Table 1. Characteristics of patients and transplants | Variable | No. of patients,
n = 294 (%) | |-----------------------------------|----------------------------------------------------------------------------------------------------------------| | Age group at transplant, y | | | | 7 (2) | | > 30-40 | 30 (10) | | > 40-50 | 109 (37) | | > 50-60 | 123 (42) | | > 60 | 25 (9) | | Sex | | | Male | 158 (54) | | Female | 136 (46) | | Disease status | | | Complete remission | 99 (34) | | Not in complete remission | 178 (61) | | Unknown | 17 (6) | | Conditioning regimen | aden kan son i suda su seri eriku ri sonus, susabon i nobe dosporer uezan deri estare. Se esta soni e | | Myeloablative | 102 (34) | | Reduced intensity | 128 (44) | | Unclassifiable | 64 (22) | | GVHD prophylaxis* | t en tradicione en en el como de como de companyo de mesos de protecto acción de acción. Os colores en el como | | Cyclosporine-based | 195 (66) | | Tacrolimus-based | 94 (32) | | Other | 5 (2) | | Source of stem cells | | | Bone marrow : | 132 (45) | | Peripheral blood | 111 (38) | | Bone marrow + peripheral blood | 2 (1) | | Cord blood | 49 (17) | | Type of donor† | | | HLA-matched related | 132 (45) | | HLA-mismatched related | 31 (11) | | Unrelated, bone marrow | 82 (28) | | Unrelated, cord blood | 49 (17) | | Time from diagnosis to transplant | | | ≤ 6 mo | 141 (48) | | > 6 mo | 141 (48) | | Uncertain/missing | 12 (4) | | Year of transplant | | | 1995-1999 | 22 (7) | | 2000-2002 | 91 (31) | | 2003-2005 | 181 (62) | | Follow-up of survivors | | | Median time; mo (range) | 42.8 (1.5-102.3 | Data are numbers (%) unless specified otherwise. *Cyclosporine-based indicates cyclosporine with or without other agents; tacrolimus-based indicates tacrolimus with or without other agents. †HLA compatibility was defined according to the results of serologic or low-resolution molecular typing for HLA-A, B, and DR antigens. the results of analyses treating the occurrence of acute GVHD as a time-varying covariate; the landmark day was set at day 68 after transplantation, the date until when more than 95% of patients developed acute GVHD. Results are expressed as hazard ratios (HRs) and their 95% confidence intervals (CI). All tests were 2-sided, and a P value of less than .05 was considered to indicate statistical significance. All statistical analyses were performed with STATA Version 11 software (StataCorp). ## Results ## Characteristics of patients and transplants Characteristics of the patients and transplants are shown in Table 1. Most of the patients received transplants at the age of 41 to 60 years (median, 51 years). The disease status at transplan- tation was mainly defined as other than complete remission. The intensity of conditioning regimen was classified as myeloablative in 102 (35%) patients and reduced intensity in 128 (44%) patients; the remaining 64 (22%) patients were reported to receive cyclophosphamide plus TBI in 16 patients; busulfan plus cyclophosphamide in 15 patients; busulfan plus melphalan in 1 patient; purine analog-containing regimen in 6 patients; and other TBI-based regimens in 26 patients, although the intensity of these regimens was considered unclassifiable because of lack of dosage information. Cyclosporine-based prophylaxis against GVHD was used in more than half of patients. Patients underwent transplantation using HLA-matched related donor in 132 patients (45%), HLA-mismatched related donor in 31 patients (11%), unrelated bone marrow donor in 82 patients (28%), and unrelated cord blood unit in 49 patients (17%). Half of the patients received transplants within 6 months of diagnosis. The median time of follow-up among the survivors was 42.8 months (range, 1.5-102.3 months). #### Effects of acute GVHD on overall survival The median onset day of acute GVHD of any grade after transplantation was 24.5 (range, 5-133). Acute GVHD of grades 1-4, 2-4, and 3-4 occurred in 202 patients (69%), 150 patients (51%), and 65 patients (22%), respectively. The effect of acute GVHD on overall survival was evaluated using semi-landmark plots with reference to the following 3 categories: no acute GVHD, grade 1-2 acute GVHD, and grade 3-4 acute GVHD (Figure 1A). The impact of grade 1-2 or grade 3-4 acute GVHD on overall survival also was evaluated by forest plots stratified by background characteristics of patients and transplants (Figure 2). These analyses revealed that development of grade 1-2 acute GVHD was consistently associated with higher overall survival compared with the absence of acute GVHD, whereas occurrence of grade 3-4 acute GVHD was consistently associated with lower overall survival, except that adverse impact of grade 3-4 acute GVHD was not observed in the subgroups of patients who received transplants from an HLA-matched related or HLA-mismatched related donor. Multivariate analysis treating an occurrence of acute GVHD as a time-dependent covariate also confirmed the positive impact of grade 1-2 acute GVHD (HR. 0.65; 95% CI, 0.45-0.93; P = .018) and the adverse impact of grade 3-4 acute GVHD on overall survival (HR, 1.64; 95% CI, 1.10-2.42; P = .014; Table 2). Patients who received reduced intensity conditioning and myeloablative conditioning had similar rates of overall survival by both univariate (HR of reduced intensity vs myeloablative transplant, 1.19; 95% CI, 0.85-1.68; P = .318) and multivariate analysis (HR, 0.95; 95% CI, 0.61-1.47; P = .814). There was no interaction effect between conditioning intensity and grade 1-2 (P = .704) or grade 3-4 acute GVHD (P = .891) on overall survival. The effect of each grade of acute GVHD on overall survival was additionally evaluated. It showed that only grade 2 acute GVHD was associated with superior overall survival, whereas only grade 4 acute GVHD was associated with inferior survival (supplemental Table 1, available on the Blood Web site; see the Supplemental Materials link at the top of the online article). In the landmark analysis treating an occurrence of acute GVHD as a time-fix covariate, consistent results were obtained for patients who survived at least 68 days (landmark day), although the adverse impact of grade 3-4 acute GVHD on overall survival became no longer significant (supplemental Table 2). Figure 1. Semi-landmark plots for effects of acute GVHD. Semi-landmark plots illustrating the effects of acute GVHD on overall survival (A), disease-associated mortality (B), and treatment-related mortality (C). # Effects of acute GVHD on disease-associated and treatment-related mortality We next evaluated the effects of acute GVHD on diseaseassociated and treatment-related mortality (Figure 1B-C). Diseaseassociated mortality was defined as cumulative incidence of death directly attributable to relapse or progression of ATL, whereas treatment-related mortality was calculated as cumulative incidence of any death not included in disease-associated deaths. Multivariate analysis revealed that disease-associated mortality was lower in the presence of grade 1-2 and grade 3-4 acute GVHD compared with the absence of acute GVHD (grade 1-2 acute GVHD: HR, 0.54; 95% CI, 0.32-0.92; P = .023 and grade 3-4 acute GVHD: HR, 0.44; 95% CI, 0.22-0.90; P = .024; Table 2), and each grade of acute GVHD showed consistent inverse association with diseaseassociated mortality (supplemental Table 1). Although the risk of treatment-related mortality was not higher in the presence of grade 1-2 acute GVHD, development of grade 3-4 acute GVHD was significantly associated with higher treatment-related mortality compared with the absence of acute GVHD (HR, 3.50; 95% CI, 2.01-6.11; P < .001; Table 2). Patients undergoing reduced intensity transplantation and those undergoing myeloablative transplantation had similar risks of disease-associated death (HR, 0.99; 95% CI, 0.46-2.13; P = .975) and treatment-related death (HR, 0.98; 95% CI, 0.60-1.59; P = .928) by multivariate analysis. There was no interaction effect between conditioning intensity and grade 1-2 or grade 3-4 acute GVHD on disease-associated mortality and treatment-related mortality. Of 95 patients who experienced treatment-related deaths, 27 patients succumbed to infectious complications: bacterial in 13 patients, viral in 7 patients (including 3 cases of cytomegalovirus disease), viral and bacterial in 1 patient, fungal in 5 patients, and no specific organism reported in 1 patient. The proportions of patients who died of infectious complication among those without acute GVHD (n = 92), those with grade 1-2 (n = 137), and those with grade 3-4 acute GVHD (n = 65) were 4%, 9%, and 17%, respectively (supplemental Table 3). By multivariate analysis, development of grade 3-4 acute GVHD was significantly associated with higher risk of death related to infection (HR, 4.74; 95% CI, 1.51-14.8; P = .008), whereas the adverse influence on the infection-related deaths was less evident in the presence of grade 1-2 acute GVHD (HR, 2.17; 95% CI, 0.72-6.56; P = .169). #### Effects of chronic GVHD on overall survival and mortality Chronic GVHD was evaluated in 183 patients who survived at least 100 days after transplantation. The median day of chronic GVHD occurrence after transplantation was 116 (range, 100-146 days). Limited and extensive chronic GVHD occurred in 29 (16%) and 63 patients (34%), respectively. Semi-landmark plots were constructed to illustrate the effects of chronic GVHD on overall survival, disease-associated mortality, and treatment-related mortality with reference to the following subgroups: no chronic GVHD, limited chronic GVHD, and extensive chronic GVHD (Figure 3). In multivariate analysis treating an occurrence of chronic GVHD as a time-dependent covariate, neither overall survival nor diseaseassociated mortality was significantly associated with severity of chronic GVHD, whereas treatment-related mortality was higher in the presence of extensive chronic GVHD (HR, 2.75; 95% CI, 1.34-5.63; P = .006) compared with the absence of chronic GVHD (Table 3). The proportions of patients who died of infectious complication among those without chronic GVHD (n = 91), those with limited chronic GVHD (n = 29), and those with extensive chronic GVHD (n = 63) were 7%, 10%, and 8%, respectively. In multivariate analysis, no statistically significant association was found between infection-related death and the occurrence of either limited (P = .289) or extensive GVHD (P = .836). # Discussion To our knowledge, this is the largest retrospective study to analyze the impact of acute and chronic GVHD on clinical Figure 2. Impact of the grade of acute GVHD on overall survival in each stratified category. Effects of grade 1-2 (A) and grade 3-4 acute GVHD (B) on overall survival are shown as forest plots. Square boxes on lines indicate hazard ratios compared with "no acute GVHD group," and horizontal lines represent the corresponding 95% CI. Abbreviations used are the same as described in the footnotes to Tables 1 and 2. outcomes including overall survival, disease-associated mortality, and treatment-related mortality after allogeneic HCT for ATL. In the present study, the occurrence of both grade 1-2 and grade 3-4 acute GVHD was associated with lower disease-associated mortality compared with the absence of acute GVHD. However, positive effect of GVHD on reduced disease-associated mortality was counterbalanced by increased treatment- related mortality among patients who developed severe acute GVHD, and an overall beneficial effect on survival was observed only with the development of mild-to-moderate acute GVHD. In contrast to acute GVHD, no beneficial effect was observed in association with the development of chronic GVHD, although the point estimate of the HR comparing limited chronic GVHD versus the absence of chronic GVHD Table 2. Effect of acute GVHD on overall survival, disease-associated mortality, and treatment-related mortality after allogeneic hematopoietic cell transplantation for adult T-cell leukemia | Outcome | Univariate analysis | | Multivariate analysis | | |------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------| | | HR (95% CI) | P | HR (95% CI) | P | | Overall survival* | | | | | | Grade 1 or 2 acute GVHD vs no acute GVHD | 0.60 (0.42-0.85) | .004 | 0.65 (0.45-0.93) | .018 | | Grade 3 or 4 acute GVHD vs no acute GVHD | 1.38 (0.94-2.01) | .099 🚎 📑 | 1.64 (1.10-2.42) | .01 | | Disease-associated mortality† | e normalised – talles sin to travelle in talles en | and the second s | | | | Grade 1 or 2 acute GVHD vs no acute GVHD | 0.47 (0.28-0.79) | .005 | 0.54 (0.32-0.92) | .02 | | Grade 3 or 4 acute GVHD vs no acute GVHD | 0.41 (0.21-0.81) | .010 | 0.44 (0.22-0.90) | .02 | | Treatment-related mortality‡ | | | | | | Grade 1 or 2 acute GVHD vs no acute GVHD | 1.13 (0.67-1.89) | .649 | 1.22 (0.72-2.07) | .46 | | Grade 3 or 4 acute GVHD vs no acute GVHD | 3.34 (1.94-5.74) | _ : _ : 1001 > _{: : = : :} | 3.50 (2.01-6.11) | <.00 | *Other significant variables were sex of recipient, female (reference, 1.00) and male (HR, 1.70; 95% CI, 1.24-2.32; P = .001); achievement of complete remission, complete remission (reference, 1.00), status other than complete remission (HR, 2.05; 95% CI, 1.44-2.92; P = .001), and status not known (HR, 2.21; 95% CI, 1.15-4.22; P = .017); type of donor, HLA-matched related donor (reference, 1.00), HLA-mismatched related donor (HR, 1.71; 95% CI, 1.04-2.84; P = .036), unrelated donor of bone marrow (HR, 1.39; 95% CI, 0.94-2.06; P = .096), and unrelated cord blood (HR, 1.86; 95% CI, 1.22-2.83; P = .004). †Other significant variables were achievement of complete remission, complete remission (reference, 1.00), status other than complete remission (HR, 2.98; 95% CI, 1.62-5.47; P < .001), and status not known (HR, 0.96; 95% CI, 0.21-4.49; P = .963); type of donor, HLA-matched related donor (reference, 1.00), HLA-mismatched related donor (HR, 2.14; 95% CI, 1.00-4.55; P = .049), unrelated donor of bone marrow (HR, 1.45; 95% CI, 0.81-2.61; P = .214), and unrelated cord blood (HR, 1.25; 95% CI, 0.63-2.49; P = .517). ‡Another significant variable was achievement of complete remission, complete remission (reference, 1.00), status other than complete remission (HR, 1.17; 95% CI, 0.74-1.84; P = .498) and status not known (HR, 2.31; 95% CI, 1.04-5.15; P = .040). Figure 3. Semi-landmark plots for impact of chronic GVHD. Semi-landmark plots illustrating impact of chronic GVHD on overall survival (A), disease-associated mortality (B), and treatment-related mortality (C). suggested the trend toward a reduced risk of disease-associated deaths in the limited chronic GVHD group. Our present findings are in contrast to the previous reports showing the beneficial effects of chronic GVHD rather than acute GVHD on the prevention of disease recurrence after allogeneic HCT. It is less likely that the particular characteristics of chronic GVHD in patients with ATL biased the results, because the incidence rate and median onset day of chronic GVHD in our cohort were similar to those reported in previous studies evaluating the incidence of chronic GVHD among Japanese patients, most of whom had received allogeneic HCT for myeloid neoplasms or acute lymphoblastic leukemia.30-32 Conceivably, the rapid tempo of disease recurrence of ATL might be such that chronic GVHD is less potent in terms of harnessing clinically relevant graft-versusleukemia responses compared with acute GVHD. However, the results of our analysis regarding the effect of chronic GVHD should be interpreted with caution because the number of patients evaluable for chronic GVHD was relatively small in our study for providing sufficient statistical power. The effect of chronic GVHD on outcomes after HCT for ATL should be further explored in a larger cohort. The occurrence of GVHD has been shown to exert a potent graft-versus-leukemia effect in terms of reducing relapse incidence in acute leukemia or chronic myeloid leukemia.33,34 In contrast, multiple studies have documented a correlation between GVHD in its acute or chronic form and treatment-related mortality. In a study of patients undergoing HLA-identical sibling HCT for chronic myeloid leukemia, the overall beneficial effect on long-term survival was demonstrated only in a group of patients who developed grade 1 acute GVHD or limited chronic GVHD.33 In another study of HLA-identical sibling HCT for leukemia using cyclosporine and methotrexate as GVHD prophylaxis, a benefit of mild GVHD was only seen in high-risk patients but not in standard-risk patients. Therefore, the therapeutic window between decreased relapse incidence and increased transplant-related mortality in association with the development of GVHD has been considered to be very narrow.34 With regard to the effectiveness of allogeneic HCT for ATL, it is also of note here that posttransplant eradication of ATL cells can be achieved without the use of high-dose chemoradiotherapy: patients who received a transplant with reduced intensity conditioning had survival outcomes similar to those who received a transplant with myeloablative conditioning in our study. Intriguingly, several small cohort studies exhibited that abrupt discontinuation of immunosuppressive agents resulted in disappearance or reduction in the tumor burden in allografted patients with ATL. In some cases, remission of ATL was observed along with the development of GVHD. 19,20,22 Taken together with the findings of this study, it is suggested that ATL is particularly susceptible to immune modulation following allogeneic HCT. To clarify the presence of such "graft-versus-ATL" effect, further investigations are needed to assess the efficacy of donor lymphocyte infusion or withdrawal of immunosuppressive agents on relapse after transplantation. Of the HTLV-I gene products, Tax is a dominant target of HTLV-I-specific cytotoxic T lymphocytes. The vigorous Taxspecific cytotoxic T-cell responses were demonstrated in recipients who obtained complete remission after allogeneic HCT for ATL, suggesting that "graft-versus-HTLV-I" responses might contribute to the eradication of ATL cells.35,36 However, Tax is generally undetectable or present in very low levels in primary ATL cells. 37,38 In addition, small amounts of HTLV-I provirus can be detected in peripheral blood of recipients who attained long-term remission of ATL, even after HCT from HTLV-I-negative donors.39,40 These findings suggest that "graft-versus-ATL" effect can be harnessed without complete elimination of HTLV-I. It is also important to note that allogeneic HCT is emerging as an effective treatment option for other mature T-cell neoplasms not related to HTLV-I, such as mycosis fungoides/Sézary syndrome and various types of aggressive peripheral T-cell lymphomas.41,42 These observations raised the possibility that the common targets for alloimmune responses might exist across a spectrum of malignant T-cell neoplasms, including ATL. The minor histocompatibility antigens or tumor-specific antigens can be other targets of alloimmune anti-ATL effect. 43-45 Therefore, the elucidation of the mechanism underlying an immunologic eradication of primary ATL cells may Table 3. Effect of chronic GVHD on overall survival, disease-associated mortality, and treatment-related mortality after allogeneic hematopoietic cell transplantation for adult T-cell leukemia | Outcome | Univariate analysis | | Multivariate analysis | | |-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------| | | HR (95% CI) | P | HR (95% CI) | P | | Overall survival* | | | | | | Limited chronic GVHD vs no chronic GVHD | 0.71 (0.34-1.47) | .353 | 0.72 (0.35-1.50) | .385 | | Extensive chronic GVHD vs no chronic GVHD | 1.45 (0.90-2.35) | - :131 | 1.40 (0.86-2.30) | .176 | | Disease-associated mortality† | ou eta 1975 (Capatano, eta 1970 - 1970 eta 1986 (Capatano) 198 | and the second | eren sp en seksom gravet magnet sp. enn på belagt fra blikt grif blegt får det pringe blevnungt sen pri sint | service are at the part of the | | Limited chronic GVHD vs no chronic GVHD | 0.45 (0.14-1.46) | .183 | 0.45 (0.14-1.44) | .178 | | Extensive chronic GVHD vs no chronic GVHD | 0.81 (0.39-1.67) | .563 | 0.80 (0.39-1.64) | .536 | | Treatment-related mortality‡ | | | | | | Limited chronic GVHD vs no chronic GVHD | 1.59 (0.64-3.95) | .316 | 1.56 (0.63-3.87) | .342 | | Extensive chronic GVHD vs no chronic GVHD | 2,85 (1.41-5.77) | .004 | 2.75 (1.34-5.63) | .006 | ^{*}There was no significant variable. lead to a new strategy for improving outcomes of allogeneic HCT not only for ATL but also for other intractable T-cell neoplasms. This study has several limitations. First, acute GVHD might be intentionally induced for some patients considered at high risk of relapse by treating clinicians. Second, the information on the day when each grade of GVHD occurred was not available. Therefore, we treated the development of acute and chronic GVHD in their worst severity as a time-varying covariate. To validate the results, we also performed the landmark analysis and obtained consistent results. Third, the relatively small number of patients with chronic GVHD might mask or bias the effect of chronic GVHD on outcomes. Last, the effect of multiple testing should be taken into account for the interpretation of the secondary end points. In conclusion, the development of acute GVHD was associated with lower disease-associated mortality after allogeneic HCT for ATL compared with the absence of acute GVHD. However, improved survival can be expected only among a group of patients who developed mild-to-moderate acute GVHD because those who developed severe acute GVHD were at high risk of treatment-related mortality. New strategies that enhance the allogeneic anti-ATL effect without exacerbating GVHD are required to improve the outcomes of patients undergoing allogeneic HCT for ATL. # Acknowledgments The authors are indebted to all the physicians and data managers at the centers who contributed valuable data on transplantation for adult T-cell leukemia to the JSHCT, the JMDP, and the JCBBN. They also thank all the members of the data management committees of JSHCT, JMDP, and JCBBN for their dedicated management of data. This work was supported in part by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan The views expressed in this report are those of authors and do not indicate the views of the JSHCT, JMDP, or JCBBN. This work is in memory of T.U., who died during the preparation of this manuscript. ## Authorship Contribution: T.I. and T.U. designed the research and organized the project; M. Hishizawa, J.K., T.I., and T.U. reviewed and analyzed data and wrote the paper; J.K., T.I., and K.M. performed statistical analysis; Y.A., R.S., and H.S. collected data from JSHCT; T.K. and Y. Morishima collected data from JMDP; T.N.-I., and S. Kato collected data from JCBBN; and A.U., S.T., T.E., Y. Moriuchi, R.T., F.K., Y. Miyazaki, M.M., K.N., M. Hara, M.T., S. Kai, and J.O. interpreted data and reviewed and approved the final manuscript. Conflict-of-interest disclosure: The authors declare no competing financial interests. A list of other members who contributed data on allogeneic HSCT for ATL to JSHCT, JMDP, and JCBBN appears in the online supplemental Appendix. Correspondence: Tatsuo Ichinohe, Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan: e-mail: nohe@kuhp.kyoto-u.ac.jp. # References - 1. Uchiyama T, Yodoi J, Sagawa K, Takatsuki K, Uchino H. Adult T-cell leukemia: clinical and hematologic features of 16 cases. Blood. 1977; 50(3):481-492. - 2. Uchiyama T. Human T cell leukemia virus type I (HTLV-I) and human diseases. Annu Rev Immunol. 1997;15:15-37. - 3. Verdonck K, Gonzalez E, van Dooren S, Vandamme AM, Vanham G, Gotuzzo E. Human T-lymphotropic virus 1: recent knowledge about an ancient infection. Lancet Infect Dis. 2007;7(4): 266-281. - 4. Matsuoka M, Jeang KT, Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer. 2007;7(4):270-280. - 5. Arisawa K, Soda M, Endo S, et al. Evaluation of adult T-cell leukemia/lymphoma incidence and its impact on non-Hodgkin lymphoma incidence in southwestern Japan. Int J Cancer, 2000;85(3): 319-324. - Shimoyama M. Diagnostic criteria and classification of clinical subtypes of adult T-cell leukaemialymphoma. A report from the Lymphoma Study Group (1984-87). Br J Haematol. 1991;79(3):428-437. - Yamada Y. Tomonaga M. Fukuda H. et al. A new G-CSF-supported combination chemotherapy. LSG15, for adult T-cell leukaemia-lymphoma: Japan Clinical Oncology Group Study 9303. Br J Haematol. 2001;113(2):375-382. - 8. Tsukasaki K, Utsunomiya A, Fukuda H, et al. VCAP-AMP-VECP compared with biweekly CHOP for adult T-cell leukemia-lymphoma: Japan Clinical Oncology Group Study JCOG9801. J Clin Oncol. 2007;25(34):5458-5464. - Bazarbachi A. Ghez D. Lepelletier Y. et al. New therapeutic approaches for adult T-cell leukaemia. Lancet Oncol. 2004;5(11):664-672. - Kchour G. Tarhini M. Kooshvar MM. et al. Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood. 2009;113(26): 6528-6532 - 11. Yamamoto K, Utsunomiya A, Tobinai K, et al. [†]There was no significant variable. [#]There was no other significant variable. - Phase I study of KW-0761, a defucosylated humanized anti-CCR4 antibody, in relapsed patients with adult T-cell leukemia-lymphoma and peripheral T-cell lymphoma. J Clin Oncol. 2010;28(9): 1591-1598. - Jabbour M, Tuncer H, Castillo J, et al. Hematopoietic SCT for adult T-cel leukemia/lymphoma: a review. Bone Marrow Transplant. 2011;46(8): 1039-1044. - Utsunomiya A, Miyazaki Y, Takatsuka Y, et al. Improved outcome of adult T cell leukemia/lymphoma with allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2001; 27(1):15-20. - Kami M, Hamaki T, Miyakoshi S, et al: Allogeneic haematopoietic stem cell transplantation for the treatment of adult T-cell leukaemia/lymphoma. Br J Haematol. 2003;120(2):304-309. - Fukushima T, Miyazaki Y, Honda S, et al: Allogeneic hematopoietic stem cell transplantation provides sustained long-term survival for patients with adult T-cell leukemia/lymphoma. Leukemia. 2005;19(5):829-834. - Okamura J, Utsunomiya A, Tanosaki R, et al. Allogeneic stem-cell transplantation with reduced conditioning intensity as a novel immunotherapy and antiviral therapy for adult T-cell leukemia/ lymphoma. *Blood*. 2005;105(10):4143-4145. - Nakase K, Hara M, Kozuka T, Tanimoto K, Nawa Y. Bone marrow transplantation from unrelated donors for patients with adult T-cell leukaemia/lymphoma. Bone Marrow Transplant. 2006;37(1):41-44. - Kato K, Kanda Y, Eto T, et al. Allogeneic bone marrow transplantation from unrelated human T-cell leukemia virus-l-negative donors for adult T-cell leukemia/lymphoma: retrospective analysis of data from the Japan Marrow Donor Program. Biol Blood Marrow Transplant. 2007;13(1):90-99. - Yonekura K, Utsunomiya A, Takatsuka Y, et al. Graft-versus-adult T-cell leukemia/lymphoma effect following allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2008; 41(12):1029-1035. - Shiratori S, Yasumoto A, Tanaka J, et al. A retrospective analysis of allogeneic hematopoietic stem cell transplantation for adult T cell leukemia/lymphoma (ATL): clinical impact of graft-versus-leukemia/lymphoma effect. *Biol Blood Marrow Transplant*. 2008;14(7):817-823. - van Besien KW, de Lima M, Giralt SA, et al. Management of lymphoma recurrence after allogeneic transplantation: the relevance of graftversus-lymphoma effect. Bone Marrow Transplant. 1997;19(10):977-982. - 22. Tanosaki R, Uike N, Utsunomiya A, et al. Allogeneic hematopoietic stem cell transplantation using reduced-intensity conditioning for adult T cell leukemia/lymphoma: impact of antithymocyte - globulin on clinical outcome. *Biol Blood Marrow Transplant*. 2008;14(6):702-708. - Hishizawa M, Kanda J, Utsunomiya A, et al. Transplantation of allogeneic hematopoietic stem cells for adult T-cell leukemia: a nationwide retrospective study. *Blood*. 2010;116(8):1369-1376. - Przepiorka D, Weisdorf D, Martin P, et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant. 1995;15(6):825-828. - Sullivan KM, Agura E, Anasetti C, et al. Chronic graft-versus-host disease and other late complications of bone marrow transplantation. Semin Hematol. 1991;28(3):250-259. - Gooley TA, Leisenring W, Crowley J, Storer BE. Estimation of failure probabilities in the presence of competing risks: new representations of old estimators. Stat Med. 1999;18(6):695-706. - Fine JP, Gray RJ. A proportional hazards model for subdistribution of a competing risk. JAm Stat Assoc. 1999:94:496-509. - Cortese G, Andersen P. Competing risks and time-dependent covariates. *Biom J.* 2010;52(1): 138-158. - Giralt S, Ballen K, Rizzo D, et al. Reducedintensity conditioning regimen workshop: defining the dose spectrum. Report of a workshop convened by the Center for International Blood and Marrow Transplant Research. *Biol Blood Marrow Transplant*. 2009;15(3):367-369. - Atsuta Y, Suzuki R, Yamamoto K, et al. Risk and prognostic factors for Japanese patients with chronic graft-versus-host disease after bone marrow transplantation. Bone Marrow Transplant. 2006;37(3):289-296. - Ozawa S, Nakaseko C, Nishimura M, et al. Chronic graft-versus-host disease after allogeneic bone marrow transplantation from an unrelated donor: incidence, risk factors and association with relapse. A report from the Japan Marrow Donor Program. *Br J Haematol*. 2007;137(2):142-151. - Nagafuji K, Matsuo K, Teshima T, et al. Peripheral blood stem cell versus bone marrow transplantation from HLA-identical sibling donors in patients with leukemia: a propensity score-based comparison from the Japanese Society for Hematopoietic Stem Cell Transplantation registry. Int J Hematol. 2010;91(5):855-864. - Gratwohl A, Brand R, Apperley J, et al. Graftversus-host disease and outcome in HLA-identical sibling transplantations for chronic myeloid leukemia. *Blood*. 2002;100(12):3877-3886. - Kanda Y, Izutsu K, Hirai H, et al. Effect of graftversus-host disease on the outcome of bone marrow transplantation from an HLA-identical sibling donor using GVHD prophylaxis with cyclosporin A and methotrexate. *Leukemia*. 2004;18(5):1013-1019 - Harashima N, Kurihara K, Utsunomiya A, et al. Graft-versus-Tax response in adult T-cell leukemia patients after hematopoietic stem cell transplantation. Cancer Res. 2004;64(1):391-399. - Tanaka Y, Nakasone H, Yamazaki R, et al. Singlecell analysis of T-cell repertoire of HTLV-1 Taxspecific cytotoxic T cells in allogeneic transplant recipients with adult T-cell leukemia/lymphoma. Cancer Res. 2010;70(15):6181-6192. - Franchini G, Wong-Staal F, Gallo RC. Human T-cell leukemia virus (HTLV-I) transcripts in fresh and cultured cells of patients with adult T-cell leukemia. Proc Natl Acad Sci U S A. 1984;81(19): 6207-6211. - Kinoshita T, Shimoyama M, Tobinai K, et al. Detection of mRNA for the tax1/rex1 gene of human T-cell leukemia virus type I in fresh peripheral blood mononuclear cells of adult T-cell leukemia patients and viral carriers by using the polymerase chain reaction. Proc Natl Acad Sci U S A. 1989;86(14):5620-5624. - Choi I, Tanosaki R, Uike N, et al. Long-term outcomes after hematopoietic SCT for adult T-cell leukemia/lymphoma: results of prospective trials. Bone Marrow Transplant. 2011;46(1):116-118. - Yamasaki R, Miyazaki Y, Moriuchi Y, et al. Small number of HTLV-1-positive cells frequently remains during complete remission after allogeneic hematopoietic stem cell transplantation that are heterogeneous in origin among cases with adult T-cell leukemia/lymphoma. Leukemia. 2007; 21(6):1212-1217. - Le Gouill S, Milpied N, Buzyn A, et al. Graftversus-lymphoma effect for aggressive T-cell lymphomas in adults: a study by the Société Française de Greffe de Moëlle et de Thérapie Cellulaire. J Clin Oncol. 2008;26(14):2264-2271. - Duarte RE, Canals C, Onida F, et al. Allogeneic hematopoietic cell transplantation for patients with mycosis fungoides and Sezary syndrome: a retrospective analysis of the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J Clin Oncol. 2010;28(29): - Hishizawa M, Imada K, Ishikawa T, Uchiyama T. Kinetics of proviral DNA load, soluble interleukin-2 receptor level and tax expression in patients with adult T-cell leukemia receiving allogeneic stem cell transplantation. *Leukemia*. 2004;18(1): 167-169. - Hishizawa M, Imada K, Sakai T, et al. Antibody responses associated with the graft-versusleukemia effect in adult T-cell leukemia. Int J Hematol. 2006;83(4):351-355. - Kawahara M, Hori T, Matsubara Y, et al. Cyclindependent kinaselike 5 is a novel target of immunotherapy in adult T-cell leukemia. *J Immunother*. 2007;30(5):499-505.