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UUCAA-3" and Mig-6(05) siRNA was 5-GCAGGGUAUCCAUUC
UUUA-3" with a 3dTdT overhang. The nucleatide sequence of the
human ATR siRNA was §-CCTCCGTGATGTTGCTTGA-3 and S6K1
siRNA was 5-GGACATGGCAGGAGTGTTT-3 with a 3'dTdT over-
hang. ATM siRNA used in this study was purchased from Ambion.

Viral infection

Retroviruses were generated by transfection of pPMXs-Pure-Mig-6
into Platinum-A retroviral packaging cell line using Fugene 6
Reagent (Roche). Viral particles were collected 48 h after transfec-
tion. MDA-MB-231 cells were plated on 10-mm dishes at a density of
4x10%cells per dish. On the next day, the medium was replaced
with 6 ml of viral supernatant containing 8 ug/ml Polybrene. At48h
after retroviral infection, cells were selected with 1 pg/ml puromy-
cin for 72 h, then pooled for further use.

Proliferation assay

HEK293 cells were seeded in 10-cm dishes with 60000 cells per
dish. After 24 h, cells were transfected with WT or mutant pcDNA3-
FLAG-Mig-6 together with the pEGFP vector. Inages were obtained
of four fields per dish at 24, 36, 48, and 60%h after transfection.
Green cells were counted as transfected cells.

MDA-MB-231 cells were seeded in 6-cm dishes, and transiected
simultaneously with an siRNA against human Chki or Mig-6, or a
control sIRNA. After 24 h, cells were reseeded into 96-well plates
with 3500 cells per well, and proliferation assays were performed at
12, 24, 36, 48, and 60h after replating, according to ihe manufac-
turer's instructions (CyQUANT™ Cell Proliferation Assay Kit;
Invitrogen).

MS analysis

Proteins were subjected to SDS-PAGE followed by in-gel digestion
with trypsin. The obtained peptides were dried and then dissolved
in 0.1% TFA, 2% ACN prior to LC-MS/MS analysis. Peptides were
analysed using a nanoLC-MS/MS systemn, composed of an LTQ
Orbitrap Velos (Thermo Fisher Sciemific) coupled with a nanoLC
(Advance, Michrom BicResources) and an HTC-PAL autosampler
{CTC Analytics). Peptide separation was carried out using an in-
house-pulled fused silica capillary {0.1 mm inside diameter, 15cm
length, 0.05 mm inside diameter at the tip], packed with a 3-um C18
L-volumn. The mobile phases consisted of 0.1% formic acid (A} and
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The SCF Ubiquitin Ligases Involved in Hematopoietic Lineage
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Abstract: The ubiguitin-protcasome system is involved in various cellular functions by regulating protein degradation. It
has been shown previously that the SCF-type ubiquitin (E3) ligases are involved in cell cycle control. Here we review E3

ligases playing the crucial roles i the determination of cell fate during hematopoicsis. SCF

Skp2 e
"2 controls the degradation of

CDK inhibitors, such as p21, p27 and p57, to regulate hematopoictic stem cell lineage. SCF™™ targets several important
proteins involved in hematopoiesis such as c-Mye, Notch and e-Myb. By controlling the precise levels of these proteins,
E3 ligases are required for accurately determining hematopoictic lineage.

Keywords: Ubiquitin, proteasome, E3 ligase, SCF complex, hematopoiesis, Fbw7, Skp2, Fbwl, phosphorylation, Hema-

topoietic stem cells.

OVERVIEW OF THE SCF-TYPE UBIQUITIN LI-
GASES

The cellular levels of many proteins are carefully regu-
lated by the ubiquitin-proteasome system (UPS), one of the
degradation mechanisms in the cell. A ubiquitin ligase (E3)
polyubiquitylates its specific substrates by collaborating with
a ubiquitin-activating enzyme (El) and a ubiquitin-
conjugation enzyme (E2). The polyubiquitin-modified sub-
strates arc then degraded by the 26S-proteasome complex [1,
2]. The specificity of the ubiquitylation process is achieved
by over 1000 different E3 ubiquitin ligases. E3 ligases are
classified in four types of single ring-finger, complexed ring-
finger, HECT and U-box. One of major complexed ring-
finger E3 ligases is the SCF (Skp1-Cull-F-box protein)-type
E3. The SCF complex consists of four subunits: the RING-
finger protein Rbx1/Rocl, the scaffold protein Cull, the
adaptor protein Skpl and an F-box protein that has a Skpl-
binding domain and a substratc-rccognition domain [3, 4]
Fig. (1). Sixty-nine F-box proteins are found in the human
genome, whereas Rbx1/Rocl, Cull, and Skpl are all unique
and common ¢lements in the SCF complex [5-7]. Because it
is speculated that one F-box protein targets several proteins
for degradation, SCF-type E3s control the degradation of
hundreds of cellular proteins. The recognition of the F-box
protein with its substrate is often dependent on post-
translational modification of the substrate, such as phos-
phorylation [4, 8] Fig. (1). Once a substrate is modificd, it is
recognized by a specific F-box protein, ubiquitylated and
subsequently degraded by the proteasome.

PROTEINS INVOLVED IN THE HEMATOPOIETIC
LINEAGE

Hematopoietic stem cells (HSCs) reside in the bone
marrow (BM) and give rise to both lympheid (B-cells,
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Biology, Hamamatsu University School of Medicine, 1-20-1 Haudayama,
Higashi-kn, Hamamatsu 431-3192, Japan; Tel: +81-53-435-2323; Fax: +81-~
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1873-5592/12 §58.00+.00

T-cells and natural killer cells) and myetoid (red blood cells,
neutrophils, basophils, eosinophils, monocytes, macro-
phages, dendritic cells and platelets) lineages [9] Fig. (2).
During homeostasis, HSCs remain dormant and harbor mul-
tilineage sclf-renewal activity. HSCs exit quiescence and
enter into cell cycle for sclf-renewal and production of new
blood cells in response to hematopoietic stresses such as BM
injury, G-CSF stimulation or bleeding [9, 10]. After the re-
establishment of homeostasis, activated HSCs return to dor-
mancy [10]. Several signaling pathways and molecules have
been found to control the fate of HSCs, including Notch [11,
121, Wnt [13], c-Myc [ 14, 153] and cell cycle regulators.

Some of these regulatory molecules, such as ¢-Mye, ¢~
Myb, Notch, and cell cycle regulators, are targeted for deg-
radation by SCF-type ubiquitin ligases to regulate the hema-
topoictic lineage. The targets and function of some of these
SCF complexes, including Skp2, Fbwi, and Fbw7, are illus-
trated in Fig. (2) and described below.

TARGETS AND FUNCTION OF SCF%™ IN HEMA-
TOPOIESIS

HSCs can replicate indefinitely, whereas the number of
divisions of progenitor cells is limited according to their dif-
ferentiation. This is regulated by cell cycle modulators such
as CDK/eyclin dimers whose activity is repressed by CDK
inhibitors (CKTs), particularly p2177', p27°% and p57*%°
(hercafter, p21, p27 and p37, respectively).

Disruption of the p2/ gene in mice induced stem cell
cxpansion under stress conditions that normally require cell-
cycle arrest to prevent premature stem cell depletion and
hematopoietic death [16]. However, p21 does not contribute
to the proportion of the cells in Gg phase during steady-state
hematopoiesis [17]. Therefore, p21 may be more important
in the maintenance of HSCs under stress conditions.

Among the CKls, p57 specifically shows higher expres-
sion in HSCs compared to non-HSCs [18]. Recently, two
groups have shown that p57 is a crucial brake for cycling

© 2012 Bentham Science Publishers
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HSCs and links self-rencwal activity to cell cycle quies-
cence. Matsumoto @/ ol noticed the defect in the self-

renewal capacity of p57-deficient HSCs and a reduction of

the proportion of the cells in Gy phase, then they described

that p537 was required for quiescence and maintenance of

adult HSCs [19]. Furthermore, an additional ablation of p27
in a p37-null background resulted in a further decrease in the
in vitro colony-forming activity of HSCs [20]. Although Zou
et al. demonstrated that p537 and p27 cooperated to maintain

HSCs quiescence, the importance of p27 alone in HSCs is
unclear [21]. Depletion of p27 does not affect stem cell
number, cell cycling, or self-renewal, despite an increase in
progenitor proliferation and pool size [20]. However Matsu-
moto ef al. showed that the HSCs abnormalities of p57-
deficient mice were rescued by knocking in the p27 gene at
the p37 locus [19].

In splenocytes, the absence of p27 can be compensated
by an RB family member, pl30RB2. In the spleens of p27-/-;
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pI30RB2-/- mice, proliferation of B- and T-cells, erythroid
progenitors, monocytes and macrophages were all signifi-
cantly augmented compared with their p27-/- counterparts
[22]. The peculiar oscillation of cach Skp2 substrate in HSCs
may be responsible for the role of Skp2 in the maintenance
of HSCs status. However, given the shared functions of the
CKIs regulated by Skp2, the loss of one CKI may be com-
pensated by the others in the maintenance and development
of HSCs and progenitors.

The protein levels of p21, p27, p37 and p130RB2 are
controlled posttranslationally by Skp2-dependent ubiquityla-
tion and proteasome degradation. Skp2 expression is induced
in HSCs and progenitors in responsc to hematopoietic stress.
In Skp2-desrupted mice, the inability to rapidly and effi-
ciently enter the cell cycle after 5-FU treatment and trans-
plantation, leads to enhanced HSCs quiescence and impaired
regeneration during hematopoiesis [23]. Therefore it is
thought that the reduction in cell cycle in bone marrow cells
in the absence of Skp2 is caused by an accumulation of CKls
[23]. The opposite observation has been also reported in that
Skp2-deficiency leads to reduced guiescence and increased
HSCs eycling and neither p21 nor p27 were stabilized in
[SCs [24] Fig. (2). This discrepancy might be caused by
differences in the genetic background of the knockout mice
and/or experimental strategy. Tt is necessary to elucidate how
Skp2 distinguishes between similar proteins to maintain the
appropriate cell fate in different environments and stages.

Cyclin D1 is the catalytic subunit of CDK4/6 and thereby
induces cell cycle progression in quicscent HSCs vig phos-
phorylation of retinoblastoma protein (pRB). Deletion of
Skp2 in HSCs induces expression of Cyclin D1 [24]. Moreo-
ver, the transport of Cyclin D1 into the nucleus by heat
shock cognate protein 70 (HSC70), prevents the binding
between Cyclin DI and cytosolic p27 or p57 [21]. These
results suggest that Skp2 may play multiple roles in Cyclin
D1 regulation including transcriptional repression and the
functional activation through the depletion of p27 and p57.

T-cell acute lymphocytic leukemia (T-ALL) protein 1
(Tall) gene gets the gain-of-functional mutation frequently
in pediatric T-ALL. 7w//-disrupted mice are embryonic le-
thal caused by « failure in blood production [25]. Tall ex-
pression is transient and confined to HSCs and megakaryo-
eytic/erythrocytic progenitor cells (MEP). Tall expression is
rapidly extinguished once cells begin to differentiate and
lose their proliferative potential, with the exception of
erythropoiesis and megakaryopoiesis [26]. This is consistent
with its fundamental role in the regulation of erythroid cell-
and megakaryocyte-specific gene expression programs. Tall
contains a basic helix-loop-helix (bHLH) domain and forms
heterodimers with other bHLH proteins including E2A. In
hematopoietic cells, these heteredimers are a part of a tran-
scriptional complex regulating target genes associated with

~hematopoietic development and leukemia {26, 27]. Ubiquity-
lation and degradation of both E2A and Tall are Skp2-
dependent [28, 29]. In lymphoid cell lines, the interaction
between E2A and Skp2 is governed by MAP kinasc activity,
which is induced by Notch signaling [29]. Expression of
Tall is not detected in normal lymphoid cell lines, suggest-
ing that its excess in T-cells might contribute to leu-

Current Drug Targets, 2012, Vol 13, No. 13 1643

kemogenesis. It is possible that Tall ih T-cells might be
regulated by a signaling system same as that of E2A.

The mixed lineage lenkemia (MLL) gene encodes a
DNA-binding protein that methylates lysine 4 on histone H3
and positively regulates gene expression including multiple
Hox genes [30]. MLL works as a major regulator of hema-
topoiesis [31], and hence its chromosomal aberration or gene
amplification is a cause of acute mycloid and lymphoid leu-
kemias {32]. In mice overexpressing the fusion MLL-ENL
(11-19 leukemia protein), which is frequently found in clini-
cal samples, leads to myelomonocytic leukemias derived
from HSCs or progenitor cells [33]. Possibly through the
activation of leukemogenic gene-expression, MLL fusion
proteins efficiently transform hiematopoietic cells into leu-
kemia stem cells [30]. MLL is regulated by two different
UPS complexes, SCF™ and APC/ICY™ throughout the cell
cycle [31]. However, these UPS activities are ineffective
against MLL-ENL fusion proteins [31]. Skp2-mediated deg-
radation of MLL is inhibited by ATR mediated phosphoryla-
tion in response -to genotoxic stress in S phase [34]. Al-
though it has not been clarified whether this system functions
in hematopoictic lincages, the ATR-induced increase of
MLL levels may contribute to cancer onsct.

TARGETS AND FUNCTION OF SCF™!' IN HEMA-
TOPOIESIS

f~catenin acts as a coactivator for transcription factors
such as TCF and LEF, both of which function in lymphoid
cells. Cytoplasmic P-catenin forms a complex with APC,
axin and GSK-3[3 [35]. B-catenin is phosphorylated by GSK-
3P in the complex and is subsequently recognized and de-
graded by the Fbwl (Fbxwl/ B-TRCP/ FWDI)-mediated
UPS [36, 37]. Fbw1 recognizes a consensus motif D-pS-G-
X-X-pS within the substrate in a phosphorylation-dependent
manner [37]. The canonical Wnt signal pathway inhibits
GSK3 activity, thereby stabilizing f-catenin and promoting
its translocation into the nucleus. Fine tuning Wnt stimula-
tion is essential for hematopoiesis. An increase in Wat sig-
naling, which stabilizes B-catenin, maintains the self~renewal
capacity of HSCs by upregulating HoxB4 and Notchl [35-
411, The effects of a reduction of B-catenin, however, are
controversial. Zhao ef al. reported that loss of B-catenin im-
paired the progression of CML, however, Jeannet ef al. and
Koch et al. observed that the absence of - and -catenin did
not perturb hematopoiesis or lymphopoiesis [42-44]. In adult
mammals, hematopoiesis primarily takes place within bone
marrow. [-catenin-deficient bone marrow is able to maintain
HSCs but exhibits a decreased capacity to support primitive
progenitors and decreased in the numbers of osteoblasts
which have a functional role in regulating hematopoiesis
through production of soluble molecules, such as stem cell
factor [45]. These findings show that the quantitative regula-
tion of P-catenin levels is necessary for normal hema-
topoictic lineage Fig. (2). This raises the possibility that not
only Wnt signaling levels but also Fbwl activity participates
in regulating the hematopoietic lineage.

NFKB is an antiapoptotic and oncogenic transcription
factor whosc constitutively increased activation is detected in
hematologic malignancies [46]. Normal HSCs lack constitu-
tively active NFkB, despile their requirement of cytokine-
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and growth factor-induced NFxB activation for survival and
differentiation [47]. The activity of NFxB is inhibited by its
dimerization with TxB, whose lcvel is regulated by Fbwl-
mediated UPS [48]. NFxB is also negatively regulated by
PDLIM2 (also known as SLIM) in splenic CD11¢™ cells,
which acts as a nuclear ubiquitin E3 ligase for the p65
subunit of NFxB [49]. The repression of constitutively active
NFkB is expected to be a molecular targeting strategy effec-
tive in treating multiple myeloma (MM). Bortezomib, which
is a reversible inhibitor of the 268 proteasome, induces apop-
tosis through the inhibition of IxB degradation and the pre-
vention of nuclear translocation of NFxB, in MM cells [50].
Because 26S protecasome is a basis component of UPS-
mediated degradation system, other substrates, which are
also stabilized by Bortezomib, are likely to play additional
roles in MM.

Fbwl has an important role in the immune response.
Human immunodeficiency virus type-1 (HIV-1) infection
induces the expression of T-cell surface receptor CD4. This
receptor, which prevents efficient viral replication and
spread of HIV-1, is degraded by Fbwl-mediated UPS [51].
Moreover, Tetherin (BST-2/CD317), a host restriction factor
that strongly inhibits the release of virions from the host cell
surface, is another substrate of Fbwl [32]. Although CD4
and Tetherin are unlikely natural substrates for Fbwl, HIV-1
viral membrane-associated protein U (Vpu) functions as an
adaptor to link Fbwl to both targets [51-53]. These interac-
tions depend on two phosphorylation sites, which are Jocated
within a conserved Fbwl recognition motif in Vpu [51]. It is
likely that the degradation of CD4 and Tetherin by Fbwl
accelerates viral replication. Therefore, inhibition of Vpu
phosphorylation might be an effective molecular targeted
therapy for abrogating the infectious spread of HIV-1.

TARGETS AND FUNCTION OF SCF™Y" IN HEMA-
TOPOIESIS

The expression level of ¢-Mye in HSCs is dependent on
the differentiation state of HSCs. The reduction of ¢-Myc
levels is regulated by posttranscriptional mechanisms, not
transcriptional control [34]. ¢-Myc, which is a target for
Fbw7-mediated UPS, was upregulated in HSCs of /hw7-
deficient mice and was correlated with a corresponding loss
of quiescent HSCs in thesc animals, but other cell cycle tar-
gets for Fbw7, such as Cyclin E and c-Jun, were not affected
by the loss of Fbw7 [33, 36]. This suggests that the accumu-
lation of ¢-Myc in HSCs induced their entry into the cell
cycle Fig. (2). Reavic et o/ demonstrated that decreasing c-
Myc levels by gencrating Fow7" " /Myc"™ mice rescued the
Fhw? deficiency-induced HSCs phenotype [54]. By fine
wning the expression levels of ¢-Myc by means of Fbw7-
mediated degradation, the degree of cell cycle entry of HSCs
can be carefully regulated.

Mammalian target of rapamycin (mTOR} is another tar-
get for ubiquitylation and subscquent degradation by Fbw7
[57]. Therefore, the loss of Fbw7 also increases mTOR sig-
naling. It has been reported that aging increases mTOR ac-
tvity in HSCs, while its inhibition by rapamycin can restore
the self-renewal and hematopoiesis of HSCs [58]. The loss
of a number of negative regulators of mTOR, such as Fbw7,
PTEN, PML and TSC1, leads to the hyperproliferation and
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subsequent exhaustion of HSCs [59]. This suggests that
mTOR may participate in Fbw7-dependent functions in
HSCs Fig. (2).

The Notch family plays a crucial role in the determina-
tion of cell fate in development [60]. Notch is a transmem-
brane receptor consisting of a large extracellular unit which
can associate with ligands in a calcium-dependent manner.
The binding of these ligands, such as Jaggedl, Jagged2, and
Deltal, leads to the proteolytic cleavage of Noichl. The
cleaved intracellular tail of Notchl is then transported into
the nucleus, where it acts as a transeription factor. This acti-
vation of Notchl induces changes in self-renewal, prolifera-
tion and differentiation of HSCs and progenitors [61].

The contribution of Notchl in the hematopoietic abnor-
malities in fbw7-deficient mice is still unclear. The expres-
sion of some key hematopoietic regulating factors, such as
GATA-2 and HES, arc regulated by the Notch signal path-
way [62, 63]. Furthermore, genetic mutations in NOTCH ]
are frequently detected in T-ALL paticnts. Most of these
mutations lead to a truncation of the C-terminal domain,
which is the recognition site for Fbw7. These mutations
would then result in a loss of UPS-mediated degradation and
an increase in Notchl activity [64, 65]. Furthermore, inacti-
vation of Fbw7 by genetic mutation, which is also highly
detected in human T-ALL, interferes the normal Notchl
regulation [64]. This gain-of-function of Notchl plays an
important role in initiating cell transformation and the onset
of T-ALL, because Notchl is cssential during normal T-
lymphocyte development [65, 66].

The loss of Fbw7 will have not only affects Notch! sig-
naling in T-cells, but on other Fbw7-dependent targets as
well Fig. (2). Mice with conditional inacdvation of Fbw7 in
the T-cell lineage develop thymic hyperplasias and thymic
lymphomas. The protein levels of not only Notchl but also
¢c-Myc are increased in CD4+/CD8+ double positive (DP)
thymocytes of these mice [67]. An increase in c-Myc would
then contribute to cell cycle entry of these cells. FACS
analysis of BM and thymocytes from Fbw7-deficient leuke-
mic mice depicts an accumulation of DP and a loss of CD4-
/CDS$- double negative (DN) and single positive (CD4+ or
CDS8+) populations. This is consistent with the significant
levels of Notch! and c-Mye that are found in thymocytes
[35]. Additionally, more than 50 % of Fbw7-deficient micc
also developed T-ALL [33]. Further analysis of double con-
ditional knockout (¢cKOQ) of Fbw7 and c-Myc or RBP-J, an
essential mediator of Notch signaling, have belped to clarify
the roles cach plays in the immature T-cells. The accumula-
tion of Notchl depends on the stage of the T-cell but c-Myc
levels arc stage-independent [67]. The aberrant accumulation
of ¢-Myc and Notchl by depletion of Fbw7 both might dis-
turb the early stage of T-cell development leading to the on-
set of T-ALL.

In the T-cell lincages, the hematopoietic transcription
factor ¢-Myb is involved in the maturation process at several
key steps [68. 69]. c-Myb is short-lived protein whose UPS-
mediated degradation is catalyzed by Fbw7 [70, 71]. Genetic
mutations of ¢-Myb which lead to its overexpression have
been found in T-ALL [72]. In addition to mutations in ¢-
Myb, the accumulation of c-Myb protein can also be caused
by defects in Fbw7-mediated degradation, which might also
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Table . The Function of Substrates of SCF-Type E3 Ligase in Blood Cells

Cell Status E3 Ligase Substrate Function Ref.
Stem celi Skp2 p2l cell eyele arrest under the stress conditions [20]
p37 brake for cycling HSCs [19]
P21 & p37 maintainance of quiescence 211
Tall waintain of HSCs pool 26]
E2A maintain of HSCs pool [26]
Fbw7 c-Myc brake for cycling HSCs, regulation of polarity (54, 55]
mTOR maintainance of self-renewal and hematopoiesis (58]
Noteli] maintainance of self-renewal and balance between HSCs and [61]
progenitors
Fbwl p-Catenin maintainance of self-renewal and multilineage differentialtion [39-411
Progenitor Skp2 pa7 repression of proliteration [20]
p130 & p27 cooperate 1o regulate hematopoitic eclls proliferation, repres- [22
sion of proliferation of splenic progenitor
Tall regulation of erythroid cells and megakaryocytes specific [261
expression programs
E2A promoting the differentiation of lymphoid and erythroid {26]
progenitor cells
MLL regulation of hematlopoicsis 176]
Fbhw7 Notchl T-cell mataration [65]. {66]
c-Mye development and cell profiferation of T-cell Hncage [671
o-Myb promoting the differentiation of erythroid and lymphoid cells {681, [69]
MCLI maintainance of proliferation of T-cell progenitors 77

contribute to the onset of T-ALL. c-Myb is expressed in im-
mature progenitors of all hematopoietic lincages and is asso-
ciated with the regulation of proliferation, differentiation and
survival [73]. Constitutive expression of ¢-Myb prevents the
terminal differentiation of erythrocytes and megakaryocytes
and abolishes B-lymphocyte development [74]. ¢-Myb-
depleted mice show aberrant hematopoictic lincages. favor-
ing differentiation toward macrophages and megakaryocytes
[68, 75]. Intercstingly, Fbw7-deficient mice have aberrant
levels of peripheral blood cells and low levels of platelets
[55]. Because the loss of Fbw7 has the opposite effect of ¢-
Myb deplction on megakaryocytes, the Fbw?7 target influenc-
ing platelet numbers seen in Fhw7 ¢KO mice is likely to be
c-Myb.

MCL1, a pro-survival BCL2 family member, is fre-
quently overexpressed in leukemia, although the mechanisms
are not fully understood [76]. MCL1 wansgenic female mice
expand the DN1 subset containing the most primitive cells,
including the rare early T-cell progenitors [77]. MCL1 has a
rapid wrn-over rate, and is quickly degraded by apoptotic
inducing signals, Three types of E3 ligases have been identi-
fied for MCL1, Mule (a HECT-type E3 ligasc), Fbwl and
Fbw7 [78-80]. It has been shown that a loss of Fbw7 that

leads to an accumulation of MCLI induces leukemia {80].
DNA damage activates GSK3f and results in phosphoryla-
tion of MCLI, and both Fbwl and Fbw7 regulate GSK3f
mediated phosphorylation-dependent degradation of MCL1
[79, 80]. Both Mule and Fbwl contribute to the UV- or
staurosporine-induced MCL1 degradation [78, 79].

GSK3 often works as a coregulator for the tumover of
Fbw7 substrates. GSK3 phosphorylates threonine or serine
residues of the CPD (Cde4 phosphodegron) in each sub-
strate, which then recruits Fbw7 to the substrates. Three ar-
ginine residues in the WD40 repeats region of Fbw7 com-
prise the binding pocket for the recognition of the phos-
phorylated substrates, such as ¢-Mye, Notehl, c-Myb and
MCLI1. These arc all involved in hematopoietic lineage and
are lost after a specific period during development Fig. (2).
Therefore, mutation of the CPD in the substrate or of the
arginines in the WD40 domain of Fbw7 results in loss of
Fbw7-mediated target degradation [4, 56]. Interestingly,
while the CPD sequences of the substrates are highly con-
served across species, the CPD in mouse ¢-Myb is not con-
served in human c-Myb, which is degraded independently of
GSK3 [81]. This suggests that not only GSK3 activity but
also other regulatory signals participate in regulating ¢-Myb
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in humans. Further studies are required to clarify the roles of
different degradation pathways regulating hematopoietic
lincages.

PERSPECTIVES

As illustrated in this review, Fbw7, Skp2 and Fbw] regu-
late the cellular levels of hematopoietic transcription factors
and play crucial roles for the development of hematopoietic
lineages. Therefore, mutations that affect the activity of these
SCF-type E3 ligases also affect hematopoiesis and makes the
cells more susceptible to malignancics. There are many re-
poris of Skp2-overexpression in malignant cells; therefore, it
is possible that a Skp2 inhibitor may be a novel anticancer

drug for hematopoictic cancers. By contrast, Fbw7 targets

oncogenic proteins for degradation and is considered a tumor
suppressor protein. Considering the frequent deletion or mu-
tations of the Fbw7 gene in T-ALL, the loss of Fbw7 activily
might contribute {o the onset of this cancer. Therefore, Fow7
may be useful for a novel diagnostic marker for T-ALL.

CONFLICT OF INTEREST

The authors confirm that this article content has no con-
flicts of interest.

ACKNOWLEDGEMENT
Declared none.

ABBREVIATIONS

urs = Ubiquitin-Proteasome System

SCF = Skpl-Cull-F-box Protcin

HSCs = Hematopoietic Stem Cells

BM = Bone Marrow

CDK. = Cyclin-Dependent Kinase

CKI = CDK Inhibitor

T-ALL = T-Cell Acute Lymphocytic Leukemia

HIV-1 = Human Immunodeficiency Virus Type-1

mTOR - = Mammalian Target of Rapamycin

bp = (CD4+/CD8+ Double Positive

DN = (CD4-/CDS8- Double Negative

¢KO =  Conditional Knockout

GSK =  Glycogen Synthase Kinase

CPD = Cde4 Phosphodegron
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Regulation of DNA Replication Licensing
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Abstract: In eukaryotic cells, DNA replication is tightly regulated to occur only once per cell cycle. DNA licensing is a
mechanism to guarantee this aim; that is, licensing of replication initiation is permitted during late M phase to G1 phase.
The license is canceled by the start of DNA replication. Once DNA replication begins, the license is never given until the
next late M phase. The licensing corresponds to the process of assembling components of the pre-replication complex
{pre-RC} on the replication origin DNA. This pre-RC is the target of several different regulation systems to prevent re-
replication of DNA during a single cell cycle. [n this review, the regulation mechanisms mainly in mammals to control as-

sembling components of the pre-RC will be discussed.

Keywords: CDC10-dependent transcript 1 (CDT1), cell division cycle 6 (CDC6), DNA replication, high mobility group AT-
hook 1 (HMGAT), histone acetyltransicrase binding to ORC (HBO1), homeobox protein Hox-D13 (HOXD13), licensing, mini
chromosome maintenance (MCM), origin recognition complex (ORC), prereplication complex (pre-RC).

INTRODUCTION

Vast amounts of information in the genome are quickly
duplicated in eukaryotic cells. To maintain the information,
DNA replication must occur only once per cell cycle for all
chromosome sequences. To duplicate DNA rapidly, cukary-
otic cells have multiple replication origins. This means that
even if one replication origin has fired, another origin may
remain silent. The eukaryotic cell has to develop multiple
svstems to distinguish origins that have already fired from
those that have not fired. It is well known that the pre-
replication complex (pre-RQ) is a target of the mechanisms
to restrict DNA replication to a single round per cell cycle.
Essential components of the pre-RC are the origin recogni-
tion complex (ORC), cell division cycle 6 (CDC6), CDCI0-
dependent transcript 1 (CDT1), and mini chromosome main-

tenance {(MCM) 2--7 complex. Recently, a family member of

the high-mobility group proteins, HMGAla; a Hox protein
belonging to the large family of homeodomain-containing
DNA-binding proteins, HOXD13; a member of the MCM
family, MCM9; and a histone acety Hransferase, HBOI, were
reported to facilitate pre<RC formation.

Replication licensing begins when ORC binds a replica-
tion origin. In fission and budding yeast, ORC binds the rep-
lication origin throughout the cell cycle; in higher eukaryo-
tes, ORC is transiently released from the origin in M-phase.
HMGAL is indicated to target ORC to AT-rich chromatin
regions. Chromatin-bound ORC recruits CDC6 and CDT] to
a replication origin. HOXDI3 interacts with the CDC6.
These proteins act as a platform for the MCM2-7 complex to
load the complex on the replication origin. MCM9 and
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Higashi-ku, Hamamatsu 431-3192, Japan; Tel: +81-33-435-2324; Fax; +81-
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HBO1 directly bind CDTI, and they exist at the replication
origin. Both factors facilitate MCM2-7 complex loading on
the origin. This step-by-step process is regulated during the
cell cycle by various mechanisms, and it is very important
for preventing the re-initiation of DNA replication from ori-
gins that have already fired during a single cell cycle.

PRE-RC COMPONENTS
ORC

ORC was identified as an associated protein at autono-
mously replicating sequences {ARSs) in budding yeast [1].
ORC is composed of six subunits (ORCI1-6) and acts as an
AAA” ATPasc. Although yeast ORC binds to specific DNA
sites, metazoan ORC preferentially binds to AT-rich se-
quence with nanomolar affinity. In mammalian cells, the
amounts of ORC subunils, except ORCIL, are constant
throughout cell cycle. ORC1 is regulated by phosphorylation
and ubiquitylation. In hamster cells, the largest subunit
ORC1 binds CDK2/Cyclin A and is phosphorylated at G2/M
phase. This phosphorylation reduces the affinity of ORCI to
chromatin {2]. In human cells, ORCI is selectively polyu-
biquitinated by SCF** ubiquitin ligase and degraded by
26S proteasome during S phase [3]. In Hel.a and CHO cells,
ORC1 modifications such as mono-ubiquitylation and hy-
perphosphorylation that occur normally during S and G2-M
phases, respectively, can cause ORCI to accumulate in the
cytoplasm [4]. Thus, ORC activity is lost during S phase to
late M phase by suppressing ORCI. At the onset of mitosis,
non-modified ORC1 is supplied. Another ORC subunit,
ORC2, is also modified. Polo-like kinase 1 (PLKI) phos-
phorylates ORC2, and ORC2 phosphorylation is enhanced
by genotoxic stress. This phosphorylation associates with
DNA replication origins to maintain the pre-RC during DNA
replication stress [3].

© 2012 Bentham Science Publishers
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CDCe

CDC6 was originally identified from cell cycle mutants
of budding veast [6]. CDC6 is another AAA™ ATPase and is
an essential molecule for replication licensing. Chromatin-
bound ORC recruits both CDC6 and CDTI to the replication
origin. CDC6, together with ORC and CDTI, makes a plat-
form to load the MCM2-7 complex onto chromatin. Another
MCM family member, MCMS, interacts with ORC2 and
CDC6. MCMS is involved in CDC6 recruitment to the origin
[7]. In human cells, CDC6 is destabilized in G1 by the ubig-
uitin-proteasome. A ubiquitin ligase, APC/C*™' acts as an
E3 ligase [8, 9]. In S phase, a part of CDC6 is phosphory-
lated by CDK2/Cyclin A and is exported to the cytoplasm to
prevent re-replication [10-12]. Prior to this phosphorylation,
CDC6 is acetylated by a histone acetyltranslerase (HAT),
GCN3 [13]. GCNS specifically acetylates CDC6 at three
lysine residues flanking its cyclin-docking motif and is re-
quired following phosphorylation. These modifications are
necessary for the translocation of CDC6.

CDTI

In eukaryotes, Cdcl0-dependent transcript 1 (CDTT) was
identified in {ission ycast as a target of the CDC10 transcrip-
tion factor [14]. CDTI is a major target to prevent rereplica-
tion in metazoans. In mammals, two different proteolysis
pathways degrade CDTI. One pathway, the SCF3RP2 3
ubiquitin ligase-dependent pathway, requires phosphoryla-
tion by CDK2/Cyclin A [15-17]. However, the SCFSF.
dependent degradation may be a minor pathway because the
total CIDDT1 protein amount was not affected in Skp2-/
mouse embryonic {ibroblasts. This phenomenon can be ex-
plained by another PCNA-dependent proteolysis pathway.
CUL4-DDBIP" is another ubiquitin ligase for CDTI.
CDTI protein levels peak in G1/S phase. CIYT1 is degraded
in S phasc by predominantly CUL4-DDBI(‘DTZ. This cataly-
sis involves CDTI and CUL4-DDB1P™ binding chromatin-
bound PCNA. CUL4-DDBI"™ also ubiquitylates CDT]1
aller DNA damage. 1t would be important to prevent rerepli-
cation at (G2 phase because DNA damage induces checkpoint
activation. The checkpoint signaling suppresses CDK activ-
ity. As a result, low CDK activity would trigger reassembly
of the pre-RC components onto replication origins. When
DNA damage occurs in G1 phase, CDTI is rapidly degraded.
A recent paper reported that pre-RC components including
CDTI1 dynamically interact with chromatin throughout Gl
phase [18]. The reason for the rapid elimination of CDT1
from replication origins in Gl phase remains to be eluci-
dated.

Geminin is an inhibitor of replication licensing. It binds
CDT1 and is recruited to replication origins. The interaction
between geminin and CDT1 inhibits the loading of the MCM
complex onto chromatin. Geminin was originally identified
in Xenopus as a substrate of APC/C®"" and APC/CEPH!
[19]. Geminin degradation allows pre-RC formation in Gl
phase. CDT1 ubiquitylation is prevented by geminin interac-
tion. This process is important to supply enough CDT1 in G1
phase.

MCM2-7

The MCM2-7 heterohexamer is predicted to be a DNA
helicase. It was identified in the budding yeast as mutants
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defective in the maintenance of minichromosomes. CDC6
and CDTI recruit MCM2-7 to the replication origin, ORC
and CDC6 ATPases stimulate MCM2-7 loading on replica-
tion origins [20, 21].

Although DNA helicase activity was not detected in virro
for a long time, immuno-depletion of MCM2-7 from
Nenopus egg extract inhibited DNA unwinding activity, sug-
gesting that MCM2-7 was implicated in DNA helicase activ-
ity [22]. Quite recently, Bochman and Schwacha reported
MCM2-7 helicase activity. Unlike MCM4,6,7, MCM2-7
helicase activity was strongly anion dependent [23]. Each
MCM subunit includes a C-terminal AAA" domain and a
distinct N-terminal domain. A recent study indicated that a
double hexamer MCM complex that was connected head-to-
head vig N-terminal rings was foaded on the DNA, and it
encircled double-stranded DNA [24].

Recently, MCM protein dynamics in living mammalian
cells were investigated. These proteins firmly bound chroma-
tin throughout Gl phase. Chromatin bound each of the
MCM2--7 subunits, and this interaction gradually increased
from late M phase until the initiation of S phase [25]. This
report also indicated that the unloading of MCM proteins
from chromatin required DNA replication.

Co-Factors Facilitating Pre-RC Formation

HMGAla

HMGA Ta was indicated to target ORC subunits to DNA
[26]. In S. cerevisiae, a sequence of the replication origin is
defined and named the autonomously replicating sequence
(ARS). In contrast to budding yeast, a common sequence for
the mammalian replication origin has not been identified,
How ORC subunits recognize origins is largely unknown. In
Schizosaccharomyces pombe, origin sequences contain AT-
rich sequences. SpORC subunits are recruited to the origin
via the SpORC4 subunit. SpORC4 contains nine AT-hook
motifs. In mammalian cells, the HMGA family of proteins
containg the A'T-hook motif. One of the members, HMGAIla,
specifically binds to the minor groove of AT tracks [27].
Targeting HMGATla to the special site on the plasmid re-
cruits ORC and generates an artificial origin of DNA replica-
tion in cells.

HOXDI3

HOXDI3 is a member of the HOX family of proteins
that belongs to the large family of homeodomain-containing
DNA-binding proteins. HOX proteins have been found o
associate with the replication licensing regulator geminin
[28]. Some members of the HOX proteins have been shown
to bind replication origins [29-31]. HOXD13, a member of
the HOX proteins, binds human replication origins during
the G1 phase of the cell cycle. [t interacts with CDC6 and
promoles pre-RC formation [32]. Endogenous HOXDI13
accelerates DNA synthesis initiation. Geminin, which inter-
acts with CDT1 and inhibits pre-RC formation, also interacts
with HOXD13 and inhibits HOXDI13-medijated pre-RC for- -
mation. HOX family proteins might have an important role
in the assembly of the pre-RC.

HBOT
HBO1 (histone acetyltransferase binding to ORC) is a
MYST family histone acetyltransferase. It was [irst identi-
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A MEyT

MR 27

Fig. (1}. Prereplication complex (pre-RC) formation during mitosis to G1 phase. (1) ORC1 is removed during S and G2-M phases; thus,
ORC activity is reconstructed at mitosis. At the onset of mitosis, non-modificd ORC1 is supplicd. HMGAI targets ORC to the replication
origin; {2) Chromatin-bound ORC recruits CDC6 and MCMS to the origin. HOXD13 interacts with CDC6 at replication origins; (3) CDTI1
binds to ORC and CDC6 to localize to the origin; (4) CDTI recruits co-factors, HBOT and MCM9Y, to facilitate MCM2~7 loading at the ori-
gin; (8 Chromatin acetylation around the origin is required for proper MCM2-7 loading.

fied as an ORCI-binding protein in human [33]. HBOI was
also identified as a MCM2-binding protcin [34]. HBOI1 is
recruited 1o replication origins in a CDT!-dependent manner
and enhances CDT1 licensing activity [35]. The acetyltrans-
ferase activity of HBOI is essential to accelerate MCM2-7
complex loading onto chromatin. HBO1 activity is inhibited
by geminin [36]. The HBOI complex includes JADE-1 and
bind to histone H3. The PHD (plant homology domain) fin-
ger domain in JADE-1 interacts with the N-terminus of his-
tone H3 with different specificity with respect to its methyla-
tion states [37, 38]. Recently, Miotto and Struhl reported that
HBO1 recruitment to origins by CDT! was inhibited by
IJNK1 phosphorylation of CDT1 under non-genotoxic stress
conditions [39]. These observations suggest that the HBO1
histone acetylransferase activity changes the environment of
a replication origin to relax its form. Such a conlormational
change of the chromatin would be important for loading the
MCM complex onto the replication origin.

MCM9

MCM9 is a member of the MCM2-8 family. MCM9
exists only in vertebrates. The N-terminus of MCM9 con-
serves the MCM2-8 signature; however, the MCM9 C-
terminus is significantly different. Lutzmann and Méchali

recently reported that MCM9 was required to load MCM2-7
onto chromatin in the Xenopus system [40]. MCM9-
depletion abolished replication of sperm chromatin, They
also showed that the interaction between MCM9 and CDT1
was important for their stability, and this interaction pre-
vented an excess of geminin on chromatin during the licens-
ing reaction. In contrast to Xenopus, Hartford ef al. reported
that mammalian MCM9 was dispensable for pre-RC forma-
tion and DNA replication in mice. They concluded that
MCMS is important for germ-line stem-cell maintenance and
proliferation [41].

Dynamic Establishment of Replication Licensing

Licensing is required for accurate DNA replication that is
precisely restricted to once per cell cycle. The eukaryotic
origin is marked by the binding of the ORC complex in late
M phase. HMGA la protein might assist ORC complex bind-
ing to the origins., Then, CDC6 and CDTI recruit the
MCM2-7 complex to the origin with co-factors, HOXDI3,

-HBO1 and MCM9, throughout G1 phase Fig. (1). The dy-

namics of replication licensing in living Caenorhiabdiiis ele-
gans embryos was analyzed using video microscopy [42].
The authors proposed a model of a licensed origin. They
observed that the dissociation of chromatin-bound ORC and
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CDC6 was promoted by MCM2-7 complex loading. This
negative feedback loop would prevent excessively large gaps
between adjacent origins.

Recent studics concerning origin licensing in living cells
indicate that members of the pre-RC, except the MCM2-7
complex, bound and dissociated from the chromatin with
flexibility during late M phase to late G1 phase. Once origins
are licensed (MCM2-7 complex loading is established), the
origin would never be canceled until DNA replication has
started. However, one question about the dynamics of pre-
RC establishment has appeared. If DNA damage is suffered
during the period of the establishment, would any checkpoint
systems suppress pre-RC formation? Some of the well-
known checkpoint targets are cyclin-dependent kinases
(CDKs). However, CDKs are inactive during late M phase to
late G1 phase in a normal cell cycle. To maintain genome
integrity, pre-RC formation would be an effective target for
DNA damage checkpoints.

Perspectives

These findings about DNA replication initiation will be
useful for understanding the DNA damage response in anti-
cancer drug treatments. However, they may not directly pro-
vide novel molecular targets for cancer therapy because dif-
ferences in these mechanisms between normal cells and can-
cer cells should be clucidated. Further study is required to
investigate whether a pre-RC-regulating molecule such as
HBOI may be a novel target for immunosuppressive drugs
to inhibit lymphocyte proliferation.
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Abstract

SCF-Skp2 E3 ubiquitin ligase (Skp2 hereafter) targets several cell cycle regulatory proteins for degradation via the ubiquitin-
dependent pathway. However, the target-specific physiological functions of Skp2 have not been fully elucidated in kidney
diseases. We previously reported an increase in Skp2 in progressive nephropathy and amelioration of unilateral ureteral
obstruction {(UUO) renal injury associated with renal accumulation of p27 in Skp2™" mice. However, it remains unclear
whether the amelioration of renal injury in Skp2™/" mice is solely caused by p27 accumulation, since Skp2 targets several
other proteins. Using Skp2 ™" p27 ™/~ mice, we investigated whether Skp2 specifically targets p27 in the progressive
nephropathy mediated by UUO. In contrast to the marked suppression of UUO renal injury in Skp2 ™/ mice, progression of
tubular dilatation associated with tubular epithelial cell proliferation and tubulointerstitial fsbrosxs thh increased expression
of collagen and a-smooth muscle actin were observed in the obstructed kidneys in Skp2™ “p277'" mice. No significant
increases in other Skp2 target proteins including p57, p130, TOB1, cydin A and cyclin D1 were noted in the UUO kidney in
Skp2 ™’ mice, while p21, c-Myc, b-Myb and cyclin E were slightly increased. Contrary to the ameliorated UUO renal injure by
Skp2-deficiency, the amelioration was canceled by the additional p27-deficiency in Skp2™""p27~"" mice. These findings
suggest a pathogenic role of the reduction in p27 targeted by Skp2 in the progression of nephropathy in UUQO mice.
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Introduction The ubiquitin-proteasome pathway of protein degradarion plays
an poporant role i conrolling the abundance of el eycle
Cell pr('ﬂiﬁ:r;uion is a busic biological wechunism that i reglatory proteins [9,10]. The rapidity and substrate specificity of
controlled by a network Uf pmu:ins including evelins, cydin- px‘é{c\in degradation through the ubiquitin-proteasome pathway
dependent kinases (CDKs) [1] and cyclin-dependent kinase are consistent with its vole in controlling the flucmarions in the
inhibitors (CKls} {2]. The CI‘*I p27" p27), a known negadve mntracellular concentrations of cveling and CKls. Skp2 is known o
regulator of the cell eycle, is abundanty expressed in most normal be the Fhox protein ‘cml‘;pmml’u of an SOP-type ubiquitin ligase
quicscent cells, and its level declines when cells are stimulated 10 that interacts with p27, and the SCF-Skp2 mn":plcx* promotes p27
proliferate in response to mitotic stimuli [fi,ﬂ: I vitry studdies have degradation by ubiquitination [i1,12]. ‘:sixp" 7= mice have heen
shown that experimentally reducing the level of p27 protein ononed 1o show cellular accumulation of p27 [13]. Morcover, cde
angments the proliferative response to mitogens [3,6], while forced kinase subunit 1 (Cksl) is required for degradation of p27
overexpression of p27 inhibits cell proliferation [4]. The level of mediated by Skp2 U 4]. Tt has also been reported that Skp? targets
p27 protein i controlled not only by wanseriptional activadon but several eell evele regulatory proteins including p27, p2l, 135?;
also by proteolytic degradation of p27 protein via the ubiquitin- evelin E, eyelin A and cyclin D1 for degradation via the ubiquitine
proteasome system as a post-iranslational regulation. Consequent- d‘cpcndt:m' pathway flﬂ However, i( retnains unclear which
Iy, Gl-cyclin- JCDK complexces become activi ated to phosphorylate proteins are targeted by Skp2 for degradation in specific biological
retinoblastoma protein and advance the ecll eyele from G1 o § processes or discascs.

phase {7,8].
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In the Kidney, cell proliferadon is supposed o be a pivoul
response to damage, and culminates in the development of renal
injury and fibrosis. Profiferadon of wbular cells is a characterisde
feature of obstructed kidneys in unilaterad ureteral obstructon
O UUQO is a reprosentative model of progressive wbuloin-
erstitial injury that is suitable {or mvestigating the cellular and
molecular events that occur during the progression of renal fibrosis
associated with cell proliferation and apoprosis [16,17]. An
imbalance bevween eell proliferation and apoptosis has been
shown 1o lead 1o unchecked apopiosis, resulting in progressive cell
loss, renal tubular agephy and interstitial fibrosis [18].

Tt has been reported that hoth the mRNA and protein levels of
the CDKIs p27 and p21 are upregulated at an carly stage in the
obstructed kidoeys of UUO mice [19-21]. Marked increases in
renal wbular epithehial cell proliferation and apoptosis are also
observed in the obstructed Kidneys in p27™7™ mice [29]. Since
upregulation of p27 saleguards against excessive renal epithelial
cell proliferation, p27 may be involved in protecting cells and
tissues against inllanunalory injury. On the other hand, no
significant changes in wbular cpithelial cell proliferation and
apoptosis are found in the obstructed Kidneys i p21™7™ mice,
despite the proliferation of interstival cells, especially mvofihro-
Blasts [23]. Unlike p27, p21 linis the magnitude of carly
myofibroblast proliferation, but does not scem w be essenual for
the regulation of tubular epithelial cell proliferation and apoptosis
following UUQ [23]. These studies suggest diffierential regulatory
roles for the CDKIs p27 and p21 in UUO kidneys,

Recently, we reported that Skp2 mRNA was increased in UUO
kidneys and that the progression of fibrote wbnlointersitial
damage m U0 kidneys was attenvated in Skp2™7 wiice [24].
Although the p27 protein level was increased in the obstructed
kidneys i wild-type (WT) wiice, It owas significandy higher in
Skp2 ™7 miice. p27 accumulation, which resubs from SCF-Skp?2
uhiguitin ligase deficiency in Skp2 ™" mice, inhibited the renal
tubular epithelial cell prolileration, and was involved to the
amlioraton  of the renal damage  induced by obstructive
nephropathy. Morcover, we found upregulation of not only
Skp2, but also Ckst, an essential cofactor for the SCF-Skp2
ubiquitin ligase in targeting p27, which were induced by actvation
of the TNF-o/NF-kB pathway in two maodels of chronic
progressive nephropathy, namely UUO mice and chronic and-
thymocyte serum nephiropathy rats [25]. However, hecanse Skp2
has inultiple 1argets mcluding p21, p37, e-Mye, p130 and TOB! in
addition to p27 [26-50], hule is known abous the specific warget off

Skp2 in renal lesions. )

Tn the present study, we investigated whether degradution of
p27 targeted by Skp2 is required for dhe developmeni of
whulointerstitial injury in UUO kidoeys by comparing WT,
Skp2™ and p27 7 mice with Skp2 ™ P27 mice. Contrary
w the amclioration of UUO renal mjury by Skp2-deficiency, the
awmnclioration was abolished by the addidenal deficiency of p27 in
Skp?™ 277" double knockout mice. These findings suggest
that p27 is the kev molecule targeted by Skp2 that is involved in
e progression of renal injury in UTO mice.

Results

Levels of Skp2 target proteins in the UUO kidney

First, we investigated the levels of Skp2 targel proteins in UUO
renal injury in WT and Skp2™" mice. Consistent with our
previous report [24], accumulation of p27 and p21 was observed
in the UUO kidneys in Skp2™"™ mice (Figure 1. The levels of o
Mye, b-Myb and cyclin B were alsa slightly imereased, whereas
pa7, pl3n, TOBL, eyclin A and cvelin D1 did not accumulate, in
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the UUO kidneys in Skp2™"™ mice. These findings suggest that
the increased Skp? promoted the degradation of p27, p21, My,
b-Myb and cyelin E in the UUO kidneys. However, it vemains
unclear which protein degradation targeted by Skp2 plays an
important role in the progression of the obstructive nephropathy.
To address this question, we first focused on p27 and compared its
levels in TUO renal injury in Skp2™ "p27 ™" double-knockont
mice with those in WT, Skp2 ™™ and p27™" ™ mice.
Genotypes of Skp2 ™/, Skp2 ™" p27~'" and p27”/" mice

The genotypes of the Skp2 ™™, Skp2™ "p27™" and p2777"
mice were confirmed by PCR Figure S1AL p27 level was
increased in Skp2™’T mice comparing with wild-type mice after
UUO operation, whereas p27 protein was not detected in both
P27 and Skp2 ™ "p27777 mice (Figure S1BL

Diminished ameliorative effect of Skp2-deficiency on the
obstructive renal injury in Skp2 /" p27”'" mice

In accordance with our previous report [24], remarkable
amelioration  of the tubuloinwrstitial  fthrosis and  significant
decreases in the numbers of dilated tbules, whular cells and
interstitial cells were noted in the UUO kidueys in Skp2 ™7™ mice
compared with WT mice. In contrast, the amelioration of the
VUO renal injury noted in Skp2™"™ mice was alimost completely
abolished, and instead rather aggravated, by the addidonal p27-
deficiency in Skp2 ™ 7p277/ T mice (Figure 2, A~E). Aggravation
of the UTO renal injury was also observed in p27™ ™ nice. There
were no significant renal histological changes in the non-
obsiructed CLK kidneys in all genotypes of mice,

Diminished suppressive effect of Skp2-deficiency on
tubular epithelial cell proliferation and apoptosis in UUO
kidneys in Skp2™" " p277'" mice

The number of Kib7-positive proliferatve wbular epithelial
cells per tubule was signilicandy increased in the ULIO kidneys in
WT mice, but was suppressed in Skp?“”“ mice. However, the
suppression of wbular cpithelial cell proliferation noted in the
UUO kidoeys in Skp2 ™"~ mice was diminished in Skp2™"”
P27 mice Fignre 5, A-F). A marked inerease i proliferative
whbular cells was observed in p2777 7 mice. The number of KiG7-
positive interstitial cells was also inereased in the UUO kidueys in
WT mice compared with the CLK kidneys, and was slightly

7

Skp2 Skpz
genotype +/+ gerotype +i+ -

P27 o R c-Myc b

p21 b-Myb

BETAN cyclin A

p130 cyclin [ s e

TOB? cyctin E

c-lubulin e

Figure 1. Immunoblot analyses of the previously reported
Skp2 target proteins in UUO kidneys. The levels of the previously
reported Skp2 target proteins were detected by western blot analysis in
the obstructed kidneys in WT (Skp2*/*) and Skp2 ™~ mice at 7 days after
UUO. w-tubulin was evaluated as an internal control.
doiz10.1371/journal. pone.0036249.9g001
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Figure 2. Levels of UUO renal injury. (A) Representative microscopic images of CLK and UUO kidneys in WT, Skp2™™, Skp2 ™" p277" and
P27 mice {(Masson's trichrome staining; scale bars: 50 um}, Increases in the interstitial area, tubular dilatation and atrophy, and interstitial cell
infiltration are observed in the UUQ kidneys in WT mice. However, the severities of these lesions are markedly less in the UUO kidneys in Skp2 ™/~
mice. In contrast, aggravation of the UUQ renal injury is nated in Skp2™ " "p27™"" and p27™"" mice, (B} The severity of fibrotic tubulointerstitial
lesions was graded semiquantitatively as follows: 0, absent (0%); 1, weak [=10%); 2, mild (=10 to =30%); 3, moderate {30 to =50%); 4, strong
(==50%) in WT, Skp2 ™™, Skp2™/"p27™'" and p27™'" mice at 7 days after UUQ. {C-E) The numbers of dilated tubules {C), renal tubular epitheiial cells
in a tubule (D), and tubular interstitial cells (E} were counted and evaluated statistically in the UUC kidneys in WT, Skp2 ™", Skp2 ™/ p27 /" and
p27 " mice at 7 days after UUO. The LK e«dneys in WT mice were evaluated as controls, *P<0.05, **P=0.01 versus WT CLK kidneys, ¥£=0.05,
##p001 versus WT UUO kidneys and 'P<0.05, "'P<0.01 versus Skp2™™ UUO kidneys.

doi:10.1371/journal.pone.0036249.9002
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Figure 3. Numbers of Ki67-positive proliferative tubular epithelial and interstitial cells in UUO kidneys. {A-E) Sections of CLK Kidneys
in WT mmiice {A) and UUO kidneys in WT (B), Skp2 ™"~ (C), Skp2 ™ "p277"~ (D) and p27™'~ {E) mice were subjected to immunostaining with an anti-
Ki67 antibody, scale bars: 50 um {F, G) The numbers of Ki7-positive tubular epithelial cells [F) and Ki67-positive interstitial cells {G) in the UUD
kidneys were counted in the mice of each genotype. The CLK kidneys in WT mice were evaluated as controls, *P< 0,05, **P=<0.01 versus WT CLK
Kidneys, #P<0.05 versus WT UUO kidneys and 'P=0.05, "P<0.01 versus Skp2™*" UUO kidneys.

doi:10.1371/journal pone.0036249.9003

Diminished suppressive effect of Skp2-deficiency on
progression of tubulointerstitial fibrosis in UUO kidneys
in Skp2™"p277"" mice

Comparing with the GLK kidneys in WT mice, type T collagen-
positive interstitial arca was significantly increased in the UUO
kidoeys in WT mice, bur the increment was significantly
suppressed in Skp2™" " mice. On the ather hand, the suppression
was markedly diminished by the additonal p27-deficiency in the
UUO kidneys in Skp2™ " "p277" mice (Figure 5B). Similarly, the
inwerstitial arcas positive for #-8MA and F4/80 were markedly
increased in the UUO kidneys in WT mice, Although these
increments were significandy suppressed i Skp2 ™7 mice, the
suppression was almost completely abolished by the additional

@ PLoS ONE | www.plosone.org

p27-deficiency i Skp2 ™ p27 777 mice (Figure 3, A, C and D,
[ncreases in type [ collagen-positive fibrotic interstitial
SMA and intersttial migration of F4/80-positive macraphages
were also observed in the UUQ kidneys in p27™"" mice. In
addition, we performed QRT-PCR 10 measure the mRNA
expression levels of COL 1, 2-8MA, F4/780 and fibronectin. As
shown in Figure 82, comparing with the CLK kidncys in WT
mice, mRNA expression levels of wype T collagen, 2-SNA, F4/80
and fibronectn were increased in the UUO kdneys in WT mice,
but the neremenis were suppressed m Skp2 ™" mice. On the
other hanl. the suppression was diminished by the additional p27-
deficiency i the UUQ kidneys in Skp2™ " "p277° 7 mice (Figure
S These tendencies were consislent with immunohistochomical
data in Figure 3A. We also found thas vimentin-positive interstitial

April 2012 | Volume 7 | Issue 4 | e36249
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Figure 4. Numbers of TUNEL-positive apoptotic tubular epxthellal and interstitial cells in UUO kidneys. (A-E) Sections from CLK kidneys
in WT mice (A} and UUO kidneys in WT (B), Skp2™"™ (C), Skp2™/"p27 "™ (D} and p27™/" {E) mice were subjected to TUNEL staining, scale bars:
50 um. (F, G) The numbers of TUNEL-positive tubular epithelial cells (F) and TUNEL-positive interstitial cells (G) in the UUO kadneys were ;msnted in
the mice of each genctype. Thé CLK kidneys in WT mu:e were evaluated as controls, *P=20.05, **P-<0.01 versus WT CLK kidneys, *P<20.03, *¥P<0.0
versus WT UUO kidneys and 'P<c0.01 versus Skp2™7~ UUO kidneys.

doi:10.1371/journal. pone.0036249.9004

area was significandy ercased in the UUO Li(fncw in WT mice, which protein degradadon targeted by Skp2 contributes o the

But the increment was suppressed in Skp2™" ™ mice (Figure 83). physiological and pathological cvenis in progressive renal injury,
1 the other hand, the suppression was markedly diminished by T Skp2™77 mice, we prrnuusix veported that accumulaton of
the additonal p27-deficiency in the UUO kidneys in Skp2™° v p27, which had egcaped from Skp2-mediated ubiquitin-preoteasao-
Tp2777 mice. These resules strongly suggested that the Skp2/ mal degradation, resulted in the suppression of tubular epithelial
p27 pathway may contribute 1o EMT 1 progressive ULO renal cell proliferadon, rubular dilamtions and mbulsinterstidal fibrosis
injury. in IKL O renal njury [24]. Tn the present s study, we compared tie

UUO renal injury among WT, Skp2™ 7, bkp« Tp27TT and
Discussion p2777 mice, and found thar 1) the UUO renal injury was less

severe S,'kp‘?.'"”w mice, in which renal accumulation of p27 was
noted, 2 the amelioraton of UUO renal injury noted in Skp2™7~
mice, was almost completely  abolished, and nstead rather

SCF-8kp? is an important E3 ligase that targets several eell
cvele regulatory proteins. However, it has not been fully clucidated
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