly 90% of patients with myo-
clonus epilepsy associated with ragged-red fibers (MERRF)
possess an A8344G transition in the mt tRNA™ gene (1).
These mutations are located in the cloverleaf structure of
each mt (RNA. However, it remains unknown how such
point mutations in mt tRNAs induce mitochondrial dysfunc-
tion leading to the wide variety of MELAS or MERRF
symptoms.

Post-transcriptional modifications in tRNAs play critical

potential treatment option for preventing the stroke-

taurine, stroke-like episodes

roles in modifying the genetic code. In 1966, Francis Crick
proposed that the first anticodon (“wobble”) nucleotide rec-
ognizes the third codon nucleotide through non-canonical
Watson-Crick geometry; so-called “wobble” pairing (2).
Growing evidence has shown that various post-
transcriptional modifications at the wobble nucleotides in
tRNAs are required to recognize their cognate codons accu-
rately and efficiently (3). In normal human mt (RNA™®
or mt (RNA™, uridine at the wobble position is modified
with taurine, a sulfur-containing fB-amino acid (4-6). In con-
trast, the taurine modification is deficient in mutant mt
(RNA"™® or mutant mt (RNA" derived from clinical
specimens of MELAS or MERRF patients (4-8). The taurine
modification defect in the mutant mt tRNAs causes a defi-
ciency in deciphering codons (1, 9). These findings have
given rise to the intriguing possibility that MELAS and
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MERRF are tRNA-modification disorders associated with
the impairment of correct mitochondrial gene translation.

We hypothesized that high-dose taurine supplementation
could restore the taurine modification of the mutant tRNAs
in MELAS or MERRF patients. In the current study, we ex-
plored the potential therapeutic effect of taurine by examin-
ing the mitochondrial functions in patient-derived patho-
genic cells and by observing the clinical symptoms in
MELAS patients receiving taurine supplements.

Materials and Methods

The local ethics committee approved this study (No. 787)
and all patients gave their informed consent for participa-
tion.

Construction of cybrid cells harboring mutant
miDNA

Immortalized cells possessing patient-derived mitochon-
drial (mt) DNA were constructed by the intercellular transfer
of a patient’s mtDNA to p° Hela cells (EB8), which are
mtDNA-less immortalized cells (10). EB8 cells were iso-
lated by the long-term treatment of HeLa cells with ethid-
ium bromide. Primary dermal fibroblasts were isolated from
skin biopsy samples from an A3243G-MELAS, a T3271C-
MELAS, and an A8344G-MERRF patient. The fibroblasts
were enucleated by centrifugation in the presence of cyto-
chalasin B. Then, the enucleated fibroblasts were fused with
EB8 cells by treatment with polyethylene glycol. Control
cytoplasmic hybrid (cybrid) strains (Ft2-11, A2) were con-
structed by fusing mtDNA-less Hel.a cells with enucleated
normal human fibroblasts.

The resulting cybrids were maintained in Dulbecco’s
modified Eagle’s medium/Ham’s F12 medium supplemented
with 10% fetal bovine serum, 1 mM sodium pyruvate, 50 pg
uridine, 100 units/mL penicillin, and 100 pg/mL streptomy-
cin (Invitrogen/Life Technologies Japan, Tokyo, Japan). Cy-
brids with more than 95% mutant mtDNA were used for the
experiments. To decrease the endogenous taurine, the cells
were also cultured in media with limited amounts of the
taurine precursor, L-cysteine (I mg/mL), and the taurine in-
termediate, L-methionine (high glucose, L-glutamine-minus,
sodium pyruvate-minus Dulbecco’s modified Eagle’s me-
dium; Gibco) supplemented with L-glutamine, sodium pyru-
vate, and uridine. The growth rate of mutant cybrids was
unchanged after culture in limiting media for seven days.

Cell lines and in vitro analyses

Primary dermal fibroblasts obtained from skin biopsy
samples from an A3243G-MELAS, a T3271C-MELAS, and
an A8344G-MERRF patient were enucleated and subse-
quently fused with mt DNA-less HeLa cells (10). The re-
sulting cybrid cells were treated with or without taurine and
then were used in subsequent in vitro analyses of the mito-
chondrial oxygen consumption (11), membrane poten-
tial (12), and reduction and oxidation (redox) status (10).

Taurine powder was purchased from Taisho Pharmaceutical
Co., Ltd. (Tokyo, Japan).

Mitochondyrial oxygen consumption

Cybrid cells cultured with or without taurine were
trypsinized and resuspended in serum-free medium. The cell
suspension was continuously stirred at 37°C with an oxygen
electrode (11). The cell concentration was determined using
a hemocytometer. The oxygen consumption rates were
measured using an Oxygen Meter Model 781 and a Mitocell
MT200 closed respiratory chamber (Strathkelvin Instru-
ments, North Lanarkshire, UK). The oxygen respiration rate
was directly measured for the 40 mM taurine experiments.
After treatment with the limiting media described above, the
oxygen consumption was examined in the presence of 1 uM
carbonyl cyanide p-trifluoromethoxyphenylhydrazone
(FCCP), a mitochondrial protonophore used to measure elec-
tron transport activity. The consumption value was sub-
tracted from the 1 mM potassium cyanide-independent oxy-
gen consumption value.

Mitochondrial membrane potential

To evaluate the mitochondrial membrane potential, cybrid
cells were incubated for 30 minutes at 37C with 20 nM
MitoTracker Red (Molecular Probes, Invitrogen, Carlsbad,
CA, USA), a red-fluorescent dye that accumulates at the mi-
tochondrial membrane (12) in response to the membrane po-
tential. The MitoTracker Red signal increases in a mem-
brane potential-dependent manner. The images were visual-
ized with a confocal laser-scanning microscope (Fluoview
FV300; Olympus, Tokyo, Japan) at an excitation wavelength
of 594 nm. For the flow cytometric analysis, cells stained
with MitoTracker Red were washed in phosphate-buffered
saline, trypsinized, and analyzed using a Cell Lab Quanta™
instrument (Beckman Coulter, Inc., Brea, CA, USA). The
fluorescent signal of more than 10,000 cells was examined
for each experiment.

Mitochondrial redox status

The redox-sensitive green fluorescent protein, roGFPI,
generates a unique fluorescence image after the formation
(oxidation) of the disulfide bonds adjacent to the barreled B-
sheets in the GFP protein (11). To allow real-time visualiza-
tion of mitochondrial redox status, cybrid cells were stably
transfected with the roGFP] expression vector containing a
mitochondrial-targeting sequence. Fluorescence images were
recorded using a multi-dimensional imaging workstation
(AS MDW; Leica Microsystems, Wetzlar, Germany) consist-
ing of a tunable light source (Polychrome IV monochroma-
tor; Till Photonics, Griéfelfing, Germany), an inverted
epifluorescence microscope (DM IRE2; Leica Microsystems)
contained in a climate chamber maintained at 37C, and a
cooled charge-coupled device camera (CoolSnap HQ; Roper
Scientific, Princeton, NJ, USA). The dual excitation ratio of
roGFPI from a single cell was recorded. The ratio of the re-
duced form of roGFPl (roGFP1-SH) to the oxidized form
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Figure 1. Taurine ameliorates the impaired mitochondrial function in patient-derived eybrid cells.
(A) Patient-derived cybrid cells showed marked decreases in oxygen consumption (black bars). Af-
ter four days in culture with taurine (40 mM), there was a significant increase in the oxygen con-
sumption rates in patient-derived cybrids with mutant mtDNA, but not in wild-type control Ft2-11
cells (red bars) (*p < 0.05). (B) Cybrids were cultured in media with limited amounts of the taurine
intermediate, L-methionine (1 mg/mL), and the taurine precursor, L-cysteine (5 mg/mL), for two
days, followed by an additional four day culture with or without taurine (0, 0.1, or 0.3 mM). Taurine
(0.3 mM) improved the oxygen consumption in the A3243G-MELAS cybrids cultured in the limiting
media (¥*p < 0.05). (C) Cybrids were cultured in the presence (right) or absence (left) of 40 mM tau-
rine for 4 days. Staining with the membrane potential-sensitive red-fluorescent dye MitoTracker
Red (106 nM for 30 min) revealed an increased mitochondrial membrane potential with morpholog-
ical improvement in the A3243G-MELAS cybrid cells. Scale bar: 100 pm. (D) The mitochondrial
membrane potential was determined by a flow cytometric analysis after staining with 100 nM of
MitoTracker Red for 30 min. The profiles in the left-hand panel show a time-dependent increase in
membrane potential after incubation with 40 mM taurine. The right-hand profiles indicate that
there was a dose-dependent shift in the membrane potential after four days of culture with the indi-
cated amounts of taurine. (E) Cybrid cells were cultured in the limiting media described in (B). The
reduced mitochondrial membrane potential in the A3243G-MELAS cybrid cells (3243) was signifi-
cantly improved as judged by a flow eytometric analysis after a four-day incubation with 0.3 mM
taurine (*p < 0.05). In contrast, the membrane potential in the control cybrid cells (A2) was un-
changed after taurine treatnent.

of roGFP1 (1oGFP1-8S-) was obtained. The fluorescence ra-
tio at 410:490 nm was used as the index of oxidation (11).
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Figure Taurine reduces the oxidative stress in patient-de-
rived cybrid cells. The A3243G-MELAS cybrid cells (3243,
left) and the control cybrid cells (A2, right) were stably trans-
fected with a mitochondria-targeting redox-sensitive green
fluorescent protein (roGFP). The histograms show the distri-
bution of cells according to their 410:490 nm fluorescence ra-
tio, an indicator of the oxidation status. Compared with the
A2 cybrid cells, the ratio was increased in the 3243 cybrid
cells, suggesting an increase in oxidative stress (green, upper)
The addition of taurine (3 mM; red, lower) caused a shift to-
wards a reduced status in the 3243 eybrid cells, but not in the
A2 cybrid cells (red, lower). The data represent the mean val-
ues from eight independent experiments. *p < 0.05 between
culture conditions with and without taurine.

Cral administration of laurine to patienis with
A3243G-MELAS

Taurine powder was orally administered three times a day,
after a meal, to two patients with A3243G-MELAS at a
dose of 0.25 g/kg/day. This corresponds to the maximal
dose previously employed for Japanese patients with biliary
obstructions (13).

Statistical analyses

Paired observations were statistically analyzed using a
one-way analysis of variance followed by Bonferroni’s test.
p values <0.05 were considered to be statistically significant.

Results

Taurine restores the reduced mitochondrial oxygen
consumption in patient-derived celis

The cybrid cells harboring the disease-causing mutant
mtDNAs showed lower oxygen consumption rates than the
control cells (Fig. 1A). The addition of 40 mM taurine to
the culture media increased the oxygen consumption rate in
patient-derived cybrid cells, but not in control cells. More-
over, 0.3 mM taurine was also effective when the cybrid
cells were cultured in limiting media lacking cysteine and

methionine, which are a precursor and an intermediate, re-
spectively, of taurine biogenesis (Fig. 1B).

Taurine improves the reduced mitochondrial mem-
brane potential in A3243G-MELAS cells

MitoTracker Red-labeled mitochondria in the A3243G-
MELAS cybrid cells displayed a weak signal with a granu-
lar appearance, suggesting that they had a decreased mito-
chondrial membrane potential compared to normal cells
(Fig. 1C, left) (12). When the cybrid cells were cultivated
in the presence of 40 mM taurine for four days, the mito-
chondria underwent changes in their morphology to a nor-
mal filamentous appearance, which was accompanied by an
increase in the membrane potential (Fig. 1C, right) (12).
The reduced mitochondrial membrane potential in the
A3243G-MELAS cells was reversed by taurine in a time-
and concentration-dependent manner (Fig. 1D). Moreover,
0.3 mM taurine increased the membrane potential in the
A3243G-MELAS cybrids that were cultured in limiting me-
dia (Fig. 1E). In contrast, taurine did not alter the membrane
potential in the control A2 cybrid cells.

Taurine improves the impaired redox staius in
patient-derived cells

We transfected the MELAS-cybrid cells with a gene en-
coding a redox-sensitive green fluorescent protein, roGFP, to
monitor their redox status as judged by the ratio of fluores-
cence signals at 410 and 490 nm (11). The ratio in the
A3243G-MELAS cybrid cells increased in comparison to
that in the control cells, thus suggesting that they had an in-
creased degree of oxidative stress (Fig. 2, upper). The addi-
tion of taurine to the culture media reduced the ratio in the
A3243G-MELAS cybrid cells, but not in the control cells
(Fig. 2, lower).

Taurine prevents siroke-like episodes in A3243G-
MELAS patients

Case 1: A 29-year-old woman had an abrupt onset of gen-
eralized seizures and was admitted to our hospital in Febru-
ary 2001 (Fig. 3A). The lactate and pyruvate levels in her
serum were elevated to 48.3 mg/dL (normal range, 3.0-17.0
mg/dL) and 1.7 mg/dL (normal range, 0.3-0.9 mg/dL), re-
spectively. Brain magnetic resonance imaging (MRI) re-
vealed a stroke-like lesion in the left occipital region
(Fig. 3B). A biopsy from the left biceps brachii muscle
showed a MELAS-like pattern, with cytochrome c oxidase-
negative ragged-red fibers and succinate dehydrogenase-
reactive blood vessels. A molecular genetic analysis of the
mitochondrial DNA confirmed an A3243G transition. Treat-
ment with coenzyme QI0 (180 mg daily) and phenytoin
(250 mg daily) was commenced in February 2001. The anti-
convulsant was switched from phenytoin to valproate (600
mg daily) in April 2001 because of repeated generalized sei-
zures. A follow-up MRI in August 2001 revealed an addi-
tional right occipitotemporal lesion (Fig. 3C). The patient
continued to experience epileptic seizures and had a stroke-
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Oral administration of taurine reduces the stroke-like episodes in MELAS patients. The

clinical courses of two MELAS patients (Cases 1 and 2) harboring the A3243G mutation in the mt
tRNALeUUR) (A E) are shown. Taurine administration completely prevented stroke-like episodes in
both patients for more than nine years. Fluid Attenuated Inversion Recovery (FLAIR) images of
brain MRI revealed that multiple stroke-like lesions had developed in the occipitotemporal region
before oral taurine administration (B, C, F, G). The most recent MRI showed no additional stroke-
like lesions after taurine treatment in both patients (D, H).

like episode presenting hemispatial agnosia over the next
seven months. Oral taurine supplementation was started in
January 2002. From the beginning of the taurine treatment,
her epileptic and stroke-like episodes ceased completely. In
July 2007, her blood concentration of taurine was 481.3 pM,
more than 5-fold higher than the normal range (39.5-93.2
uM). In December 2010, the elevated levels of serum lactate
and pyruvate had declined to near normal levels, at 24.3 mg/
dL and 0.9 mg/dL, respectively. The most recent brain MRI
exhibited no new lesions, but mild cerebral atrophy was pre-
sent (Fig. 3D). The patient has been doing well for the last
nine years with the taurine treatment still ongoing.

Case 2: A 21-year-old man was admitted to another hos-
pital in March 1991 because of repeated scintillating sco-
toma and right homonymous hemianopsia (Fig. 3E). He was
diagnosed with A3243G-MELAS based on typical muscle
biopsy findings and a mtDNA analysis. He was treated with
coenzyme Q10 (120 mg/dL) and phenytoin (150 mg daily);
however, he soon developed vision loss on the right side. He
was admitted to our hospital in July 1991. The serum levels
of lactate and pyruvate were elevated to 38.7 mg/dL and 1.2
mg/dL, respectively. The anticonvulsant was switched from
phenytoin to valproate (600 mg daily) in January 1994 be-
cause of repeated generalized seizures. Over the next eight
years he suffered from several stroke-like episodes, includ-
ing sensory aphasia and visual impairment. Brain MRI scans
in October 1991 and January 1994 revealed an accumulation
of stroke lesions in the bilateral occipital regions
(Fig. 3F, G). In December 2001 he had a stroke-like episode

presenting with left hemianopsia. Taurine supplementation
was started in January 2002, and since then, no stroke-like
episodes have occurred. In September 2007, his blood
taurine concentration was 996.0 uM, approximately 10-fold
higher than the normal range. In February 2010, the serum
values of lactate and pyruvate had declined to 29.1 mg/dL
and 0.38 mg/dL, respectively. The most recent brain MRI
exhibited no additional stroke-like lesions (Fig. 3H).

Discussion

Post-transcriptional modifications at the wobble nucleotide
are crucial for the maturation mechanisms of tRNAs and
they are required for the correct decoding of codons. In
A3243G-MELAS patients, the taurine modification is defec-
tive at the wobble nucleotide in the mutant mt
RNA"™ (5), In the present study, we showed that taurine
ameliorates the mitochondrial dysfunction in patient-derived
pathogenic cells carrying mutant t(RNA™"™ but did not re-
inforce the normal mitochondrial function in control cells.
Oral taurine administration also achieved long-term preven-
tion of stroke-like episodes in two patients with MELAS.

We previously showed that when taurine (1) is added to
the culture media of HeLa cells, it is transported to the mi-
tochondria and used as a substrate to synthesize taurine-
modified uridine, 5-taunomethyluridine (tm'U), in mt
RNA"Y"™ (Fig, 4A) (1, 4-7). Considering that tTm’U for-
mation proceeds through an enzymatic reaction, the present
results suggest that an increased concentration of taurine ac-
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Figure 4. A proposed pathomechanism of MELAS, an RNA-modification disorder. (A) A mecha-
nism of post-transcriptional taurine modification at the first wobble anticedon [uridine (U)] in nor-
mal mt tRNAV WU Tagrine (1) is incorporated into the C5 position of the uracil ring to generate
the final modification product, 5-taurinomethyluridine (tm°U) (4). (B) Taurine modification func-
tions to stabilize the wobble anticodon-codon pairing. Normal mt tRNAVUR)_with a taurine-modi-
fication at the wobble uridine (U), efficiently pairs with codons UUA and UUG (right). In contrast,
the MELAS-causing mutant mt {RNAMUUR Jacks the wobble taurine modification, resulting in a
specific reduction of UUG codon-specific translation but not UUA codon-specific translation. Defec-
tive taurine modification in the mutant mt tRNAMUUR) results in a deficiency in mitochondrial pro-
tein synthesis caused by an inability to decipher codons (left) (7).

celerates the enzymatic formation of Tm’U, thereby revers-
ing impaired codon recognition by the mutant mt
RNA" Y (Fig. 4B). The pathogenic mutations in MELAS
and MERRF might hinder the specific recognition by an
RNA-modifying enzyme (4-7). Further studies will be re-
quired to clarify the precise molecular mechanisms underly-
ing the wobble taurine modification in mt tRNA"*™ and
how much supplemented taurine incorporates into the wob-
ble uridine in mutant mt tRNA"*™ in clinical samples
from patients.

Low plasma concentrations of taurine induce cardio-
myopathy in cats. This particular species has no biosynthetic
pathway for endogenous taurine (14). In agreement with our
results, high-dose oral administration of taurine to cats in-
creased the plasma and cardiac concentrations, and amelio-
rated the cardiac dysfunction. Because the cardiac muscles
are composed of slow myofibers that are rich in mitochon-
dria (14), taurine supplementation could alleviate the cardio-
myopathy via increased Tm’U formation in mt {RNAs.

The present results provide new insight into our under-

standing of MELAS, and possibly MERRF, as putative
RNA-modification disorders that lack the wobble taurine
modification. Our results also suggest that the oral admini-
stration of taurine may be an effective therapy for these dis-
orders.
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Abstract

We report on a 4-year-old boy who died from influenza encephalopathy. The clinical course and microscopic findings of the
autopsied liver were compatible with Reye’s syndrome. We examined the mitochondrial respiratory chain function by blue native
polyacrylamide gel electrophoresis (BN-PAGE), western blotting, and respiratory chain enzyme activity assays. The activity of liver
respiratory chain complex (CO) I was markedly decreased (7.2% of the respective control activity); whereas, the other respiratory
chain complex activities were substantially normal (CO II, 57.9%; CO III, 122.3%; CO 1V, 161.0%). The activities of CO I-IV in
fibroblasts were normal (CO 1, 82.0%; CO II, 83.1%; CO III, 72.9%; CO IV, 97.3%). The patient was diagnosed with liver-specific
complex I deficiency. This inborn disorder may have contributed to the fatal outcome. We propose that relying only on fibroblast
respiratory chain complex activities may lead to the misdiagnosis of liver-specific complex I deficiency.
© 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
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1. Introduction The possible contribution of the mitochondrial respira-
tory chain disorder to the clinical course is discussed.

Influenza encephalopathy is a critical complication of

influenza infection. Although the pathological mecha-
nism is poorly understood, mitochondrial malfunction
is suggested to play a role in the pathogenesis [1]. We
describe a boy with liver-specific mitochondrial respira-
tory chain complex I deficiency who developed fatal
encephalopathy associated with influenza A infection.

* Corresponding author. Tel.: +81 3 3972 8111x2442; fax: +81 3
3957 6186.
E-mail address: chi-ka@sage.ocn.ne.jp (C. Arakawa).

2. Case report

A 4-year-old Japanese boy developed pyrexia. He was
treated with acetaminophen once and visited the family
doctor. Influenza A infection was diagnosed by nasal
antigen test in a clinic and he was treated with oseltam-
ivir. He was admitted to a nearby hospital due to a gen-
eralized seizure in the evening; then, he was transferred
to our institute because of highly elevated serum trans-
aminase. He was the first child born to healthy parents
with no consanguinity. No other child had died in early

0387-7604/$ - see front matter © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
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