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Cross-priming for antitumor CTL induced
by soluble Ag + polyl:C depends on the TICAM-1
pathway in mouse CD11c*/CD8a" dendritic cells
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Department of Microbiology and Immunology; Hokkaido University Graduate School of Medicine; Sapporo, Japan
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Keywords: cross-presentation, dendritic cell, TLR3, TICAM-1 (TRIF), tumoricidal CTL

Abbreviations: APC, antigen-presenting cells; CTL, cytotoxic T lymphocytes: DAMP, damage-associated molecular pateern;
DC, dendritic cells; IFN, interferon; IPS-1, IFN3 promoter stimulator-1; MDAS, melanoma differentiation associated gene 5;
M, macrophages; NK, natural killer; OVA, ovalbumin; PAMP, pathogen-associated molecular partern; PRR, pattern-recognition receptors;
PV, poliovirus; RIG-], retinoic acid inducible gene-1; SL8, an OVA tetramer; TICAM-1, Toll-IL-1 receptor homology domain-containing

molecule-1; TLR, Toll-like receptor; WT, wild-type

Polyl:C is a nucleotide pattern molecule that induces cross-presentation of foreign Ag in myeloid dendritic cells (DC) and
MHC Class I-dependent proliferation of cytotoxic T lymphocytes (CTL). DC (BM or spleen CD8a") have sensors for dsRNA
including polyl:C to signal facilitating cross-presentation. Endosomal TLR3 and cytoplasmic RIG-/MDAS are reportedly
responsible for polyl:C sensing and presumed to deliver signal for cross-presentation via TICAM-1 (TRIF) and IPS-1 (MAVS,
Cardif, VISA) adaptors, respectively. In fact, when tumor-associated Ag (TAA) was simultaneously taken up with polyi:C in DC,
the DC cross-primed CTL specific to the TAA in a syngenic mouse model. Here we tested which of the TICAM-1 or IPS-1
pathway participate in cross-presentation of tumor-associated soluble Ag and retardation of tumor growth in the setting
with a syngeneic tumor implant system, EG7/C57BL6, and exogenously challenged soluble Ag {EG7 lysate) and polyl:C. When
EG?7 lysate and polyk:C were subcutaneously injected in tumor-bearing mice, EG7 tumor growth retardation was observed in
wild-type and to a lesser extent IPS-17"" mice, but not TICAM-17/" mice. IRF-3/7 were essential but IPS-1 and type | IFN were
minimally involved in the polyl:C-mediated CTL proliferation. Although both TICAM-1 and IPS-1 contributed to CD86/CD40
upregulation in CD8ux* DC, H2K™SL8 tetramer and OT-1 proliferation assays indicated that OVA-recognizing CD8
T cells predominantly proliferated in vivo through TICAM-1 and CD8a DC is crucial in ex vivo analysis. Ultimately, tumor
regresses > 8 d post polyl:C administration. The results infer that soluble tumor Ag induces tumor growth retardation, i.e.

therapeutic potential, if the TICAM-1 signal coincidentally occurs in CD84* DC around the tumor.

Introduction

Cytotoxic T lymphocytes (CTL) and natural killer (NK) cells are
two major effectors for antitumor cellular immunity. These
effectors are driven through activation of dendritic cells (DC) and/
or macrophages (Mf), which is mediated by pattern-recognition
receptors (PRRs) for the recognition of microbial patterns.?
Antigen (Ag) presentation and upregulation of NK cell-activating
ligands are major events induced in IDC/Mf in response to PRRs,
which link w evoking CTL- and NK-andtumor immunity,
respectively. The immune-potentiating function of specific
components of the classical adjuvants are largely attributable to
the ligand activity of PRRs (CpG DNA/TLRY, polyl:C/TLR3,
monophosphoryl lipid (MPL) A/TLR4, Pam2/TLR2, etc.).? That
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is, the DC/MF competent to drive effectors are generated through
PRR signal in inflammatory nest where affected cells and recruited
immune cells encounter exogenous or endogenous PRR ligands.
Since studying the functional properties of PRRs in tumor
immunity is on the way using a variety of possible ligands and cell
biological analyses, immune responses reflecting the total adjuvant
potential around Ag-presenting cells (APC) in local inflammatory
nests are not always elucidated even in mice.

RNA-sensing PRR  pathways, including TLR3-TICAM-1,
TLR7-MyD88 and RIG-I/MDAS-IPS-1 participate in driving
Type I IFN induction and cellular immunity in DC subsets.'**
Type I IFN and the IFNAR pathway in DC and other cells
reportedly evoke and amplify T cell immunity.>® TLR7 resides
exclusively in plasmacytoid DC7 whereas TLR3 mainly exists in
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myeloid DC/Mf and epithelial cells.® They are localized on the
membrane of the endosome and deliver the signal via their
adaptors, MyD88 and TICAM-1.7* RIG-I and MDAS5 are
ubiquitously distributed to a variety of mouse cells and signal the
presence of cytoplasmic viral products: through IPS-1.” Thus,
TLR3 and RIG-I/MDAS are candidates associated with DC
maturation to drive effector cells.' Indeed, viral dsRNA analog,
polyl:C, is a representative ligand for TLR3 and MDAS5 and
induces polyl:C-mediated DC-NK reciprocal activation.'™'?
These are also true in human DC.??

The point of this study is by which pathway antitumor CTL
are induced for tumor regression in a2 mouse tumor-implant
model. It has been postulated that DC present exogenous tumor
Ag to the MHC Class I-restricted Ag-presentation pathway and
proliferate CID8 T cells specific to the extrinsic Ag. When tumor
cells provide soluble and insoluble exogenous Ag, this Class I Ag
presentation occurs mostly TAP/proteasome-dependent, suggest-
ing the pathway partly sharing with that for endogenous Ag
presentation. This DC'’s ability to deliver exogenous Ag to the
pathway for MHC Class [-restricted Ag presentation has been
described as cross-presentation.”* DC cross-presentation leads to
the cross-priming and proliferation of Ag-specific CD8 T cells in
vivo and in vitro."**® A varety of PAMP'>'® and inurinsic
DAMP as well as other factors including Type [ IFN,*'® CD4*
T cells” and NKT cells* augment cross-priming in tumor-
bearing mice. However, by what molecular mechanism polyl:C
enhances CTL induction in tumor-bearing mice remains largely
unsettled.

Here, we made an EG7 twumor-implant mouse system and
treated the mice with s.c.-injected ovalbumin (OVA)-containing
cell lysates (Ag) and polyl:C. Spleen CD8a" DC wrn CTL-
inducible when stimulated with Ag and polyl:C. In either case
of s.c., ip., or Lv. injection of polyl:C, the TLR3/TICAM-1
pathway predominantly participates in CD8a" DC cross-priming
and antitumor CTL induction. Earlier studies using non-tumor
models, suggested that both TLR3 and MDA5 appeared to
participate in polyl:C-dependent CTL induction.”® TLR3 is
predominantly involved in primary Ag response and Thl
skewing,”® while MIDAS participates in secondary Ag response.”
Importance of TLR3 in induction of cross-priming was first
suggested by Schulz et al., who used OVA/polyl:C-loaded or
virus-infected xenogenic (Vero) cells and mouse DC.'® Here we
demonstrate that the antitumor polyl:C activity is sustained by
the TICAM-1 pathway in any route of injection in tumor-
implant mice: antitumor CTL responses are mostly abrogated in
TICAM-1""" but not IPS-1""" mice.

Resulis

Properties of EG7 tumor with high MHC in tmor-loading
mice. The properties of the EG7 line we used are consistent with
those reported previously.** It expressed high MHC Class I
(H2-Kb) and no Qa-1b or Rae-1 (Fig. S1). The expression
levels of these proteins were barely changed before and after
implantation of EG7 cells into mice. Cell viability was not
affected by in vitro stimulation with polyl:C only (Fig. S1B).
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However, a batch-to-batch difference of cell viability may have
affected the rate of umor growth in each mouse tumor-implant

experiment.

CD8" T cells are responsible for tumor retardation by
polyl:C. EG7 cells (2 X 10° were inoculated into the back of
C57BL/6 (WT), and the indicated reagents were subcutaneously
(s.c.) injected around the EG7 wmor (Fig. 1A). Growth
retardation of tumeor was observed by treatment with polyl:C or
polyl:C plus EG7 lysate (Fig. 1A). EG7 lysate only had no effect
on tumor regression. When CD83" T cells were depleted before
EG7 lysate/polyl:C treatment, polyl:C-mediated tumor growth
suppression was cancelled (Fig. 1A), suggesting the participation
of CD8 T cells in tumor growth suppression. The therapeutic
potential of polyl:C appeared to be more reproducible in the
presence of EG7 lysate than in the absence, judged from the
increases of activated CD8" T cells (Fig. 1B} and cytotoxic activity
(Fig. 1C) of LN T cells isolated from the mice sacrificed after the
last therapy. Yer, the EG7 Ag could be more or less supplied from
the implant tumor. NK1.1* cells did not participate in this EG7
tumor regression in this serting (data not shown).

Since EG7 lysate contains OVA, OVA-specific T cells in
draining LN and spleen of the WT mice were counted by
tetramer assay after the last therapy (Fig. SZA and B). The
numbers of tetramer-positive cells were prominently increased in
LN and spleen in mice with EG7 lysate and polyl:C. We
confirmed the importance of simultaneous administration of Ag
where pure Ag (OVA) was used instead of EG7 lysate for
immunotherapy. The polyl:C adjuvant function appeared to be
more efficient in the mixture of pure Ag than in polyl:C alone.
Tumor regression (Fig. $2C) and OVA-specific CTL induction
(Fig. $2D) were clearly observed in this additional experiment. To
obtain reproducible data, we employed the EG7 lysate/polyl:C
combination therapy as follows.

IFN-inducing pathways are involved in Polyl:C-derived EG7
growth retardation. We next inoculated EG7 cells (2 X 109) into
the back of C57BL/G (WT), TICAM-1""", IPS-17'", or
TICAM-1/IPS-1 double-deficient (DKO) mice (Fig. 2). We s.c.
administered EG7 lysate with or without polyl:C around the
tumor. The EG7 lysate was the soluble fraction of EG7 which
removed insoluble debris by centrifugation. The EG7 lysate
contained unprecipitated micro-debris and soluble Ag. No other
emulsified reagent was added for immunizaton. Thus, the
adjuvant function of polyl:C per se is reflected in the tumor
growth, although polyl:C had to be injected into mice twice a
week. Retardation of tumor growth was observed > 8 d after
immunization with EG7 lysate + polyl:C in WT mice, though no
growth retardation without polyl:C (Fig. 2A). The polyl:C-mediated
tumor growth suppression was largely abrogated in TICAM-1"""
(Fig. 2B) and o a lesser extent in [PS-17"" mice (Fig. 2C), and
completely in TICAM-1/IPS-1 DKO mice (Fig.2D). Hence,
TICAM-1 plays an important role in inducing polyl:C-mediated
tumor growth retardation in the s.c. setting we employed.

CD8 T cell activation induced by the TICAM-1 pathway.
CD8 T cell activation in the inguinal LN was tested with
polyl:C + EG7 lysate in EG7 tumor-bearing mice using CID69 as
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A © WT and IPS-17" LN cells, while they were
8 —&— PBS - not induced in TICAM-1""" or DKO cells.
—&— EG7 IFNYy levels were upregulated only in polyl:C-
7 S O 3 treated  tumor-bearing  mice, although  the
0’3; —&— polyl:C A;" WT > IPS-17"" profile for IFNy production
3 64 —@— EG7+polylC was reproducibly observed (Fig. S4B).
8 5. - © —~PBS (CD8s-depl.) % In vivo proliferation of CD8 T cells judged by
2 ~ B - EG7+polyl:C (CD8p-depl.) wh | tetramer assay and IFNY induction. We next
> 4 R tested whether i.p. injection of polyl:C plus OVA
g 5 . induces CTL proliferation. Polyl:C and OVA
~ were Lp. injected into mice and the polyl:C-
2 o dependent cross-priming of CD8 T cells were
PR S examined using the OVA tetramer assay. OVA-
specific CD8 T cells were clonally proliferated in
0 : t Y : WT and IPS-17"" mice, but not in TICAM-1/
0 5 10 i5 20 25 IPS-1 DKO and IRE-3/77" mice (Fig.4A).
days after implantation Proliferation of OVA-specific CD8 T cells
were severely suppressed in TICAM-1""" mice
B % C % (Fig. 4A), suggesting that polyl:C-mediated cross-
20 £ a0 I priming of CD8 T cells largely depends on the
9 g TICAM-1 pathway followed by IRF-3/7 activa-
g B tion in the i.p. route. The results were reproduced
2 § A5 e e in additional experiments using more mice
L % (Fig. 4B) and TLR3™'~ mice (Fig. S5A and B).
P g TTCE E— The polyl:C cytokine response, where ENa is
8 § ‘ IPS-1-dependent while I1-12p40 is TICAM-1-
& 5 B N B dependent, was also confirmed in serum level by
i , polyl:C ip. injection (Fig. SSE). Specific induc-
o 0 4+ %ww (‘39 g tionnczf I~F1NYh (Fig. fC)f\V?s also observed in
5, 2 5 = = parallel with the results of Figure 4A.
g 2 8 Whether or not i.v. injection of polyl:C plus
= I OVA induces Ag-specific CTL and cytotoxicity
% 8 was next checked. OVA-specific OT-1 proliferation
and cyrotoxicity (Fig. 4D and E) were observed in
Figure 1. Polyl:C induces CTL-mediated. tumor regression. (A) WT mice were challenged in vivo analyses of WT and IPS-1 7" CD8 T cell
. i - ion. - -
wgh EG7 ceﬂ)s[ and were treated with PBS (), EG?g!ysates (), polyliC (¢) and EG7 lysagtes + but not of ?ICAM'I L TI,(“AM—I,/H)S‘I DKO,
polykC (=), The adjuvant therapy was started at the time indicated by the arrow and and IRF-3/7""" mice in the iv. setting.
the indicated reagents injected twice per week. One of the two PBS groups () and one of Since TICAM-1 is the adaptor for TLR3
the two EG7 lysates + polyl:C groups (1) were treated with anti-CD8p ascites in order to as well as cytoplasmic helicases,* we confirmed
deplete CD8" T cells once a week. Each group had 3-5 m.ice. (B) Draining ingnlxina! LNs. were the level of cross-priming being decreased in
harvested 24 h after the last treatment and thg proportion of CD69-expressing CD8* cells TLR3~~ mice and an expecte d result was
were counted. (C) LN cells were co-cultured with MMC-treated EG7 cells for 3 d and X ) . . N
subjected to *'Cr release assay to evaluate CTL activity. E/T = 50, All error bars used obtamedv (Fig. S5A and B). Furthermore, in
in this figure show + SEM. Data are representative of two independent experiments. IFNAR™™ mice, OVA-specific CTL induction
One-way analysis of variance (ANOVA} with Bonferroni’s test was performed to analyze was slightly reduced compared with that in WT
statistical significance. **, p < 0.01. mice, but higher than in TICAM-1""" mice

an activating marker. Twenty-four hours after the last polyl:C +
EG7 sec.c. treatment, cells were harvested from the LN excised
(Fig. 3A). FACS profiles of total cells from each mouse group are
shown in Fig. 3. By combination therapy with EG7 lysate and
polyl:C, T cells were activated in WT and IPS-17'" mice, but the
proportion of CD8 T cells was not affected by the therapy
(Fig. S4A). Under the same conditions, T cells were barely
activated in TICAM-1""" mice in response to polyl:C (Fig. 3A).
The proportion of CDG9" cells are indicated in Figure 3B.
IL-2 (Fig. 3C) and IFNy (Fig. S4B) were highly induced in the

‘www.landesbioscience.com

(Fig. S5C and D). Hence, in vivo cross-
presentation induced by polyl:C mostly depends on the TLR3-
TICAM-1 pathway followed by transcriptional regulation by
IRF-3/7 in any administration route, and is further promoted by
Type 1 IFN presumably produced by the stromal cells through the
IPS-1 pathway.*

IPS-1 induces DC maturation but not cross-priming in vivo.
Spleen DC maturation by i.v.-injected polyl:C was tested ex vivo
using CD8x" DC and CD8a DC isolated from WT or KO mice
with no tumor as indicated in Figure SA. The maturation markers

CD86 and CD40 were upregulated on both CD8u«" and CD8ar
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Figure 2. Polyl:C-induced tumor retardation is dependent on the TICAM-1 pathway. Antitumor effect of polyl:C on various KO mice were evaluated

by using in vivo mouse tumor implant model. EG7 cells were inoculated to WT (A), TICAM-17" (B), IPS-17/~ () and DKO mice (D) on day 0. PBS (e}, :
EG7 lysates {4) or EG7 lysates + polyl:C (&) were s.c. administered around the tumor. The adjuvant therapies were started at the time indicated

by the arrows and injected twice per week. Each group have 3-4 mice and error bar shows + SEM. Data are representative of two independent

DC from WT mice when they were stimulated with OVA and
polyl:C. Treatment of DC with OVA only did not induce
upregulation of CD86 and CD40. Although the expression levels
of CD86 and CD40 were a litte less in CD8o" and CD8x DC
from TICAM-1""" or IPS-1""" mice than those from WT mice,
both CD86 and CD40 were sufficiently upregulated even in the
abrogation of either one pathway in polyl:C-injected mice. The
CD86 and CD40 shifts were completely abolished in DKO mice
(Fig. 5A). Thus, the TICAM-1 pathway participates in both
potent co-stimulation and cross-priming, while the IPS-1 pathway
mainly participates only in integral co-stimulation in myeloid DC.

We next assessed in vitro proliferation of OT-1 cells. CD8a
and CD8a DC were prepared from PBS, polyl:C, OVA and
OVA/polyl:C-treated mice, and mixed in vitro with CFSE-
labeled OT-1 cells. WT, TICAM-1""" and IPS-17"" mice were
used for this study. OT-1 proliferation was observed with CD8a*
DC but not CD8o DC when OVA + polyl:C was injected
(Fig. 5B). Furthermore, the OT-1 proliferation barely occurred in
the mixture containing TICAM-17"" CD8o* DC. Thus, OT-1
proliferation is triggered by the TICAM-1 pathway in CD8o
DC. Again, IPS-1 had almost no effect on OT-1 proliferation
with CD8a* DC in this setting. In the mixture, IFNy was
produced in the supernatants of W7 and IPS-1777 CD8o DC

584 Oncolmmunology

but not TICAM-1""" DC by stimulation with OVA + polyl:C
(Fig. 5C). No IFNy was produced in the supernatants of CD8or
DC even from WT mice, which results are in parallel with those
of OT-1 proliferation. In any case irrespective of tumor-bearing
or not, Ag, polyl:C and the TICAM-1 pathway are mandatory
for CD8a" DC to cross-prime and proliferate OVA-specific CDD8
T cells.

We checked the TICAM-1- or IPS-1-specific gene expressions
related to Type I IFN and MHC Class I presentation using
genechip and qPCR (Fig. $6). Polyl:C-mediated upregulation of
Tapl, Tap2 and Tapbp messages diminished in TICAM-17""
BMDC (Fig.S6A). The levels of these genes were hardly
affected in IPS-17/" BMDC (data not shown). Polyl:C-mediated
upregulation was observed with MDAS ({fih]) in CD8a and
CD8x DCs (Fig. S6B). Surprisingly, other factors including
TLR3, TICAM-1 and MAVS messages were all downregulated in
response to polyl:C in CD8o' DC (Fig. S6B), for the reason as
yet unknown.

Effect of TLR3-mediated IFN-inducing pathway on anti-
tumor CTL induction. Polyl:C is a dsRNA analog capable of
incorporating into the endosome and cytoplasm by exogenous
administration in vitro.”?® However, no evidence has been
proposed that polyl:C is internalized into the endosome of
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Figure 3. CD8 T cells in the draining LNs are activated through the TICAM-1 pathway by polyl:C. Draining inguinal LNs were harvested from tumor-
bearing mice 24 h after the last treatment. LN cells were stained with CD3g, CD8« and (D69, and the cells gated on (D3e*CD8«* are shown (A). Spleen

IL-2 production was measured by CBA assay (C}.
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cells in each group of mice were stained separately, the CD8 levels in gated cells being variably distributed in FACS analyses. The average frequency
~ of activated CD8 T cells defined by CD69 expression is shown (B). Alternatively, LN cells from the indicated mice were cultured for further 3 d in vitro and
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Figure 5. TICAM-1 in CD8«* DC is more important than
IPS-1 in polyl:C-induced cross-priming. OVA and polyl:C
were administered i.v. and 4 h later, CD8* and CD8% DC
were isolated from the spleen, CD86 and (D40 expres-
sions were determined by FACS {A). Filled gray and black
line show isotype control and target expression, :
respectively. Alternatively, CD8a* and CD8w DC were
co-cultured with CFSE-labeled RAG2™/0T-1 T cells for
3 d. The cross-priming activity of each DC subset was -
determined with sequential dilution of CFSE (B) and IFNy
production (C). IFNy was measured by CBA assay.

The data shown are representative of two independent
experiments. Err bar shows SD.

CD8a" DC where TLR3 is expressed in vivo.
Peritoneal (PEC) Mf and bone marrow-derived
DC?** usually phagocytoze polyl:C and deliver them
into the endosome. [n mouse CD8x' DC direct
internalization of polyl:C has remain unproven.
Using labeled polyl:C and anti-mouse TLR3 mAb,
11F8,* we checked whether the exogenously-added
polyl:C encountered with TLR3 in CDD8a* DC in
virro. TLR3 (green) was merged with TexasRed-
polyl:C 30-120 min after polyl:C stimulation in
the culture (Fig. 6A). The quantities of CD8ot' and
CD8a DC where FITC-polyl:C was incorporated
were determined by FACS analysis (Fig. 6B). Thus,
the process by which polyl:C injected reaches the
endosomal TLR3 is delineated in the CD8a* DC.

Discussion

PolyL:C is an analog of virus dsRNA, and acts as a
ligand for TLR3 and RIG-I/MDAS. Polyl:C has
been utilized as an adjuvant for enhancement of
antitumor immunity for a long time.” However,
the mechanistic background of the therapeutic
potentials of polyl:C against cancer has been poorly
llustrated. It induces antitumor NK activation
through DC-NK  cell-to-cell interaction when
CD8o* DC TLR3 is stimulated in the spleen.’
Besides myeloid cells, however, some tumor cell
lines express TLR3 and dsRNA rargeting tumor
cells may affect the growth rate of tumors,™ where
the receptor-interacting protein (RIP) pathway is
involved downstream of TICAM-1.!
showed evidence that polyl:C injection facilitates
maturation of TLR3-positive CD8a" DC (ie.,
APC) to wigger CTL induction against exogenous
soluble Ags including EG7 lysate or OVA. The
TICAM-1 adaptor for TLR3 and IRF-3/7 are
involved in the cross-presentation signal in CD8x"
DC, but the molecule/mechanism downstream of
TICAM-1 that governs cross-presentation remains
elusive. Since most of the tumor-associated Ags
(TAA) are predicted to be liberated from tumor cells

Here we
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TLR3 and MDAS are main sensors for dsRNA and
differentially distributed in myeloid cells.**** TLR3 is
limitedly expressed in myeloid, epithelial and neuronal
cells,”” whereas MDAS is ubiquitously expressed including
non-myeloid stromal cells.”® Several reports suggested that
iv. injection of polyl:C predominanty stimulate the
stromal cells which express IFNAR,*® thereby robust
type | IFN are liberated from these cells to be a systemic
response  including cytokinemia and endotoxin-like
shock.”> Both TLR3 and MDAS link to the IRF-3/7-
activating kinases leading to the production of IFNo/g.%7*
Once IFNo/8 are released, IFNAR senses it to amplify the
Type I IFN production,” and reportedly this amplification
pathway involves cross-priming of CD8 T cells in viral
infection.'”” Tumor progression or metastasis can be
suppressed through the IFNAR pathway.*® These scenarios
may be right depending on the conditions employed. Our
message is related to whar signal pathway is fundamentally
required for induction of antitumor CTL in DC. The CTL
response is almost completely abrogated in TICAM-17""
and IRF-3/7"'" mice, but largely remains in IPS-17"" and
IFNAR™" mice when Ag and polyl:C are extrinsically

O min 30 min 120 min

w

costpe

7.94 211

chsDC
CDhg

ooy

FITC-polyt:C

administered. The results are reproducible in some other
tumor-implant models (data not shown), and even in
IFNAR™" mice, TICAM-1-specific genes are upregulated
to confer tumor cytotoxicity (Fig. $6, Azuma et al.,
unpublished dara). In addition, the upregulation of these
genes is independent of IPS-1 knockout in DC. Our results
infer that the primary sensing of dsRINA in CD8x" DC is
competent to induce cross-presentation, which minimally
involves the IPS-1 or IFNAR amplification pathway, at
least at a low dose of polyl:C. Yet, subsequent induction of
Type I IEN via the IFNAR may further amplify the cross-
priming."**" Further studies are needed as to which of the
TICAM-1-inducible genes link to the cross-presentation in
CD8a* DC.

The main focus of this study was to identify the pathway
for transversion of immature DC to the CTL-driving

phenotype by co-administration of polyl:C with soluble

microscopic analysis (A). Alternatively, splenic DC isolated by MACS were
incubated with FITC-polyl:C for the time shown in figure and analyzed

of three independent experiments.

Figure 6. Polyl:C encounters TLR3 in CD8u* DC. CD8x" and CD8x DC were
isolated by FACSAriall and stimulated with 20 pg/ml TexasRed-polyl:C for 2 h.
Then cells were stained with Alexa647-antiTLR3 and subjected to confocal

the degrees of polyl:C uptake by FACS (B). Data shown are the representative

Ag. The IPS-1 pathway, although barely participates in
antitumor CTL driving, can upregulate CD40/CD86 co-
stimulators on the membranes of splenic CD8u" and
CD8ux DC in response to polyl:C, suggesting that MIDAS
does function in the cytoplasm of splenic CD8a" and
CD8x DC to sense polyl:C. However, effective CTL

as soluble Ags, the TICAM-1 pathway in CD8a* DC would be
crucial for driving of tumor-specific CTL around the tumor
microenvironment. In any route of polyl:C injection, this is true
as shown first in this study. Although TICAM-1 is an adaptor
of other cytoplasmic sensors, DDX1, DDX21 and DHX36,
the antitumor CTL responses are merely relied on TLR3 of
CD8a'DC in this system. Taken together with previous
reports,' " TICAM-1 signaling triggers not only NK activation
but also CTL induction.

588 Oncolmmunology

induction happens only in CD8a' DC when stimulated
with polyl:C. CD8o" DC express TLR3 but CD8u DC
do not, and CID8a" DC with no TLR3 fail to induce CTL,
suggesting that integral co-stimulation by MDAS/IPS-1 is
insufficient for DC tw induce cross-priming of CD8 T cells:
antitumor CTL are not induced untl the TICAM-1 signal is
provided in DC. At least, sole effect of the IPS-1 pathway and
upregulation of co-stimulators on CD8a* DC is limited for cross-
priming and induction of antitumor CTL, which result partdy
reflects those in a previous report where IPS-1 and TICAM-1
harbor a similar potential for CD8 T cell proliferation when
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polyl:C (Alum-containing) is employed as an adjuvant for CD8a"
DC to test proliferation of anti-OVA CTL.*

A question is why TICAM-1 is dominant to IPS-1 for response
to exogenously-added polyl:C in CD8o" DC. The answer is
rooted in the difference of functional behavior berween BMDC
and CD8a«" DC. TLR3 levels are variable depending upon subsets
of DC* which affects DC subset-specific induction of cellular
immune response. The high TLR3 expression (partly surface-
expressed) is situated in CD8a* DC before polyl:C stimulation,
which is distinct from the properties of F4/80° Mf and
presumably BMDC of low TLR3 expression. The polyl:C-uptake
machinery’® appears to efficiently work in concert with the
TLR3/TICAM-1 pathway in CD8a DC and this tendency
is diminished when CD8x' DC are pretreated with Alum +
polyl:C.*'  Furthermore, there are functional discrepancies
between CD8o splenic DC and GM-CSF-induced BMDC,
which appears to reflect the difference of their TLR3 levels.”
These results on CD8a" DC encourage us to develop dsRNA
adjuvant immunotherapy supporting TAA soluble vaccines for
cancer applicable to humans, which possess the counterpart of
CD8o DC.

There are two modes of dsRNA-mediated DC maturation,
intrinsic and extrinsic modes that are governed by the IPS-1 and
TICAM-1 pathways, respectively.™* It is important to elucidate
the in vivo qualitative difference in the two pathways in tumor-
loading mice. TLR3* DC/MT are responsible for CTL driving via
an extrinsic route in viral infection.’® Previous data suggested that
dsRNA in infectious cell debris, rather than viral dsRNA
produced in the cytoplasm of Ag-presenting cells or autophago-
some formation, contribute to fine tuning of DC maturation
through extrinsic dsRNA recognition.’® It is reported that
dsRNA-containing debris are generated secondary to infection-
mediared cell death,*' and DC phagocytose by-stander dead cells.
Likewise, soluble tumor Ags released from tumor cells usually are
extrinsically taken up by APC in patients with cancer.*” If CTL
are successfully induced in therapeutic biotherapy targeted against
cancer cells, this extrinsic TICAM-1 pathway must be involved in
the therapeutic process.

Cross-presentation occurs in a TAP-dependent™ and -inde-
pendent fashions.**** The peptides are transported by TAP into
the endoplasmic reticulum (ER) and loaded onto MHC Class I
for presentation at the cell surface. ER and phagosome might fuse
each other for accelerating cross-presentation.*® Another possibi-
lity is that cross-presentation occurs in early endosomes where
TLR3 resides. This early endosome cross-presentation does not
always depend on TAP**** but requires TLR stimulation.*
TLR4/MyD88 pathway is involved in the TAP-dependent early
endosome model,”® where recruitment of TAP to the early
endosomes is an essential step for the cross-presentation of soluble
Ag. These models together with our genechip analysis of polyl:C-
stimulated BMDC suggested that some ER-associated proteins are
upregulated in BMDC by polyl:C-TICAM-1 pathway. The
results infer that the TLR3/TICAM-1 rather than the TLR4/
MyD88 pathway more crucially participates in cross-presentation
in response to dsRNA or viral stimuli and facilitates raising CTL
antitumor immunity in APC.

www.landesbioscience.com

Although multiple RNA sensors couple with TICAM-1 and
signal to activate the Type 1 [FN-inducing pathway,” at least
TLR3 in the CD8a DC are critical in CTL driving. CD8a* DC
are a high TLR3 expresser, while BMDC express TLR3 with only
low levels.”> CD8x DC do not express it.”* The Ag presentation
and TLR3 levels in CD8a" DC appear reciprocally correlated
with the phagocytosing ability of DC. Although the TLR3
mRNA level is downregulated secondary o polyl:C response after
maturation, this may not be related to the CD8o" DC functons.
Yet, polyl:C might interact with other cytoplasmic sensors for DC
maturation,**%

The route of administration and delivery methods may be
important for culminate the polyl:C adjuvant function. The toxic
problem has not overcome in the adjuvant therapy using polyl:
(C*>3¢ and this is a critical matter for dlinical introduction of
dsRINA reagents to immunotherapy. The most problematic is the
life-threatening shock induced by polyl:C. Recent advance of
polyl:C study suggests that PEl-jet helps efficient uprake of polyl:
C into peritoneal macrophages.”® LC (poly-i-lysine and methyl-
cellulose) has been used as a preservative to reduce the toxic effect
of polyl:C.* Nanotechnological delivery of polyl:C results in
efficient tumor regression.” There are many subsets of DC thar
can be defined by surface markers, and selecting an appropriate
administration route can target a specific DC subset. The route
for s.c. administration usually mature dermal/epidermal DC or
Langerhans cells.”"** Some DC subsers with unique properties
specialized to CT'L induction would work in association with the
route of polyl:C administration. Attempting to develop more
harmless and efficient dsRINA derivatives will benefit for
establishing human adjuvant immunotherapy for cancer.

Materials and Methods

Mice. TICAM-1""" and IPS-1""" mice were made in our
laboratory and backcrossed more than eight times to adape
C57BL/6 background.'? IRF-3/77~ and IFNAR™" mice were
kindly provided by T. Taniguchi (University of Tokyo, Tokyo,
Japan). TLR3™"" mice were kindly provided by S. Akira (Osaka
University, Osaka, Japan). Rag2™"" and OT-1 mice were kindly
provided from Drs N. Ishii (Tohoku University, Sendai, Japan).
Rag2™"JOT-1 mice were bred in our laboratory. All mice
were maintained under specific pathogen-free conditions in the
animal facility of the Hokkaido University Graduate School
of Medicine. Animal experiments were performed according
to the guidelines set by the animal safety center, Hokkaido
University, Japan.

Cells. EG7 and C1498 cells were purchased from ATCC and
cultured in RPMI1640/10% FCS/55 uM 2-ME/1 mM sodium
pyruvate and RPMI1640/10% FCS/25 ng/ml 2-ME, respectively.
Mouse splenocytes, OT-1 T cell, CD8a' DC and CD8o DC
were harvested from the spleen and cultured in RPM11640/10%
FCS/55 uM 2-ME/10 mM HEPES.*' B16D8§ cells were cultured
in RPMI/10% FCS as described previously.’”

Reagents and antibodies. Ovalbumin (OVA) and polyl:C
(polyl:C) were purchased from SIGMA and Amersham
Biosciences, respectively. OVAss7 64 peptide (SIINFEKL: SL8)
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and OVA (H2K*-SL8) Tetramer were from MBL. Following Abs
were purchased: anti-CD3s (145-2C11), anti-CD8B (53-6.7),
anti-CD11c (N418), anti-CDD16/32 (93), anti-CDD69 (H1.2F3)
and ant-IFNy(XMG1.2) Abs from BioLegend, anti-B220 (RA3-
6B2), anti-CD4 (L3T4), ant-CD40 (1C10), ant-CD86 (GL1),
and anti-MHC I-SL8 (25-D1.16) Abs from eBiosciences, anti-
TCR-V85.1/5.2 Ab and ViaProbe from BD Biosciences. The Rat
anti-mouse TLR3 mADb (11F8) was kindly provided by David M.
Segal (National Institute of Health, Bethesda, MD). To rule out
LPS contamination, we treated OVA or other reagents with
200 pg/ml of Polymixin B for 30 min at 37°C before use. Texas
Red- or FITC-labeled poly(I:C) was prepared using the 5'
EndTagT‘)v t Nucleic Acid Labeling System (Vector Laboratories)
according to the manufacturers instructions.

Tumor challenge and poly I:C therapy. Mice were shaved at
the back and s.c. injected with 200 pl of 2 X 10 syngenic EG7
cells in PBS. Tumor volumes were measured at regular intervals
by using a caliper. Tumor volume was calculated by using the
formula: Tumor volume (cm?®) = (long diameter) X (short
diameter)* X 0.4. A volume of 50 pl of a mixture consisting of the
lysate of 2 X 10° EG7 cells with or without 50 pg of poly I:C
(polyl:C) was s.c. injected around the tumor. We added no other
emulsified reagent for immunization since we want to role out the
conditional effect of the Ag/polyl:C. The treatments were started
when the average of tumor volumes reached at 0.4-0.8 cm® and
performed twice per week. EG7 lysate were prepared by three
times freeze/thaw cycles (-140°C/37°C) in PBS, with removal of
cell debris by centrifugation at 6,000 g for 10 min.** To deplete
CD8 T cells, mice were i.p. injected with hybridoma ascites of
anti-CD83 mAb. The dose of antibody and the treatment
regimens were determined in preliminary studies by using the
same lots of antibody used for the experiments. Depletion of the
desired cell populations by this treatment was confirmed by FACS
for the entire duration of the study.

Evaluation of T cell activity in tumor-bearing mice. Draining
inguinal LN cells were harvested from tumor-bearing mice after
24 h from the last polyl:C treatment. The activity of T cells was
evaluated by CD69 expression and IL-2/IFNYy production. These
cells were stained with FITC-CD8a, PE-CDG9, PerCP/Cy5.5-
7AAD and APC-CD3s. To check cytokine production, LN cells
were cultured for 3 d in vitro in the presence or absence of EG7
lysates and IL-2 and IFNy productions were determined by
Cytokine Beads Array (CBA) assay (BD). To assess the cytotoxic
activity of CTL, standard *'Cr release assay was performed.
For CTL expansion, 2.5 X 10° LN cells were co-cultured with
1.25 x 10° mitomycin C-treated EG7 cells in the presence of
10 U/ml IL-2 for 5d. Then, LN cells were incubated with
*'Cr-labeled EG7 or C1498 cells for 4 h and determined cytoroxic
activity. The cell-specific cytotoxicity was calculated with
subtracting the cytotoxity for C1498 from for EG7 cells.

Antigen-specific T cell expansion in vivo. Mice were i.p.
immunized with 1 mg of OVA and 150 pg of poly I:C. After 7 d,
spleens were homogenized and stained with FITC-CD8a and
PE-OVA Tetramer for detecting OVA-specific CD8 T cell

590 Oncolmmunology

populations. For intracellular cytokine detection, splenocytes
were cultured with or without 100 nM OVA peptide (SHNFEKL;
SL8) for 8h and 10pg/ml of Brefeldin A (Sigma-Aldrich)
was added to the culture in the last 4 h. Then cells were
stained with PE-anti-CD8a and fixed/permeabilized with
Cytofix/Cytoperm (BD Biosciences) according to manufacturer’s
instruction.  Then, fixed/permeabilized  cells further
stained with APC-ant-IFNy. Stained cells were analyzed
with FACSCalibur (BD Biosciences) and FlowJo software (Tree
Star).

In vivo CTL assay. The in vivo CTL assay was performed
as described.’® In brief, WT, TICAM-177", MAVS™" and
IRF-3/77'" mice were L.v. administered with PBS, 10 pg of OVA
or OVA with 50 pg of polyl:C. After 5d, 2 X 107 targer cells (see
below) were i.v. injected to other irrelevant mice and 8 h later, the
OVA-specific cytotoxicity was measured by FACSCalibur. Target
cells were 1:1 mixture of 2 UM SL8-pulsed, 5 uM CFSE-labeled
splenocytes and SL8-unpulesed, 0.5 uM CFSE-labeled spleno-
cytes. OVA-specific cytotoxicity was calculated with a formula:
{1-(Primed [CFSE"*"(%)/CFSE"*(%)]}/Unprimed [CFSE"¢"(%)/
CFSE“™(%)]} X 100.

DC preparation. DCs. were prepared from spleens of mice, as
described previously.”® In brief, collagenase-digested spleen cells
were treated with ACK buffer and then washed with PBS twice.
Then splenocytes were positively isolated with and-CD1lc
MicroBeads. CD11c¢" cells were acquired routinely abour =
80% purity. Further, to highly purify CDD80" and CD8o DCs,
spleen DC were stained with FITC-CD8a, PE-B220, PE/Cy7-
CD1lc and PerCP5.5-7AAD. CD8u" or CD8x CD11c'B220
DCs were purified on FACSAriall (BD). The purity of the cells
was = 98%.

OT-1 proliferation assay. Ten micrograms of OVA with or
without 50 g of polyl:C were i.v. injected to WT, TICAM-1""",
IPS-17" and DKO mice. After 4 h, CD8a* or CD8x DC were
purified from the spleen. 2.5 x 10* CD8x' or CD8a DC were
co-cultured with 5 X 10* 1 pM CFSE-labeled Rag2™'"/OT-1
T cells for 3 d in 96-well round bottom plate. These cells were
stained with PE-ant-TCR-V35.1,5.2 and APC-anti-CD3e and
T cell proliferation was analyzed by CFSE dilution using
FACSCalibur. Additionally, IFNvy in the culture supernatant
was measured by CBA assay.

Statistical analysis. P-values were calculated with one-way
analysis of variance (ANOVA) with Bonferroni’s test. Error bars
represent the SD or SEM between samples.
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ABSTRACT

Objective Recent studies have demonstrated that
genetic polymorphisms near the /288 gene are
associated with the clinical outcome of pegylated
interferon o (peg-IFN-cr) plus ribavirin therapy for patients
with chronic hepatitis C virus (HCV). However, it is
unclear whether genetic variations near the /L28B gene
influence hepatic interferon (IFN)-stimulated gene (ISG)
induction or cellular immune responses, lead to the viral
reduction during IFN treatment.

Design Changes in HCV-RNA levels before therapy, at
day 1 and weeks 1, 2, 4, 8 and 12 after administering
peg-IFN-o. plus ribavirin were measured in 54 patients
infected with HCV genotype 1. Furthermore, we prepared
four lines of chimeric mice having four different lots of
human hepatocytes containing various single nucleatide
polymorphisms (SNP} around the /L2688 gene. HCV
infecting chimeric mice were subcutaneously
administered with peg-IFN-o for 2 weeks.

Results There were significant differences in the
reduction of HCV-RNA levels after peg-IFN-c: plus ribavirin
therapy based on the /L2688 SNP rs8099917 between TT
{favourable) and TG/GG (unfavourable) genotypes in
patients; the first-phase viral decline slope per day and
second-phase slope per week in TT genotype were
significantly higher than in TG/GG genotype. On peg-IFN-
o. administration to chimeric mice, however, no
significant difference in the median reduction of HCV-
RNA fevels and the induction of antiviral ISG was
observed between favourable and unfavourable human
hepatocyte genotypes.

Conelusions As chimeric mice have the characteristic of
immunodeficiency, the response to peg-IFN-o: associated
with the variation in /L2868 alleles in chronic HCV patients
would be composed of the intact immune system.

INTRODUCTION
Hepatitis C is a global health problem that affects
a significant portion of the world’s population.
The WHO estimated that, in 1999, 170 million
hepatitis C virus (HCV)-infected patients were
present worldwide, with 3-4 million new cases
appearing per year.!

The standard therapy for hepatitis C still consists
of pegylated interferon-o. (peg-IEN-0), administered
once weekly, plus daily oral ribavirin for 24-48 weeks

—349—

What is already known on this subject?

p> Genetic polymorphisms near the /L28B gene
are associated with a chronic HCV treatment
response. ‘

g HCV-infected patients with the /288 homozy-
gous favourable allele had a more rapid decline
in HCV kinetics in the first and second phases
by peg-IFN-o-based therapy.

g During the acute phase of HCV infection, a
strong immune response among patients with
the /L28B favourable - genotype could  induce
more frequent spontaneous clearance of HCV.

What are the new findings?

B In chronically HCV genotype 1b-infected chi-
meric mice that have the characteristic of
immunodeficiency, no significant difference in
the reduction in serum HCV-RNA levels and the
induction of antiviral hepatic ISG by the admin-
istration of peg-IFN-o. was observed between
favourable and unfavourable human hepatocyte
1L28B genotypes. :

B By comparison of serum HCV kinetics between
human and chimeric mice, the viral decline in
both the first and second phases by peg-IFN-o
treatment was affected by the variation in /L2868
genotypes only in chronic hepatitis C patients.

How might it impact on clinical practice in

the foreseeable future? ,

p~ The immune response according to /[28B
genetic variants could contribute to the first
and second phases of HCV-RNA decline and
might be critical - for HCV clearance by
peg-IFN-o-based therapy.

in countries where protease inhibitors are not avail-
able.? This combination therapy is quite successful
in patients with HCV genotype 2 or 3 infection,
leading to a sustained virological response (SVR) in
approximately 80-90% of patients treated; however,
in patients infected with HCV genotype 1 or 4, only
approximately half of all treated individuals achieved
aSVR**

Copyeigitt 1Article assingr-1oe-te8is employer) 2012. Produced by BMJ Publishing Group Lid (& BSG) under licerice.
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Table 1 Characteristics of 54 patients infected HCV genotype 1

1128B SNP 158099917

TT (n=34) TG (n=19) + GG (n=1) p Value
Age (years) 55.6+10.1  54.7+11.3 0.746
Gender (male %) 70 50 0.199
Body mass index {kg/m?) 24.6+3.1 247x33 0.870
Viral load at therapy {log IU/ml)  6.0+0.7 5.8+0.8 0.357
SVR rate (%) 50 1 0.012
Serum ALT level (IU/1) 100.3+80.8 79.3:x45.0 0.226
Platelet count (x10%pul) 17.1£9.0 16.5+5.8 0.77
Fibrosis {F3+4 %) 42 40 0.877

HCV, hepatitis C virus; SNP single nucleotide polymorphism; SVR, sustained virological
response.

Host factors were shown to be associated with the outcome
of the therapy, including age, sex, race, liver fibrosis and obesity.’
Genome-wide association studies have demonstrated that
genetic variations in the region near the interleukin-28B (IL28B)
gene, which encodes interferon (IFN)-A3, are associated with a
chronic HCV treatment response.®'® Furthermore, it was
demonstrated that genetic variations in the IL28B gene region
are also associated with spontaneous HCV clearance. ™12

Interestingly, a recent report showed the effect of genetic
polymorphisms near the IL28B gene on the dynamics of HCV
during peg-IFN-o. plus ribavirin therapy in Caucasian, African
American and Hispanic individuals;*® HCV-infected patients
with the IL28B homozygous favourable allele had a more rapid
decline of HCV in the first phase, which is associated with the
inhibition of viral replication as well as the second phase asso-
ciated with immuno-destruction of viral-infected hepatocytes.™
However, it is unknown how a direct effect by the [L28B
genetic variation, such as the induction of IFN-stimulated genes
(ISG) or cellular immune responses, would influence the viral
kinetics during IFN treatment. Over recent periods, engineered
severe combined immunodeficient (SCID) mice transgenic
for urokinase-type plasminogen activator (uPA) received
human hepatocyte transplants (hereafter referred to as chimeric
mice)’®™ and are suitable for experiments with hepatitis
viruses in vivo.’® ¥ We have also reported that these chimeric
mice carrying human hepatocytes are a robust animal model to
evaluate the efficacy of IEN and other anti-HCV agents.?° %!

The purpose of this study was to reveal the association
between genetic variations in the IL28B gene region and viral
decline during peg-IFN-o treatment in patients with HCV, and
to clarify the association between different JL28B alleles of
human hepatocytes in chimeric mice and the response to
peg-IFN-o without immune response. These studies will eluci-
date whether the immune response by the IL28B genetic vari-
ation affects the viral kinetics during peg-IFN-o treatment.

MATERIALS AND METHODS

Patients

Fifty-four Japanese patients with chronic HCV genotype 1
infection at Nagasaki Medical Center and Nagoya City

University were enrolled in this study (table 1). Patients
received peg-IFN-02a (180 pg) or 2b (1.5 pg/kg) subcutaneously
every week and were administered a weight-adjusted dose of
ribavirin (600 mg for <60kg, 800mg for 60-80kg, and
1000 mg for >80 kg daily), which is the recommended dosage
in Japan. Patients with other hepatitis virus infection or HIV
coinfection were not included in the study. The study protocol
conformed to the ethics guidelines of the 1975 Declaration of
Helsinki as reflected by earlier approval by the institutions’
human research committees.

Laboratory tests )

Blood samples were obtained before therapy, as well as on day
1 and at weeks 1, 2, 4, 8 and 12 after the start of therapy and
were analysed for the HCV-RNA level by the commercial
Abbott Real-Time HCV test with a lower limit of detection of
12 1U/ml (Abbott Molecular Inc., Des Plains, Illinois, USA).
Genetic polymorphism in the IL28B gene (1s8099917), a single
nucleotide polymorphism (SNP) recently identified to be asso-
ciated with treatment response,®® was tested by the TagMan
SNP genotyping assay (Applied Biosystems, Foster City,
California, USA).

HCV infection of chimeric mice with the liver repopulated

for human hepatocytes

SCID mice carrying the uPA transgene controlled by an albumin
promoter were injected with 5.0-7.5x10% viable hepatocytes
through a small left-flank incision into the inferior splenic pole,
thereafter chimeric mice were generated. The chimeric mice
were purchased from PhoenixBio Co, Ltd (Hiroshima, Iapan).”
Human hepatocytes with the IL28B homozygous favourable
allele, heterozygous allele or homozygous unfavourable allele
were imported from BD Biosciences (San Jose, California, USA)
(table 2). Murine serum levels of human albumin and the body
weight were not significantly different among four chimeric
mice groups, providing a reliable comparison for anti-HCV
agents.?? Three different serum samples were obtained from
three chronic HCV patients (genotype 1b).2* 2 Each mouse was
intravenously infected with serum sample containing 10° copies
of HCV genotype 1b. Administration of peg-IFN-c2a (Pegasys;
Chugai Pharmaceutical Co., Ltd., Tokyo, Japan) at the dose for-
mulation (30 pg/kg) was consecutively applied to each mouse
ondays 0, 3, 7 and 10 (table 3).

HCV-RNA quantification

HCV-RNA in mice sera (days 0, 1, 3, 7 and 14) was quantified
by an in-house real-time detection PCR assay with a lower
quantitative limit of detection of 10 copies/assay, as previously
reported.?!

Quantification of IFN-stimulated gene-expression levels

For analysis of endogenous ISG levels, total RNA was isolated
from the liver using the RNeasy RNA extraction kit (Qiagen,
Valencia, California, USA) and complementary DNA synthesis

Table 2 Four lines of uPA/SCID mice from four different lots of human hepatocytes (donor) containing various SNP around the /L28B gene

uPA/SCID mice Donor Race Age Gender 1s8103142 112979860 rs8099917
PXB mice A African American 5 Years Male cc 1T 16

B Caucasian 10 Years Female cC i 16

c Hispanic 2 Years Female v cc v

D Caucasian 2 Years Male m cC i

PXB mice; urokinase-type plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with approximately 80% human hepatocytes.

SCID, severe combined immunodeficient; SNP, single nucleotide polymorphism.

Gut 2012;8:1-7. doi:10.1136/gutjnl-2012-302553
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Table 3 Dosage and time schedule of peglFN-a:2a* treatment for HCV genotype 1b infected chimeric mice

Dose

Donor hepatecytest No of chimeric mice noculum Test compound Level (ng/kg) Concentrtion (pg/mi) Volume (ml/kg) Frequency

A 3 Serum A Peg-IFN-02a 30 3 10 Day 0,3,7, 10
B 4 Serum A Peg-IFN-c2a 30 3 10 Day 0, 3,7,10
c 3 Serum A Peg-IFN-c:2a 30 3 10 Day 0,3, 7,10
D 3 Serum A Peg-IFN-02a 30 3 10 Day 0,3 7, 10
A 2 Serum B Peg-IFN-02a 30 3 10 Day 0, 3,7, 10
C 2 Serum B Peg-IFN-c2a 30 3 10 Day0,3,7,10
A 2 Serum C Peg-IFN-c:2a 30 3 10 Day 0, 3,7 10
C 2 Serum C Peg-1FN-02a 30 3 10 Day 0, 3,7, 10

*Pegasys; Chugai Pharmaceutical Co., Ltd., Tokyo, Japan.
1The IL28B genetic variation of the donor hepatocytes was indicated in table 2.
HCV, hepatitis C virus; peg-IFN-a, pegylated interferon a.

was performed using 2.0 ug of total RNA (High Capacity
RNA-to-cDNA kit; Applied Biosystems). Fluorescence real-time
PCR analysis was performed using an ABI 7500 instrument
(Applied Biosystems) and TagMan Fast Advanced gene expres-
sion assay (Applied Biosystems). TagMan Gene Expression
Assay primer and probe sets (Applied Biosystems) are shown in
the supplementary information (available online only). Relative
amounts of messenger RNA, determined using a FAM-Labeled
TagMan probe, were normalised to the endogenous RNA levels
of the housekeeping reference gene, glyceraldehgzde-S—phosphate
dehydrogenase. The delta Ct method (27! “9) was used for
quantitation of relative mRNA levels and fold induction.?® ¢

Statistical analyses

Statistical differences were evaluated by Fisher’s exact test or
the ¥ test with the Yates correction. Mice serum HCV-RNA
and intrahepatic ISG expression levels were compared using the
Mann-Whitney U test. Differences were considered significant
if p values were less than 0.05.

RESULTS

Characteristics of the study patients

Genotypes (1s8099917) TT, TG and GG were detected in 34, 19
and one patient infected with HCV genotype 1, respectively.
SVR rates were significantly higher in HCV patients with geno-
type TT than in those with genotype TG/GG (50% vs 11%,
p=0.012). The initial HCV serum load was comparable between
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Figure 1 Rapid reduction of median hepatitis C virus (HCV)-RNA

levels {log [U/ml) at 1, 7 and 14 days between /[28B single nucleotide
polymorphisms rs8099917 genotype TT {n=34) and TG/GG {n=20} in
HCV genotype 1-infected patients treated with peg-IFN-o. plus ribavirin.
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genotypes TT and TG/GG (6.0£0.7 vs 5.8+0.8 log IU/ml).
There were no significant differences in sex (male%, 70% vs
50%), age (55.6%10.1 vs 54.7+11.3 years), serum alanine amino-
transferase level (100.3280.8 vs 79.3+45.0 IU/L), platelet count
(17.1+9.0 vs 16.5+5.8x10%/ul) and fibrosis stages (F3/4%, 42%
vs 40%) between HCV patients with the favourable (rs8099917
TT) and unfavourable (xs8099917 TG/GG) IL28B genotypes
(table 1).

Changes in serum HCV-RNA levels in patients treated

by peg-IFN-a plus ribavirin

Figure 1 shows the initial change in the serum HCV-RNA level
for 14 days after peg-IFN-a plus ribavirin therapy in patients
infected with HCV genotype 1 based on the genetic poly-
morphism near the IL28B gene. The immediate antiviral
response (viral drop 24 h after the first IEN injection) was sig-
nificantly higher in HCV patients with genotype TT than
genotype TG/GG (-1.08 vs -0.39 log IU/ml, p<0.001).
Figure 2 also shows the subsequent change in the serum
HCV-RNA reduction after peg-IEN-o plus ribavirin therapy in
patients infected with HCV genotype 1. Similarly, during
peg-IEN-o plus ribavirin therapy, a statistically significant dif-
ference in the median reduction in serum HCV-RNA levels was
noted according to the genotype (TT vs TG/GG). The median
reduction in the serum HCV-RNA levels (log IU/ml) at 1, 2, 4,
8 and 12 weeks between genotypes TT and TG/GG was as
follows: —1.58 vs —0.62, p<0.001; —-2.35 vs —0.91, p<0.001;
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Figure 2 Weekly reduction of median hepatitis C virus (HCV)-RNA
levels (log IU/ml) at 1, 2, 4, 8 and 12 weeks between /L28B single
nucleotide polymorphisms rs8099917 genotype TT (n=34) and TG/GG
(n=20} in HCV genotype 1-infected patients treated with pegylated
interferon o plus ribavirin.
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Figure 3 (A) The first-phase viral
decline slope per day (Ph1/day) and
(B) second-phase viral decline slope
per week (Ph2/week) in hepatitis C
virus (HCV) genotype 1-infected
patients treated with pegylated
interferon o plus ribavirin. The lines
across the boxes indicate the median
values. The hash marks above and
below the boxes indicate the 90th and
10th percentiles for each group,

P<0.001

respectively.

P=0.001

Reduction in
HOV-RNA fevel (Jog [U/ml)

TT (n=34)

-3.48 vs -1.56, p<0.001; —4.53 vs -2.37, p<0.01; —4.93
vs —2.86, p<0.001. Furthermore, the initial first-phase viral
decline slope per day (Phl/day) and subsequent second-phase
viral decline slope per week (Ph2/week) in TT genotype were
significantly higher than in genotype TG/GG (Phl/day 0.94
+0.83 vs 0.38+0.40 log IU/ml, p<0.001; Ph2/week 0.08=0.06
vs 0.0420.03 log 1U/ml, p<0.001) (figure 3).

Changes in serum HCV-RNA levels in chimeric mice treated

by peg-IFN-a

In order to clarify the association between [L28B alleles of
human hepatocytes and the response to peg-IFN-o, we pre-
pared four lines of uPA/SCID mice and four different lots of
human hepatocytes containing various 1s8099917, rs8103142

E

TT (n=34)

TGHGE (r =20
38099917

TGHGG (n=20)
rs8099917

and rs12979860 SNPs around the IL28B gene (table 2). The chi-
meric mice were inoculated with serum samples from each
HCV-1b patient, and then HCV-RNA levels had increased and
reached more than 10° copies/ml in all chimeric mice sera at
2 weeks after inoculation. After confirming the peak of
HCV-RNA in all chimeric mice, they were subcutaneously
administered with four times injections of the bolus dose of
peg-IEN-02a for 2 weeks (table 3). Figure 4 shows the change
in the serum HCV-RNA levels for 14 days during IFN injection
into chimeric mice transplanted with [L28B favourable or
unfavourable human hepatocyte genotypes. On peg-IFN-o
administration, no significant difference in the median reduction
in HCV-RNA levels in the serum A-infected®® chimeric mice
sera was observed between favourable (n=7) and unfavourable
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Figure 4 Median reduction of hepatitis C virus {HCV)-RNA levels ({log copies/ml) after administering pegylated interferon o. to chimeric mice having
human hepatocytes containing various single nucleotide polymorphisms around the /L28B gene as favourable (rs8099917 TT) and unfavourable
(rs8099917 TG) genotypes. Data are represented as mean+SD. Chimeric mice infected with a) serum A (n=7; favourable genotype, n=F6;
unfavourable genotype), {B) serum B (n=2, each genotype)}, and (C) serum C (n=2, each genotype). All serum samples were obtained from HCV-1b

patients.
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(n=6) IL28B genotypes on days 1, 3, 7 and 14 (1.2 vs —1.3,
~1.4 vs =14, -=1.8 vs 1.7, and -2.3 vs —1.9 log copies/ml)
(figure 4A). Moreover, we prepared two additional serum
samples from the other HCV-1b patients (serum B and C)*! to
confirm the influence of IL28B genotype in early viral kinetics
during IFN treatment. After establishing persistent infection
with new HCV-1b strains in all chimeric mice, they were also
administered four times injections of the bolus dose of
peg-IEN-02a for 2 weeks (figure 4B,C). In a similar fashion, no
significant difference in HCV-RNA reduction in chimeric mice
sera was observed between favourable and unfavourable IL28B
genotypes.

Expression levels of ISG in chimeric mice livers
Because chimeric mice have the characteristic of severe com-
bined immunodeficiency, the viral kinetics in chimeric mice

Figure 5 Intrahepatic interferon
(IFN)-stimulated gene (ISG) expression
levels in the pegylated interferon

o { peg-IFN-or)-treated chimeric mice
having human hepatocytes containing
homozygous favourable allele
(rs8099917 TT; MA) and heterozygous
unfavourable allele (rs8099917 TG; HE)

[

by

AxA 7 GAPOH
fv‘
o

MA HE

sera during IFN treatment could be contributed by the innate
immune response of HCV-infected human hepatocytes.
Therefore, ISG expression levels in mice livers transplanted
with human hepatocytes were compared between favourable
and unfavourable IL28B genotypes (figure 5).

As shown in figure 5A, ISG expression levels in mice livers
were measured at 8 h and 24 h after IFN treatment. The levels
of representative antiviral ISG (eg, myxovirus resistance protein
A, oligoadenylate synthetase 1, RNA-dependent protein kinase)
and other ISG for promoting antiviral signalling (eg, Toll-like
receptor 3, retinoic acid-inducible gene 1) were significantly
induced at least 8 h after treatment, and prolonged at 24 h. No
significant difference in ISG expression levels in HCV-infected
livers was observed between favourable and unfavourable IL28B
genotypes. The other inoculum for persistent infection of
HCV-1b also demonstrated no significant difference in ISG
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expression levels between favourable and unfavourable IL28B
genotypes (figure 5B,C). Interestingly, IFN-A expression levels
by treatment of peg-IFN-o were significantly induced in
HCV-infected human hepatocytes harbouring the favourable
IL28B genotype (figure 5 A-C).

DISCUSSION

Several recent studies have demonstrated a marked association
between the chronic hepatitis C treatment response’™ and
SNP (rs8099917, rs8103142 and rs12979860) near or within the
region of the IL28B gene, which affected the viral dynamics
during peg-IFN-a plus ribavirin therapy in Caucasian, African
American and Hispanic individuals."®

It has been reported that when patients with chronic hepa-
titis C are treated by IEN-oo or peg-IFN-o. plus ribavirin,
HCV-RNA generally declines after a 7-10 h delay.®® The typical
decline is biphasic and consists of a rapid first phase lasting for
approximately 1-2 days during which HCV-RNA may fall 1-2
logs in patients infected with genotype 1, and subsequently a
slower second phase of HCV-RNA decline.?® The viral kinetics
had a predictive value in evaluating antiviral efficacy.** In this
study;, biphasic decline of the HCV-RNA level during peg-IFN-o
treatment was observed in both patients and chimeric mice
infected with HCV genotype 1; however, in the first and
second phases of viral kinetics, a difference between IL28B gen-
otypes was observed only in HCV-infected patients; a more
rapid decline in serum HCV-RNA levels after administering
peg-IFN-a plus ribavirin was confirmed in patients with the
TT genotype of 158099917 compared to those with the TG/GG
genotype. .

On the other hand, in-vivo data using the chimeric mouse
model showed no significant difference in the reduction of
HCV-RNA titers in mouse serum among four different lots of
human hepatocytes containing IL28B favourable (rs8099917 TT)
or unfavourable (rs8099917 TG) genotypes, which was con-
firmed by the inoculation of two additional HCV strains. These
results indicated that variants of the IL28B gene in donor hepa-
tocytes hag no influence on the response to peg-IFN-o under
immunosuppressive conditions, suggesting that the immune
response according to IL28B genetic variants could contribute to
the first and second phases of HCV-RNA decline and might be
critical for HCV clearance by peg-TFN-o-based therapy.

Two recent studies indeed revealed an association between
the IL28B genotzype and the expression level of hepatic ISG in
human studies.?” 2% Quiescent hepatic ISG before treatment
among patients with the IL28B favourable genotype have been
associated with sensitivity to exogenous IFN treatment and
viral eradication; however, it is difficult to establish whether
the hepatic ISG expression level contributes to viral clearance
independently or appears as a direct consequence of the IL28B
genotype. Another recent study addressed this question and the
results suggested that there is no absolute correlation with the
IL28B genotype and hepatic expression of ISG.?? Our results on
the hepatic ISG expression level in immunodeficient chimeric
mice also suggested that no significant difference in ISG expres-
sion levels was observed between favourable and unfavourable
IL28B genotypes. However, these results were not consistent
with a previous report using chimeric mice that the favourable
IL28B genotype was associated with an early reduction in
HCV-RNA by ISG induction.®® The reasons for the discrepancy
might depend on the dose and type of IEN treatment, as well
as the time point when ISG expression was examined in the
liver. In addition, although IFN-A transcript levels measured in
peripheral blood mononuclear cells or liver revealed inconsistent

results in the context of an association with the IL28B geno-
type,” & our preliminary assay on the 1L28A, IL28B and 1129
transcripts in the liver first indicated that the induction of
IFN-1 on peg-IEN-o. administration could be associated with
the IL28B genotype. Therefore, the induction of IFN-A followed
by immune response might contribute to different viral kinetics
and treatment outcomes in HCV-infected patients, because no
difference was found in chimeric mice without immune
response.

It has also been reported that the mechanism of the associ-
ation of genetic variations in the IL28B gene and spontaneous
clearance of HCV may be related to the host innate immune
response.’! Interestingly, participants with seroconversion
illness with jaundice were more frequently rs8099917 homozy-
gous favourable allele (TT) than other genotypes (32% vs 5%,
p=0.047). This suggests that a stronger immune response
during the acute phase of HCV infection among patients with
the IL28B favourable genotype would induce more frequent
spontaneous clearance of HCV.

Taking into account both the above results in acute HCV
infection and our results conducted on chimeric mice that have
the characteristic of immunodeficiency, it is suggested that the
response to peg-IFN-o associated with the variation in [L28B
alleles in chronic hepatitis C patients would be composed of
the intact immune system.
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