FGF components and FGF signaling are upregulated in enhanced BMP signaling mutants.

Because upregulated FGF signaling results in craniosynostosis (15,16,32-34), as exemplified by
Apert syndrome (14,17,35), we speculated that enhanced BMP signaling through BMPR1A might
positively regulate FGF signaling or components of its pathway leading to premature suture fusion.
We first analyzed the expression of FGF pathway components in the skull by
immunohistochemistry at embryonic day (E) 17.5. In the AF sutures of mutant embryos, levels of
FGF2, FGFR1 and FGFR2 were significantly upregulated (Fig. 2A). Consistent with the
upregulation of FGF ligand and receptors in mutant embryos, phosphorylated ERK1/2 (p-
ERK1/2), a known effector of FGF signaling, was dramatically increased in mutant skull bones
and metopic sutures (Fig. 2B). Using preosteoblasts established from CNC-derived skull bones
(nasal and frontal), we observed that higher levels of p-ERK1/2 were induced with BMP2
stimulation in mutant preosteoblasts compared with control preosteoblasts (Fig. 2C, D). Taken
together, these results suggest that enhanced BMP signaling through BMPR1A in CNC cells might
upregulate or synergize with FGF signaling to promote craniosynostosis, which we examined

further as below.

Augmentation of FGF signaling is not the direct cause to develop skull malformation in
| enhanced BMP signaling mutants.

To help confirm that the ca-Bmprla transgene exerted its effects on both skull and suture
abnormalities via excess BMP signaling, we tested the impact of decreased wild-type Bmprla gene
dosage by superimposing Bmprla heterozygosity (Bmpr]a” ) (36) on the ca-Bmprla:P0-Cre
double transgenic background. Notably, ca-Bmpria:P0-Cre carrying one copy of endogenous
Bmprla (ca-Bmprla:P0-Cre:Bmprl a'”, rescued; R, n=7) showed normal head morphology that

was comparable with controls (control; CT, n=7), whereas ca-Bmprla:P0-Cre littermates with two
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copies of endogenous Bmprla retained the créniosynostosis phenotype (mutant; MT, n=7) (Fig.
3A). We confirmed the patency of AF sutures in rescued mice by skeletal staining and histological
analysis (Fig. 3A). We also noted that skull bone thickness in rescued mice was comparable to that
of control mice (Fig. 3A). We further examined the expression level of Bmprla among control, ca-
Bmprila:P0-Cre and ca-Bmprla:P0-Cre:Bmprl a™” preosteoblast cells by quantitative real time
RT-PCR (qRT-PCR). Bmprla expression was reduced by more than half in ca-Bmprla:P0O-

Cre:Bmprl a*”

cells as compared with both control and ca-Bmprla:P0-Cre preosteoblast cells
(Fig. 3B). Expression levels of the transgene were very low when assessed using transgene-
specific primers by qRT-PCR (data not shown), explaining the observation that levels of Bmpria
expression in the mutants (when measuring transcripts both from the endogenous locus and the
transgene) were comparable with those in controls. These results demonstrate that the increase in
BMP signaling mediated by ca-Bmprla transgene is relatively modest in that the loss of one wild-
type allele may compenséte, and consequently that precise regulation of BMP signaling is critical
for maintaining suture patency and normal skull morphogenesis.

Since FGF signaling was also upregulated in mutant skulls (Fig. 2), we speculated that
increased BMP signaling in CNC cells might enhance FGF signaling to cause premature suture
| ,~“;fusion in ca-Bmprla:P0-Cre mice. To compare the regulation of FGF signaling molecules in
’normal and mutant skulls, we examined their levels of expression in nasal-frontal bones by qRT-
PCR. On one hand, the expression of Fgf2, Fefrl, Fgfr2, components for the FGF signaling, and
Sproutyl/2/3/4, downstream targets for the FGF signaling, in mutant (MT) mice were enhanced
compared with control (CT) mice (Fig. 3C), suggesting enhanced FGF signaling accompanies
enhanced BMP signaling in this model. However, the expression of these genes was comparable

between mutant (MT) and rescued (R) mice (Fig. 3C). Furthermore, we found comparable levels

of p-ERK1/2 in mutant (MT) and rescued (R) preosteoblasts, which still showed a higher degree of
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ERK1/2 activation as compared with control (CT) preosteoblasts (Fig. 3D). These results suggest
that the rescue of the craniosynostosis phenotype in compound inducible-transgenic and

haploinsufficient mice was not due to the normalization of FGF-ERK1/2 signaling.

Enhanced Smad-dependent BMP signaling pathway is responsible for the etiology of
craniosynostosis.

Upregulated FGF/ERK signaling did not appear to account for skull development abnormalities
observed in ca-Bmprla:P0O-Cre mice (Fig. 3C, D). We investigated other potential explanations of
how enhanced Smad-dependent or -independent BMP signaling might induce premature suture
fusion in mutants via downstream intracellular signaling. We assessed activation of other mitogen-
activated protein kinase (MAPK) pathways including p38, which are thought to be effectors of
Smad-independent signaling by BMP and TGF-B ligands (37). Consistent with findings of
enhanced Smad activation in skull-derived preosteoblasts (Fig. S2B), mutant calvarium exhibited
higher levels of phosphorylated SMAD1/5/8 (p-SMAD1/5/8) compared with controls (Fig. 4A).
On the other hand, levels of phosphorylated p38 (p-p38) remained undetectable in both control and
mutant skulls (Fig. 4A). In addition, BMP2 stimulation did not activate p38 or JNK beyond basal
levels in skull-derived preosteoblasts (Fig. 4B). Morcover, levels of phosphorylated TGF-B-
"activated kinase 1 (TAK1), the MAPKKK functioning upstream of p38 and JNK (38), was
comparable between control, mutant, and rescued preosteoblast cells (Fig. S9). The lack of
modulation of TAKI1 or specific MAPK pathways in mutant mouse tissues suggested that
canonical Smad-dependent BMP signaling may be primarily responsible for the craniosynostosis
phenotype. To investigate further the relationship between enhanced Smad-dependent BMP
signaling and skull defects in ca-Bmprla:P0-Cre, we examined the kinetics of p-SMAD1/5/8

signaling in control, mutant and rescued preosteoblasts. As seen in the mutant calvarium showing
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enhanced SMAD1/5/8 phosphorylation (Fig. 4A), mutant preosteoblasts (MT) displayed the higher
basal levels of p-SMADI1/5/8 (at 0 min) and greater levels of p-SMAD1/5/8 in response to BMP2,
which were restored in rescued presosteoblasts (R) to levels comparable to wild-type
preosteoblasts (CT) (Fig. 4C, D). These findings strongly suggest that enhanced Smad-dependent

BMP signaling is the principle etiology of craniosynostosis in ca-Bmprla:P0O-Cre mice.

Treatment of selective chemical inhibitor of BMP type I receptor kinases partially rescues
craniosynostosis phenotype in vivo.

To assess further the role of enhanced Smad-dependent BMP signaling in the skull malformation
phenotype, we used a selective chemical inhibitor for BMP type I receptor kinases, LDN-193189
(22,39) as a means for normalizing Smad-dependent signaling. Since LDN-193189 and other
chemical kinase inhibitors are known to possess various off-target effects (40), we validated the
selectivity of LDN-193189 for Smad-dependent BMP signaling in our tissues. We measured levels
of p-SMAD1/5/8 with varying concentrations of LDN-193189 using wild-type preosteoblasts from
neural crest-derived bones in skull. Similar to what was previously reported (22), in skull-derived
preosteoblasts low concentrations of LDN-193189 (~50 nM) were sufficient to inhibit BMP
mediated phosphorylation of SMAD1/5/8 without affecting Smad-independent signaling pathways
‘(Fig. 5A, left panel). We further examined the potential impact of LDN-193189 upon levels of p-
TAK1, p-ERK1/2 and p-p38 induced by FGF stimulation (Fig. SA, right panel), confirming the
activity of LDN-193189 as a selective inhibitor of Smad-mediated BMP signaling in CNC-derived
preosteoblasts. We next explored the efficacy of LDN-193189 in the pre-natal prophylaxis of
craniosynostosis in ca-Bmprila: PO-Cre. LDN-193189 was administered (2.5 mg/kg per day i.p.) to
pregnant ca-Bmprla females after timed mating with PO-Cre males starting at E14.5 (Fig. 5B).

After birth, lactating dams continued to receive LDN-193189 through P15, and neonates were
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euthanized at P16. Importantly, the cranial morphology of ca-Bmpria:P0-Cre treated in utero and
perinatally with LDN-193189 was normalized (Fig. 5C). The length of nasal bones (n=5/6) and the
shape of foramina in frontal bones (n=3/6) were normalized to that of control mice. Interestingly,
prenatal LDN-193189 treatment did not visibly affect normal skull development in control pups
(n=6/6) (Fig. 5C). Bone volume and trabecular number were decreased and trabecular spaces were
wider in nasal and frontal bones of ca-Bmprla:P0-Cre, but were also normalized after LDN-
193189 treatment (Fig. 5D). These results demonstrate that prenatal and perinatal treatment with a
selective chemical inhibitor of BMP type I receptor kinases can partially rescue craniosynostoéis in

vivo, further supporting the importance of precisely regulated Smad-signaling in this phenotype.

Discussion

Our genetic study demonstrates that tightly controlled levels of Smad-dependent BMP signaling
through BMPRI1A in cranial neural crest (CNC) cells, not in committed osteoblasts, are critical for
regulating suture patency and normal skull morphogenesis, whereas excessive signaling leads to
craniosynostosis. Underneath molecular mechanisms of our findings are summarized in Fig. 6. In
wild-type, BMPRI1A exerts both Smad-dependent and -independent signaling upon BMP ligand
binding. In the mutant mice (ca-Bmprla:P0-Cre), the basal levels of Smad-dependent signaling
kare upregulated and further increased upon BMP ligand binding. Increases of p-ERK1/2 are also
observed, not due to the increase of Smad-independent signaling mediated by TAK1, but due to
the increase of FGF signaling (Fig. S9). In the rescued mice (ca—Bmpr]a:PO-Cre.‘Bmpr]a+/'),
removal of one copy of endogenous Bmprla normalizes levels of Smad-dependent signaling

leading to the phenotypic rescue of suture patency and skull morphology. Enhanced levels of FGF-

ERK signaling are still observed in the rescued mice. There are two outstanding questions why

Smad-signaling enhanced by the constitutively activated BMPR1A is normalized by removal of
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one copy of the endogenous gene and why FGF signaling is still augmented in the rescued samples
(see below for potential explanations). Although additional studies are necessary to answer these
questions, our current results clearly demonstrate that a modest increase of BMP signaling via
Smad-dependent signaling in CNC cells can be a cause of a premature suture fusion in our mouse
model.

There is overwhelming evidence both in humans and mice that enhanced FGF signaling
contributes to several types of craniosynostosis (1,2,41,42). Our mutant mice also exhibit
upregulated FGF signaling; however, our model appears to be unique in that the enhanced levels of
FGF signaling observed do not appear to be sufficient for the phenotype. Rather, the independent
contribution of Smad-dependent BMP signaling in our model suggests an important and novel
signaling mechanism for the etiology of craniosynostosis. Because associated gene mutations are
identified in only 20-30% of human craniosynostosis (1,2) and each case shows diverse
phenotypes such as positions of premature fusions and thickness of calvaria (26,35), some of the
human cases may be developed by mutations in other signaling cascade than FGF signaling. Our
findings suggest one of the possibilities that some of the human craniosynostosis are caused by
misregulation of BMP signaling.

Since enhanced production of FGF ligands and receptors, and consequent activation of
:’ERK1/2 are the causes of Apert syndrome (15-17,34), it is surprising that our compound
transgenic/haploinsufficient mice exhibited upregulated FGF signaling in the face of essentially
complete phenotypic rescue (Fig. 3B, C). One explanation may be that enhanced FGF signaling in
ca-Bmprla:P0O-Cre mice is not sufficient to induce morphological malformations, i.e., FGF
signaling in ca-Bmprla:P0-Cre does not attain levels needed to develop craniosynostosis, as seen
in Fgfir2"5%?" mice, for example (17). However, it is possible that the enhanced FGF signaling

activity found in ca-Bmprla:P0-Cre mice may enhance pathogenesis of skull deformity, but only
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in the context of sufficient BMP signaling. While the mechanism of how enhanced BMP signaling
upregulates the expression of FGF ligand, receptors and downstream components in mutant skulls
is unclear, it has been reported that FGF receptor genes have Spl and Apl binding sequences in
their promoters (43,44). Deletion of the Apl promoter sequence from a TGF-p and BMP-inducible
gene disrupts BMP and TGF-f responsiveness (45), suggesting BMP signaling might regulate FGF
via the Spl/Apl promoter sequences. Thus, one could postulate that enhanced Smad-dependent
BMP signaling may induce Spl/Apl family transcriptional regulators that will bind to promoters
of FGF receptors to enhance their expression in ca-Bmprla:P0-Cre mice. Subsequently, phospho-
ERK1/2 may be evoked through the augmentation of FGF signaling in ca-Bmprla:P0-Cre mice.
Further studies investigating the overlay of genetic or pharmacologic suppression of FGF signaling
in our model would help to resolve this possibility.

The simplistic notion that excessive FGF-mediated signaling and cell growth drives the
pathophysiology of craniosynostosis is complicated by the fact that craniosynostoses with
enhanced FGF signaling are not always marked by enhanced proliferation and differentiation.
Specifically, the FGFR2 C342Y mutation (Crouzon type craniosynostosis) inhibits preosteoblast
differentiation and increases apoptosis in vitro (21). Moreover, Deng et al. found that the FGFR2
- S252W mutation results in Apert type craniosynostosis in mice but did not observe changes in cell
kdifferentiation and proliferation, concluding that dysregulated apoptosis is involved in the
pathogenesis of Apert type skull defects (26), consistent with our observations (Fig. S5). These
observations and the present study support the concept that clinical phenotypes of craniosynostosis
are quite divergent and cannot be accounted for by a single mechanism.

Craniosynostosis in ca-Bmprla:P0-Cre could be rescued by the loss of a single

endogenous Bmprla allele (Fig. 3) suggests that a relatively small increment in levels of Smad-

signaling results in the mutant phenotype, despite the use of an overexpressed and constitutively-
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active Bmprla transgene. Expression levels of ca-Bmpria transgene were quite low when assessed
by qRT-PCR (data not shown), which may lead to the very modest increase of signaling associated
with transgene. The completeness of rescue by heterozygosity, and the mildly enhanced ligand-
independent and ligand-dependent BMP signaling observed in the tissues of these mice, and with
other constitutively-active BMP type I receptor transgenes (22,46) suggest that the levels of BMP
signaling attained by these strategies are only mildly supraphysiologic. The results from our
pharmacological rescue also support this notion because the dose of LDN-193198 that did not
influence skull morphology in the controls was capable to rescue the craniosynostotic phenotypes
in the mutants (Fig. 5). Substantially larger increases in BMP signaling, especially during
embryogenesis, lead to devastating outcomes (18,47). In contrast, constitutively-activating GS
domain mutations of the BMP type I receptor ACVRI found in fibrodysplasia ossificans
progressiva (48) permit survival to term with only mild morphological abnormalities, likely as a
result of mildly increased activity of mutant protein expressed under endogenous promoter control
(49). We interpret these data to suggest that moderate increases BMP signaling, for example
caused by mutations in enhancer regions, could lead to craniosynostosis in the appropriate context,

a possibility that has yet to be investigated in human studies. One interesting issue that remains to

- be addressed is whether the phenotypic rescue by heterozygosity of Bmpria is due to cell

Hautonomous or non-cell autonomous effects. Using Wntl-Cre, it was reported that nearly all cells
in nasal and frontal bones are derived from CNC cells during skull development (2,11,13).
Similarly, as shown in Fig.S3, we confirmed that P0-Cre, which we used in our study, could
efficiently and specifically target to the CNC-derived cells in skull. We expect that in ca-
Bmprla:P0-Cre:Bmprla™ mice, virtually all cells in nasal and frontal bones in addition to the

metopic suture possess a constitutively active Bmprla transgene along with loss of one allele of
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Bmprla. Thus, we are speculating that the skull abnormalities were rescued in a cell autonomous
manner.

Both Smad-dependent and -independent BMP signaling pathways orchestrate cell fate,
proliferation and differentiation in many tissues. Previous studies show that BMP signaling is
critical for skull development (5,6,10,50-52). However, molecular mechanisms by which Smad-
dependent and/or -independent BMP signaling regulate cranial development remain unknown.
Regarding Smad-independent BMP signaling pathway, X-chromosome-linked inhibitor of
apoptosis protein (XIAP) bridges BMPRIA and TAKI1 and induces the activation of MAPK
including p38 (53,54). One might hypothesize that augmentation of BMP signaling via ca-
BMPRI1A modulates TAK1 activity, which subsequently activates MAPK signaling pathway to
cause craniosynostosis. However, we did not observe significant activation of TAK1 or MAPK
p38 in mutant preosteoblasts (Fig. S9). The absence of modulation of TAKI strongly argues
against a role of MAPKs including p38 and JNK in our model; however, we cannot fully exclude
the participation of other Smad-independent pathways contributing to the Bmprla:P0-Cre
phenotype.

It has been known that FGFR tyrosine kinase inhibitors including PD173074 and PLX052
- significantly prevent the premature suture fusion in organ culture level (16,55), and ERK/MAPK

+/S252W .
5252V mice (17). However,

specific blocker U0126 successfully inhibits craniosynostosis in Fgfr2
there are no known therapeutic interventions for other mechanisms of craniosynostosis. Since

craniosynostoses have very diverse phenotypes (and likely mechanisms), successful strategies

would identify chemopreventive reagents that target the specific etiology of each type of
craniosynostosis. Our study employing a selective chemical inhibitor of BMP type I receptor
kinases suggests a potential therapeutic strategy for prophylaxis of craniosynostosis caused by

enhanced BMP signaling. Although it has not yet been reported whether mutation(s) of BMPRIA
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cause craniosynostosis in human, our results suggest that treatment of LDN-193189 might be
useful in craniosynostosis that is either caused by or facilitated by gain-of-function in BMP
signaling. Identification of mutations or biomarkers signifying enhanced BMP signaling in CNC-
derived tissues corresponding with syndromic or non-syndromic craniosynostosis would permit
novel strategies for early identification and intervention for this challenging and incompletely

characterized set of conditions.
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Figure legends

Fig. 1. Enhanced BMP signaling through constitutively-active form of Bmprla causes
craniosynostosis.

(A-D) Ca-Bmprla:P0-Cre (MT) displayed short broad snouts and hypertelorism at P17. (E, F)
Skeletal staining at P17 revealed premature fusion in AF suture. AF suture was fused in ca-
Bmprla:P0-Cre (F; white arrows), while AF suture in controls was still patent (E; white arrows).
Along with premature fusion, foramina were developed in mutant’s frontal bones (black dots). (G,
H) H&E staining was performed on histological specimen at P8. AF suture in mutants displayed
premature fusion (H) although AF suture in control showed patency (G; red arrows). The thickness
of mutant skull was thinner than control (black lines). Abbreviations: AF, anterior frontal suture; F,

frontal bone; N, nasal bone; PF, posterior frontal suture.

Fig. 2. Enhancement of BMP signaling results in upregulation of FGF ligand, receptors and
phospho-ERK1/2.

(A) Immunohistochemistry was performed by using FGF2, FGFR1 and FGFR2 antibodies (green) at
E17.5. Levels of FGF2, FGFR1 and FGFR2 were upregulated in anterior frontal suture and
osteoblasts in ca-Bmprla:P0-Cre (MT). (B) The levels of phospho-ERK1/2 (P-ERK1/2) in ca-
HEBmpr]a:PO—Cre at E17.5 were highly activated in comparison to controls (CT). Osteogenic front
was marked by white asterisk. (C) Kinetics of ERK1/2 pathway activation following BMP2
stimulation. Preosteoblasts were stimulated with recombinant BMP2 (100 ng/ml) for the time
indicated (min). Levels of P-ERK1/2 along with levels of total ERK1/2 proteins were measured by
western blotting. Peak and sustained levels of P-ERK1/2 in ca-Bmprla:P0-Cre preosteoblasts were
much higher than in control preosteoblasts. (D) Results in C for P-ERK1/2 quantified by

densitometry.
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Fig. 3. Heterozygous mutation of Bmprla rescues the phenotype of craniosynostosis.

(A) Heterozygous null mice for Bmprla also expressing a PO-Cre transgene were crossed with ca-
Bmprla-transgenic mice. Heterozygosity of Bmprla rescued morphological abnormalities of
craniofacial region developed in ca-Bmprla:P0-Cre. Skeletal staining was performed for skulls.
Skull bone shapes were similar between both control (CT) and ca-Bmprla:P0-Cre carrying
heterozygous null Bmpria (R). Patency of anterior frontal suture was confirmed by histological
analysis. Red arrows indicated anterior frontal suture in control (CT) and ca-Bmpria:P0-Cre
carrying heterozygous Bmprla (R). Note that bone thickness and foramen in frontal bone were also
recovered in rescued skull (R) (black lines). (B) Expression of Bmprila was measured by quantitative
real time RT-PCR (qRT-PCR) in preosteoblast cells from CNC-derived skull tissues. Open columns
(control; CT), black columns (ca-Bmprla:P0-Cre; MT) and gray columns (ca-Bmprla:P0-Cre
carrying heterozygous null Bmprla; R) were shown respectively. Daté presented were means +
s.e.m. by three different preosteoblast cells from skull and three independent experiments. *p<0.05.
(C) Expression of FGF ligand (Fgf2), receptors (Fgfrl, Fgfr2) and downstream targets (Sproutyl, 2,
3, 4) were measured by qRT-PCR in nasal and frontal bones at P4. Open columns (control; CT),
ff'black columns (ca-Bmprla:P0-Cre; MT) and gray columns (ca-Bmprla:P0O-Cre carrying
va‘heterozygous null Bmpria; R) were shown respectively. Data presented were means + s.e.m. by
three different skulls and three independent experiments. *p<0.05. (D) Preosteoblasts from the skull
were stimulated with recombinant BMP2 (100 ng/ml) and levels of phospho-ERK1/2 (P-ERK1/2)
along with levels of total ERK1/2 proteins were measured by western blotting. The levels of P-
ERK1/2 were still comparable between mutants (ca-Bmprla:P0-Cre) and rescued (ca-Bmprla:P0-

Cre carrying heterozygous null Bmprla).
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Fig. 4. Enhanced Smad-dependent BMP signaling is responsible for developing craniosynostosis.

(A) Immunohistochemistry using phospho-Smadl1/5/8 (P-SMAD1/5/8) and phospho-p38 (P-p38)
antibodies (green) were performed for calvarial sections at E17.5. Samples were counterstained with
DAPI (blue). Osteogenic front is marked by white asterisk. (B) Kinetics of MAPK pathways
activation following BMP2 stimulation in preosteoblasts of control (CT) and mutant (ca-
Bmprla:P0-Cre; MT). Preosteoblasts were stimulated with recombinant BMP2 (100 ng/ml) for the
time indicated (min). Levels of phospho-P38 (p-P38) and phospho-JNK (p-JNK) along with levels of
total MAPK proteins were measured by western blotting. (C) Phospho-Smad1/5/8 (P-SMAD1/5/8)
levels were examined in preosteoblasts of control (CT), mutant (ca-Bmprla:P0-Cre; MT) and
rescued (ca-Bmprla:P0-Cre carrying heterozygous null Bmprla; R). Preosteoblasts were stimulated
by recombinant BMP2 (100ng/ml) for indicated time (min) then P-SMADI1/5/8 levels were
examined by western blotting. GAPDH was used as a loading control (upper panel). (D) Results for

P-SMAD1/5/8 from C were quantified by densitometry (lower panel).

Fig. 5. BMP type I receptor-specific chemical inhibitor LDN-193189 partially recovers the

craniosynostosis phenotype in vivo.

(A) Wild-type preosteoblasts from skull were pretreated with LDN-193189 (0.005uM-20uM) for

30min. Subsequently preosteoblasts were stimulated by either BMP2 or FGF1 recombinant
(100ng/ml) for 10min. Levels of phospho-Smadl/5/8 (P-SMADI1/5/8), phospho-ERK1/2 (P-
ERK1/2), phospho-p38 (P-p38), phospho-TAK1 (P-TAK1) were examined by western blotting.
GAPDH was used as a loading control. (B) Schematic representation of the dosing and harvesting
schedule of LDN-193189 in vivo. (C) Lateral and top of view of face in control (CT) and ca-
Bmprla:P0-Cre (MT) treated with LDN-193189. Note that short broad snouts and hypertelorism in

ca-Bmprla:P0-Cre were partially recovered, which was comparable as control mice. (D) Bone
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