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OBJECTIVE —1t has recently been highlighted that proinflammatory (M1) macrophages pre-
dominate over anti-inflammatory (M2) macrophages in obesity, thereby contributing to obesity-
induced adipose inflammation and insulin resistance. A recent clinical trial revealed that highly
purified eicosapentaenoic acid (EPA) reduces the incidence of major coronary events. In this
study, we examined the effect of EPA on M1/M2-like phenotypes of peripheral blood monocytes
in obese dyslipidemic patients.

RESEARCH DESIGN AND METHODS —Peripheral blood monocytes were prepared from
26 obese patients without and 90 obese patients with dyslipidemia. Of the latter 90 obese patients
with dyslipidemia, 82 patients were treated with or without EPA treatment (1.8 g daily) for 3 months.

RESULTS—Monocytes in obese patients with dyslipidemia showed a significantly lower ex-
pression of interleukin-10 (IL-10), an M2 marker, than those without dyslipidemia. EPA signif-
icantly increased serum IL-10 and EPA levels, the EPA/arachidonic acid (AA) ratio, and monocyte
IL-10 expression and decreased the pulse wave velocity (PWV), an index of arterial stiffness,
compared with the control group. After EPA treatment, the serum EPA/AA ratio was significantly
correlated with monocyte IL-10 expression. Only increases in monocyte IL-10 expression and
serum adiponectin were independent determinants of a decreased PWV by EPA. Furthermore,
EPA significantly increased the expression and secretion of IL-10 in human monocytic THP-1
cells through a peroxisome proliferator—activated receptor (PPAR)y-dependent pathway.

CONCLUSIONS —This study is the first to show that EPA increases the monocyte IL-10
expression in parallel with decrease of arterial stiffness, which may contribute to the antiathero-
genic effect of EPA in obese dyslipidemic patients.

Diabetes Care 35:2631-2639, 2012

distinct phenotypes of differentiation: pro-
inflammatory (M1) and anti-inflammatory
(M2) (3). It has been reported that,
in obese adipose tissue, macrophage

plays a role in the pathogenesis of
obesity and atherosclerotic disease
(1,2). This system shows at least two

The monocyte-macrophage system
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accumulation is increased, and proin-
flammatory M1 macrophages predominate
over anti-inflammatory M2 macrophages,
thereby contributing to obesity-induced
adipose inflammation and insulin resis-
tance (4-6). The expression of both M1
and M2 markers is detected in peripheral
blood mononuclear cells and even in ath-
erosclerotic plaques (7,8). We and others
also provided evidence for the inflamma-
tory state and unfavorable M1/M2-like
phenotypes of peripheral blood mono-
cytes in obese diabetic patients (9,10). In
particular, interleukin-10 (IL-10), an anti-
inflammatory cytokine and M2 marker,
might be involved in M2 macrophage re-
cruitment, thus contributing to reducing
inflammation and improving the insulin
signal (5,11).

In epidemiological and clinical trials,
fish oil and omega-3 (n-3) polyunsatu-
rated fatty acids (PUFAs) were found to
reduce the incidence of coronary heart
disease (12). A large-scale, prospective,
randomized clinical trial, the Japan Eicos-
apentaenoic Acid Lipid Intervention
Study (JELIS), demonstrated that highly
purified eicosapentaenoic acid (EPA), a
specific n-3 PUFA used clinically to treat
dyslipidemia, significantly reduces the
incidence of major coronary events via
cholesterol-independent mechanisms
(13). As antiatherogenic effects, we pre-
viously demonstrated that EPA reduces
atherogenic lipoproteins and C-reactive
protein (CRP), an inflammatory marker,
as well as the pulse wave velocity (PWV),
an index of arterial stiffness, and increa-
ses the secretion of adiponectin, the only
established adipocytokine with anti-
inflammatory and antiatherogenic proper-
ties, in obese patients (14-16). We also
reported that EPA markedly inhibits
LPS-induced monocyte adhesion to the
aortic endothelium in parallel with the
suppression of endothelial adhesion mol-
ecules intracellular adhesion molecule-1
and vascular cell adhesion molecule-1
(17). Several studies showed that dietary
n-3 PUFAs and EPA inhibit the ability of
macrophages to secrete several effector
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Effect of EPA on IL-10 in monocytes

molecules that may be involved in the path-
ogenesis of atherosclerosis (18,19). Given
these protective effects of n-3 PUFAs
and EPA on the monocyte-macrophage
system (17-19), it is tempting to specu-
late on the beneficial effect of EPA on the
M1/M2-like phenotypes of peripheral
blood monocytes in obese patients dur-
ing the progression of atherosclerosis;
however, no direct evidence for such an
effect of EPA has been established. EPA
can be metabolized to anti-inflammatory
eicosanoids and also competitively in-
hibits the production of arachidonic
acid (AA), an n-6 PUFA, and inflamma-
tory eicosanoids derived from AA, which
is the precursor of important mole-
cules involved in inflammation and ath-
erosclerotic process (20). Subanalysis
of JELIS and other studies suggested
that a decreased serum EPA/AA ratio is
significantly associated with the inci-
dence of cardiac death and myocardial
infarction and the coronary plaque score
(21,22).

In this study, we demonstrate for the
first time that EPA increased IL-10 RNA
expression in peripheral blood monocytes
of obese patients with dyslipidemia in
parallel with the decrease of arterial stiff-
ness. In addition, the serum EPA/AA ratio
after EPA treatment was significantly cor-
related with IL-10 RNA expression of
monocytes. Furthermore, EPA enhanced
the expression level of IL-10 RNA through
peroxisome proliferator-activated receptor
(PPAR)y in vitro. As EPA reduced the risk
of major coronary events in a large-scale,
prospective, randomized clinical trial (13),
this study provides important insight into
its therapeutic implications for obesity-
related metabolic sequelae and cardiovas-
cular disease.

RESEARCH DESIGN AND
METHODS

Subjects

A total of 116 Japanese obese outpatients
were recruited in our clinic during the
period from January 2008 to January
2009. Obese patients were defined as
those with a BMI of =25 kg/m?, based
on the guideline proposed by the Japan
Society for the Study of Obesity. Patients
with severe renal diseases and severe liver
dysfunction were excluded from this
study. Patients taking statins, fibrates,
angiotensin-converting enzyme inhibi-
tors, angiotensin II receptor antagonists,
insulin-sensitizing agents, or insulin ther-
apy were excluded from the study. All

other medications were continued and re-
mained unchanged during the study pro-
tocol. This study is a part of the Japan
Obesity and Metabolic Syndrome Study,
which has undergone clinical trial regis-
tration in the University Hospital Medical
Information Network (UMIN) system
(UMINStudyID: UMIN 000000559)
(23). The study protocol was approved
by the Ethics Committee for Human Re-
search at Kyoto Medical Center and To-
kyo Medical and Dental University.
Written informed consent was obtained
from all participants.

Study protocol

The study design and enrollment are
shown in Supplementary Fig. 1. All of
the 116 obese patients who were enrolled
were also classified into those with or
without dyslipidemia using the following
criteria: a triglyceride (TG) level =1.69
mmol/L and/or HDL-cholesterol (HDL-C)
<1.04 mmol/L for men and <1.29
mmol/L for women, which are some of
the components of the criteria for meta-
bolic syndrome proposed by the U.S.
National Cholesterol Education Program-
Adult Treatment Panel III (24), as de-
scribed previously (25). Of all 90 obese
patients with dyslipidemia enrolled, 8 pa-
tients dropped out (5 patients stopped
consulting the outpatient clinic, and 3 pa-
tients withdrew consent). The remaining
82 patients in whom we could continue
observation were assigned to the control
and EPA-treated groups (Supplementary
Fig. 1). This study was a prospective,
randomized, open-label, blinded end
point design, employing simple randomi-
zation. In the EPA-treated group, an EPA
capsule (1.8 g daily) containing highly
purified (>98%) EPA ethyl ester (Mo-
chida Pharmaceutical Co., Ltd., Tokyo,
Japan) was administered for 3 months,
as previously described (14-17). No pa-
tients in this study had taken part in any of
our previous studies. The patients’ diet
was based on the Japan Atherosclerosis
Society Guidelines for the Diagnosis and
Treatment of Atherosclerotic Cardiovas-
cular Diseases, as previously described
14-17).

Data collection and laboratory
methods

At the beginning and end of the study, we
measured BMI, systolic blood pressure
(SBP) and diastolic blood pressures
(DBP), fasting plasma glucose (FPG),
HbA,., serum immunoreactive insulin
(IRD), TG, HDL-C, and LDL-cholesterol

(LDL-QO), adiponectin, and CRP, as previ-
ously described (14-17). The value for
HbA,. (%) is estimated as a National Gly-
cohemoglobin Standardization Program
equivalent value (%) calculated by the for-
mula HbA,. (National Glycohemoglobin
Standardization Program) (%) = 1.02 X
HbA,;. (Japan Diabetes Society) (%) +
0.25% (26). Serum was prepared by col-
lecting blood into glass tubes without an
anticoagulant and obtained by centrifuga-
tion (1,500 X g, 10 min, 4°C), and ali-
quots of the supernatant were frozen
(—80°C) until use. The serum fatty acid
levels, such as EPA and AA, were deter-
mined by capillary gas chromatography,
as described elsewhere (21,22). The se-
rum levels of IL-10 were measured using
commercially available immunoassays
(R&D Systems, Minneapolis, MN) (27).
The mean coefficient of variance for this
serum IL-10 ELISA assay shown in
its manual was 5.9-7.5%. The brachial-
ankle PWV was assessed using the Vasera
VS-1000 vascular screening system (Fu-
kuda Denshi, Tokyo, Japan), as described
previously (10,16,23). The investigators
who performed the vascular measure-
ments were blinded to the patients’ char-
acteristics.

Peripheral blood mononuclear cells
were collected from heparinized blood
samples through density gradient centri-
fugation with lymphocyte separation so-
lution (Nacalai Tesque, Kyoto, Japan).
Human monocytes were obtained by
magnetic-assisted cell sorting with anti-
human CDI14 immunomagnetic beads
(Miltenyi Biotec, Bergisch Gladbach, Ger-
many), and the expression of tumor ne-
crosis factor oo (TNF-a), IL-6, and 1L-10
mRNA was analyzed using a real-time
quantitative PCR method (9,10). Details
of the primers used are described in Sup-
plementary Materials and Methods. The
percentages of CD163"CD14" peripheral
blood monocytes were analyzed by flow
cytometry (FACSCanto; BD Biosciences)
with human antibodies against CD14 and
CD163 (BD Pharmingen) (10).

Cell culture experiments

Details of cell culture, PPAR« and PPARy
silencing by small interfering RNA
(siRNA), chromatin immunoprecipita-
tion (ChIP) assays, and transient transfec-
tion and luciferase assays are described in
Supplementary Materials and Methods.

Statistical analysis
The sample size was calculated with a type
1 error of 5%, a statistical power of 80%
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Table 1—Clinical characteristics and metabolic variables, M1/M2 markers in
peripheral blood monocytes, and PWV before and after treatment with EPA

Control EPA
After After
Baseline 3 months Baseline 3 months

n (male/female) 26/13 22/21
Age (years) 54.0 =13 523 *13
BMI (kg/mz) 291 £53 290 %55 209 £ 49 206 44
SBP (mmHg) 141 = 19 137 = 16 139 £ 18 138 =18
DBP (mmHg) 839+ 11 83.1*+9 83.8 £ 11 856 = 11
EPA (pg/mL)* 42 (27-83) 60 (28-88) 51 (31-105) 110 (87-167)**
EPA/AA? 0.3(0.2-0.5) 0.4(0.2-0.6) 0.3(0.2-0.7) 0.8 (0.7-1.2)**
FPG (mmol/L)? 6.2(5.3-79) 6.1(5.3-7.6) 6.3(5.3-7.2) 6.5 (5.4-7.4)
HbA,. (%) 6.5(5.5-7.3) 6.4(5.6-7.0) 63(6.0-7.7) 6.2 (5.8-7.4)*
IRI (pmol/L)* 62 (36-131) 62 (32-100) 77 (53-136) 77 (53-103)
TG (mmol/L)? 2.0(.7-2.5) 1.8(1.4-2.5) 2.3(1.9-3.2) 1.7 (1.5-2.3)**
HDL-C (mmol/L) 1403 14+x03 14=+03 14£03
LDL-C (mmol/) 3.1 *06 3.0*x06 34+08 32*+08
Adiponectin (pg/mL)? 6.5 (43-8.7) 6.2(4.3-8.0) 6.1(4.3-7.2) 6.6 (4.4-8.8)*
CRP (pg/mL)* 1.1(0.5-1.9) 1.0(04-1.6) 0.7(0.5-2.5) 0.6 (0.4-1.2)
1L-10 (pg/mL) 5116 49+ 15 52=+21 6.2 £1.9%*
PWV (crn/s) 1,403 £221 1374 %206 1476 =*298 1,406 £ 296%*
Expression in monocytes

TNF-a (arbitrary units)® 1.2 (0.2-3.2) 1.4 (0.2-2.6) 2.3(1.1-3.3) 2.3(1.2-3.5)

1L-6 (arbitrary units)* 5.1(2.6-7.6) 5.0(3.3-7.00 7.0(4.6-9.6) 6.8 (4.3-9.6)

IL-10 (arbitrary units)* 4.7 (3.1-7.2) 5.4 (2.0-10.5) 5.5 (2.1~13.3) 10.0 (5.0-18.3)**

CD163/CD14 (%) 556+ 125 534 %119 551 * 134 57.8 = 14.0
Proportion of

Diabetes (%) 46.2 44.2

Hypertension (%) 61.5 55.8

Data are shown as the mean = SD or median (interquartile range), unless otherwise noted. *Data were
nonnormally distributed and analyzed by nonparametric Wilcoxon test. *P < 0.05 and **P < 0.01 vs.
baseline measurement as determined by a two-way repeated-measures ANOVA (control and EPA groups X

before and after treatment).

(type 1T error of 20%), and a standardized
effect size 0of 0.67, so as to demonstrate an
EPA-induced change of 1.0 pg/mL of
serum IL-10 as being significant using
the paired t test. Data are presented as the
mean = SD, unless otherwise indicated,
and P < 0.05 was considered significant.
Logarithmic transformation (In) was used
for the variables that were not normally
distributed to make their distribution
normal.

Student t test was used for compari-
sons of the means between the two groups
at the baseline or posttreatment. Categor-
ical variables were evaluated by the x*
test. A two-tailed, paired t test was applied
to evaluate changes from the baseline to
posttreatment (14,16). Some of the data
were not normally distributed; therefore,
in these cases, the nonparametric Wil-
coxon test was used instead of the ¢ test.
Repeated-measures ANOVA was used to
assess the effects of EPA on the measured
variables. Pearson correlation coefficient

was employed to investigate the correla-
tions among M1/M2 markers, PWV, and
metabolic parameters at the baseline, be-
tween these changes during the EPA treat-
ment, and between the EPA/AA ratio and
IL-10 levels after EPA treatment. Changes
from the baseline to those at 3 months are
abbreviated as A. Pearson partial correla-
tion of AIL-10 expression in monocytes
and APWV with Ametabolic parameters
during EPA treatment was adjusted for
the age, sex, and each initial value. AIL-
10 expression in monocytes was adjusted
for the age, sex, and initial IL-10 expres-
sion in monocytes, and, in the case of
APWV, it was adjusted for the age, sex,
and initial values of SBP and PWV. For in
vitro studies, post hoc analysis was per-
formed using the Tukey-Kramer test for
the comparison among all groups or
Dunnett method for the comparison of
specific groups. All analyses were per-
formed using Stat View version 5.0 for
Windows (SAS Institute Inc., Cary, NC)

Satoh-Asahara and Associates

and SPSS 12.0 for Windows (SPSS Inc.,
Chicago, IL).

RESULTS

Baseline characteristics of obese
patients with or without
dyslipidemia

A summary of the characteristics of the
study cohort and a comparison of the
obese patients with or without dyslipide-
mia are shown in Supplementary Table 1.
Of all of the 116 obese patients (64 men
and 52 women; mean age, 50.9 years),
there were 90 (77.6%) obese patients
with dyslipidemia. There were no signifi-
cant differences in age, BMI, SBP, DBP,
FPG, HbA,, IRI, LDL-C, CRP, PWV,
and proportion of diabetes and hyperten-
sion between those with and without dys-
lipidemia. The levels of EPA and the EPA/
AA ratio tended to be, but not signifi-
cantly, lower in obese patients with than
in those without dyslipidemia (Supple-
mentary Table 1). The serum levels of
TG were significantly higher, and those
of HDL-C, adiponectin, and IL-10 were
significantly lower in obese patients with
than in those without dyslipidemia (TG,
HDL-C, P < 0.01; adiponectin, 1L-10,
P < 0.05). The obese patients with dysli-
pidemia exhibited significantly lower
IL-10 RNA levels in the peripheral blood
monocytes than those without dyslipide-
mia (P < 0.05). There were no significant
differences in the expression levels of
TNF-a, IL-6, and CD163 in peripheral
blood monocytes between the two groups
(Supplementary Table 1).

Effect of EPA treatment on
metabolic syndrome-related
variables, M1/M2 markers in
peripheral blood monocytes,

and PWV

Among 90 obese patients with dyslipidernia
enrolled, 8 excluded subjects who drop-
ped out before randomization had a rela-
tively higher BMI and lower age, FPG,
HbA,, and serum IL-10 than the remain-
ing 82 patients. The remaining 82 obese
patients with dyslipidemia in whom we
could continue observation were ran-
domly assigned to two groups: the EPA-
treated group (n = 43, 22 men and 21
women; mean BMI, 209 *+ 49 kg/rnz)
and the untreated control group (n = 39,
26 men and 13 women; mean BMI,
29.1 = 5.3 kg/m?). Among the 82 obese
patients with dyslipidemia, no partici-
pants dropped out of this study. With re-
gard to the control group, all variables
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Effect of EPA on IL-10 in monocytes

Table 2—Correlations related to changes in IL-10 in peripheral blood and PWV

during treatment with EPA

Expression of monocytes

AIL-10 APWV
r I’ ¥ Ypb

ABMI 0.02 —0.01 0.08 0.10
ASBP —0.03 -0.09 0.02 0.08
AFEPA 0.25* 0.27* 0.06 0.05
AHDbA, —-0.20 —-0.17 0.05 0.05
ATG —0.13 —0.13 0.19 0.15
AHDL-C 0.15 0.21 0.13 0.10
AAdiponectin 0.25% 0.22 —0.31*%* —0.35%*
AIL-10 0.01 -0.15 —0.03 0.07
Expression in monocytes

ATNF-a —-0.02 —0.01 —0.07 —0.03

AlIL-6 0.04 0.14 0.04 —-0.12

AIL-10 —_ — —0.27% —0.26%

ACD163/CD14 —-0.07 —0.03 —0.08 0.07

In 82 obese patients who were assigned to the control group and EPA-treated groups, correlations related to
changes in monocyte IL-10 and PWV were examined. Data are Pearson simple and partial correlation co-
efficients regarding changes during EPA treatment of IL-10 levels in peripheral blood monocytes and of PWV
during treatment with EPA. n =82 patients. *Value adjusted for age, sex, and initial IL-10 levels in monocytes.
bValue adjusted for age, sex, initial systolic blood pressure, and initial PWV. *P < 0.05 and **P < 0.01.

remained unchanged throughout the
study (Table 1). Treatment with EPA for
3 months caused a significant reduction of
serum levels of HbA . (P < 0.05) and TG
(P < 0.01) in parallel with a decrease in
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Figure 1—Association of serum In EPA/AA
ratio with serum level of IL-10 (A) and ex-
pression of In IL-10 in monocytes (B) after
3-month treatment with EPA.

PWV (P < 0.01) and asignificant increase
of serum levels of EPA, the EPA/AA ratio
(P < 0.01), and adiponectin (P < 0.05) in
obese patients, which are consistent with
our previous report (14-17). After EPA
treatment, the serum level of IL-10 was
also significantly increased in obese pa-
tients with dyslipidemia (P < 0.01).
The expression levels for IL-10 RNA
were significantly increased by 1.8-fold
in peripheral blood monocytes from
obese patients with dyslipidemia (from
5.5 to 10.0; P < 0.05) (Table 1). How-
ever, there were no appreciable changes
in the expression levels of TNF-a, IL-6,
and CD163 in peripheral blood mono-
cytes after EPA treatment.

Correlations related to changes in
IL-10 in peripheral blood

monocytes and PWV during
treatment with EPA

Table 2 lists data for all subjects regard-
ing the correlations observed during
EPA treatment between the metabolic
syndrome-related variables, IL-10 RNA
levels in peripheral blood monocytes,
and PWV. In all study subjects, Pearson
correlation coefficient revealed that
ATNF-a, AIL-6, and ACD163 in periph-
eral blood monocytes were not correlated
with changes in any metabolic variable
(data not shown). However, AIL-10 ex-
pression in peripheral blood monocytes

was positively correlated with serum
AEPA levels and serum Aadiponectin
during EPA treatment (P < 0.05). Fur-
thermore, APWV by EPA treatment
was negatively correlated only with
Aadiponectin (P < 0.01) and AIL-10 ex-
pression of monocytes (P < 0.05) (Table
2). Inaddition, after adjusting for age, sex,
and initial IL-10, AIL-10 expression in
peripheral blood monocytes was posi-
tively correlated with serum AEPA levels
during EPA treatment (partial correlation
coefficient [r,] = 0.27; P < 0.05). Also,
APWYV during EPA treatment was nega-
tively correlated only with Aadiponectin
(r, = —0.35; P < 0.01) and AIL-10 ex-
pression of monocytes (r, = —0.26;
P < 0.05) after adjusting for the age,
sex, and initial SBP and PWV (Table 2).

Association of serum EPA/AA ratio
with serum level of IL-10 and
expression of IL-10 in monocytes
after EPA treatment

The serum In EPA/AA ratio after EPA
treatment was significantly correlated
with the serum IL-10 level and expression
level of In IL-10 in monocytes after EPA
treatment (serum IL-10, r = 0.361,
P < 0.01; In IL-10 expression in mono-
cytes, r=0.265, P < 0.05) (Fig. 1A and B).

Effects of EPA treatment in

cultured human monocytic THP-1
cells

To explore the direct effect of EPA on the
RNA expression of 1L-10, human mono-
cytic THP-1 cells were incubated with 0,
10, or 50 wmol/L EPA for 24 h and stim-
ulated with LPS for 6 h. The expression of
IL-10 in THP-1 cells stimulated with LPS
was twofold higher than that in THP-1
cells without LPS stimulation (P < 0.05)
(Fig. 2A). Treatment with EPA for 24 hin
THP-1 cells with LPS increased the ex-
pression of IL-10 in a dose-dependent
manner. Treatment with 10 wmol/L EPA
significantly increased the expression of
IL-10 compared with that without EPA
(P < 0.05), and treatment with 50
pmol/L EPA significantly increased the
expression of IL-10 compared with that
without EPA or with 10 wmol/L EPA in
THP-1 cells stimulated with LPS (P <
0.01) (Fig. 2A). We also observed that
treatment with 50 wmol/L EPA for 24 h
significantly increased the levels of IL-10
protein in medium compared with that
without EPA and 10 pmol/L EPA in
THP-1 cells stimulated with LPS (P <
0.01) (Fig. 2B).
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Effects of PPAR antagonists on
EPA-induced increase of IL-10
expression

We examined whether the effects of EPA
on IL-10 expression in THP-1 cells were
dependent on PPARa or PPARy. Incuba-
tion of cultures with PPARy-specific
antagonists T0070907 or GW9662 sig-
nificantly blocked the effect of the treat-
ment with EPA for 24 h on IL-10
expression induced by LPS (P < 0.05),
whereas the incubation of cultures with
the PPARa-specific antagonist MK-886
did not block the effect of EPA on IL-10
expression (Fig. 20). The increased levels
of IL-10 protein in medium due to treat-
ment with EPA for 24 h were also blocked
with PPARy-specific antagonists T0070907
and GW9662 (P < 0.01), but not with
the PPARa-specific antagonist MK-886
(Fig. 2D). These findings suggest that
EPA exerts anti-inflammatory effects
through a PPARy-dependent pathway.

Effects of EPA on expression

of IL-10 in PPAR knockdown

THP-1 cells

We used PPARa and PPARY silencing for
further elucidation of the mechanism of
action of EPA on the increased expression
of IL-10 in THP-1 cells. Treatment with
50 wmol/L EPA, which is within the phys-
iological range observed in study sub-
jects, significantly increased the expression
of IL-10 compared with that without
EPA (P < 0.01). PPARY knockdown re-
sulted in a loss of EPA-mediated IL-10
production (P < 0.01), whereas PPARa
knockdown did not alter the effect of EPA
on IL-10 expression (Fig. 2E). The effi-
ciency of PPARa and PPARYy silencing
in THP-1 cells was determined by West-
ern blot analysis, in which decreased ex-
pressions of PPARa and PPARy were
observed, respectively. PPARo~ and
PPARYy-siRNA effectively decreased
PPARa and PPARYy levels by ~70% com-
pared with scrambled (nonsilencing)
siRNA (P < 0.05) (Fig. 2F).

Effect of EPA on human IL-10
promoter

In order to examine the effects of EPA on
the IL-10 promoter in THP-1 cells, two
THP-1 IL-10 promoter luciferase reporter
gene constructs, the first containing the
IL-10 promoter sequences —421/+120
(pGL3-P421) and the second containing
sequences —384/+120 (pGL3-P384),
were generated. After 6 h of treatment
with LPS (20 ng/mL), the ability of EPA
to increase luciferase transcription was

assessed. Treatment with EPA (50 wmol/L)
significantly (P = 0.0013) increased the
activity of pGL3-P421 2.4-fold, but did
not increase the pGL3-P384 activity
(1.2-fold) (Fig. 2G). The IL-10 promoter
contains peroxisome proliferator re-
sponse element (PPRE) at —406/—390.
These findings indicate that EPA activates
the transcription of IL-10, and that IL-10
promoter sequences —421/—384 con-
taining PPRE are required for this activa-
tion.

Effect of EPA on binding of

PPARY to IL-10 promoter

To evaluate the influence of EPA on the
binding of PPARY to the endogenous IL-10
promoter in THP-1 cells, ChIP assays
were performed. Fig. 2H shows the results
of quantitative analysis of PCR amplifica-
tion products before and after the immu-
noprecipitation of the cross-linked
chromatin with anti-PPARy antibody.
These results demonstrate that PPARY is
recruited to the region containing the
PPRE site (—406/~390) of the endoge-
nous IL-10 promoter (lane 5). In addition,
EPA treatment markedly enhanced the
PCR amplification product of 1L-10, dis-
playing an EPA-induced increase in the
binding of PPARy to the IL-10 promoter
(lane 6). In contrast, before immunopre-
cipitation, levels of the IL-10 promoter re-
gion containing PPRE were similar
between chromatins from cells stimulated
with and without EPA (lanes 1 and 2, re-
spectively). No PCR-amplified product
was found following the immunoprecipi-
tation of the cross-linked chromatin with
normal rabbit IgG (lanes 3 and 4). PCR
amplification with specific primers for
the GAPDH gene did not result in signifi-
cant signals in any immunoprecipitated
samples (data not shown), demonstrating
the specificity of immunoprecipitation and
PCR reactions. These data support the idea
that EPA significantly increased the binding
of PPARYy to the TL-10 promoter sequences
containing PPRE in THP-1 cells.

CONCLUSIONS—In a subanalysis of
the JELIS, EPA led to a greater reduction
in the risk of coronary artery disease by up
to 53% in patients with high TG and low
HDL-C levels, two of the risk factors of
metabolic syndrome and cardiovascular
disease (25). However, this mechanism is
still poorly understood.

The current study revealed that levels
of IL-10, an anti-inflammatory M2
marker, in monocytes were significantly
lower in obese patients with than in those

Satoh-Asahara and Associates

without dyslipidemia. Our data are com-
patible with a previous report by Esposito
etal. (28) showing that serum IL-10 levels
were lower in obese women with meta-
bolic syndrome than in those without
metabolic syndrome. AsIL-10 downregu-
lates the production of proinflammatory
cytokines, it is tempting to speculate
that the low IL-10 levels observed in
obese patients with dyslipidemia repre-
sent an attempt to promote continued
proinflammatory cytokine production.
We also demonstrated for the first time
that EPA significantly increases the
IL-10 levels in monocytes and serum of
obese dyslipidemic patients. These find-
ings indicate that EPA ameliorated the de-
creased IL-10 RNA levels in monocytes of
obese patients with dyslipidemia. This
finding is also consistent with the report
by Oh et al. (29), demonstrating that fish
oil supplementation increases adipose
tissue expression of M2 markers, includ-
ing IL-10, in obese mice. Given the anti-
inflammatory and antiatherogenic properties
of IL-10 produced by Th2 cytokines
(4,11), our results suggest that an EPA-
induced improvement of decreased IL-10
RNA levels in monocytes of obese dysli-
pidemic patients might lead to greater
cardioprotective effects of EPA.

In this study, we also confirmed that
3-month treatment with EPA effectively
improved PWV, an index of arterial stiff-
ness, as we previously reported (16).
Pearson partial correlation in this study
revealed that only increased monocyte
IL-10 RNA and serum adiponectin levels
were significantly correlated with the
reduction of PWV by EPA treatment.
Recently, it was indicated that cell
heterogeneity (M1/M2-like phenotype,
especially an increased M1/M2 ratio) of
circulating monocytes may influence
their ability to attach to endothelial cells
and increase plaque formation of athero-
sclerotic lesions (7,8). IL-10 has also been
reported to promote the differentiation of
M2 macrophages and attenuate the M1
macrophage population (30). Further, it
was reported that the increased IL-10
signaling elicits the differentiation or re-
cruitment of alternative M2 macrophages
in adipose tissue in mice, thus contribut-
ing to reducing inflammation and im-
proving insulin signaling (11). Previous
studies demonstrated that IL-10-transgenic
mice or gene transfer of IL-10 reduced
atherosclerosis in C57BL/6] mice or
murine atherosclerotic models (31,32),
whereas their IL-10-deficient coun-
terparts exhibited increased early

care.diabetesjournals.org

DiaseTEs CARE, VOLUME 35, DEcEmsEr 2012

-316—

2635



Effect of EPA on IL-10 in monocytes
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Figure 2—Effects of EPA treatment in cultured human THP-] cells. A and B: Effects of EPA treatment on IL-10 mRNA and protein levels in medium
of cultured THP-1 cells. Data are the mean = SE. Differences between the groups treated with and without LPS within EPA-untreated cells were
assessed by Student t test. Differences between groups within LPS-treated THP-1 cells were assessed using the Tukey-Kramer post hoc test (n= 6-8).
IL-10 mRNA expression (A) and IL-10 protein levels in medium (B) in THP-1 monocytes after treatment without or with 10 or 50 umol/L EPA for
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atherosclerotic lesion formation (31). In
addition, IL-10 overexpression in macro-
phages inhibited atherosclerosis in LDL
receptor-deficient mice (33). Taken to-
gether, these findings provide evidence
that IL-10 is an important key factor for
the prevention of atherosclerosis in vivo.
The effect of EPA on IL-10 of monocytes
might be attributable to the beneficial ef-
fect on arterial stiffness of EPA. However,
further examination is necessary to eluci-
date the causal relationship between an in-
crease of IL-10 expression and the
improvement in vascular function by EPA.

Even excluding the influence of age,
sex, and the initial value of IL-10 expres-
sion in monocytes, only the AEPA level
was significantly positively correlated
with AIL-10 expression in monocytes
during EPA treatment. In human mono-
cytic THP-1 cells, we found that EPA in-
creased the mRNA expression and
protein levels of IL-10 in the medium.
In this study, in vitro analysis using
PPAR antagonists and siRNA revealed
that EPA increased the expression of
IL-10 through PPARy, but not PPAR«,
in THP-1 cells. This finding is consistent
with a previous report showing that EPA
decreased IL-6 production through
PPARY, not through PPARq, in C6 glioma
cells (34). We have also performed
ChIP and luciferase assays to elucidate
how EPA regulates IL-10 expression
through a PPARy-dependent pathway.
Luciferase assays showed that EPA acti-
vates the transcription of IL-10 and that
IL-10 promoter sequences containing
PPRE are required. In addition, ChIP as-
says revealed that EPA significantly

increased the binding of PPARy to the
IL-10 promoter sequences containing
PPRE in THP-1 cells. These results are
similar to the findings of a previous study
using rosiglitazone, one of the PPARy li-
gands (35). From these findings, it is con-
ceivable that EPA increases the binding of
PPARY to the human IL-10 promoter re-
gion and activates transcription of the hu-
man IL-10 gene. As reported previously,
EPA, via the activation of PPARy, medi-
ates various actions such as the inhibition
of IL-6 production in C6 glioma cells and
of MMP expression in macrophages and
the increase of adiponectin expression in
adipocytes (34,36,37). Moreover, PPARy
expression itself has been reported to be
significantly associated with increased M2
monocytes in the vasculature and matu-
ration of alternatively activated macro-
phages (6,8). We also observed that
pioglitazone, a PPARy agonist, increased
IL-10 expression and improved the un-
balanced M1/M2-like phenotype of mon-
ocytes in obese diabetic patients, which
may contribute to its antiatherogenic ef-
fect (10). Therefore, our findings indicate
that the upregulation of IL-10 induced by
EPA is potentially mediated in part
through the activation of PPARy. How-
ever, further studies on the direct interac-
tion between EPA and PPARy, such as
identification of the binding site using
X-ray analysis, are required to clarify
whether EPA is a functional ligand of
PPARY.

We revealed that the EPA-induced
increase of adiponectin was also signifi-
cantly negatively correlated with the im-
provement of PWV through EPA treatment.

Satoh-Asahara and Associates

We previously demonstrated that EPA
increases adiponectin in obese mice and
obese human subjects, possibly through
improvement of the inflammatory changes
in obese adipose tissue (15). Previous ep-
idemiological studies reported a signifi-
cant positive correlation between serum
adiponectin and IL-10 in healthy and
obese subjects (27). In human mono-
cyte-derived macrophages, adiponectin
significantly increased the expression
and secretion of IL-10 (38). Recently,
Ohashi et al. (39) reported that adiponec-
tin promotes macrophage polarization to-
ward an anti-inflammatory phenotype,
which may be partly linked to the decrease
of arterial stiffness in our study. Collec-
tively, it is conceivable that EPA increases
IL-10 RNA expression of monocytes in hy-
perinsulinemic obese patients, in part
through the enhancement of adiponectin
by EPA, thereby additively suppressing
the atherogenic process.

The current study showed that EPA
treatment significantly increased the se-
rum EPA/AA ratio. In addition, the EPA/
AA ratio after EPA treatment was signif-
icantly correlated with IL-10 in mono-
cytes. Recently, it was reported that a
lower level of EPA was an independent
predictor of all-cause-mortality in pa-
tients with acute myocardial infarction
(40). EPA can be metabolized to anti-in-
flammatory eicosanoids and also partially
replace the AA in cell membranes and
competitively inhibits the production of
AA and inflammatory eicosanoids,
thereby exerting an anti-inflammatory ef-
fect (20). There is also a recent report
showing that the serum EPA levels and

24 h and subsequent stimulation with LPS for 6 h. The mRNA levels of IL-10 (A) were measured using quantitative real-time PCR and standardized
for the GAPDH levels. #P < 0.05 by Student t test; *P < 0.05, **P < 0.01 using the Tukey-Kramer method. C and D: Effect of PPAR«a and PPARy
antagonists on IL-10 mRNA expression and IL-10 protein levels in cultured THP-1 cells. THP-1 monocytes with a density of 1 X 10° cells/well were
treated with LPS for 6 h in the absence or presence of 50 umol/L EPA for 24 h. Some cultures were incubated with the PPARa antagonist MK-886 (11,
VI), and some with the PPARy agonists GW9662 (111, VID or T0070907 (IV, VIIL), at a dose of 10 wmol/L in the presence of LPS. The expressions of
IL-10 mRNA in THP-1 cells (C) and IL-10 protein levels in medium (D) were compared with those of cultures incubated without PPAR antagonists in
the absence (I) or presence (V) of 50 umol/L EPA. 1P < 0.01 vs. group I; *P < 0.05, **P < 0.01 vs. group V using the Dunnett method (n = 4-6).
E and F: Effects of EPA on IL-10 expression by PPAR knockdown in THP-1 cells. Incubation was conducted with scrambled siRNA (scr), PPARa—
siRNA (a-5, a-6), or PPARy—siRNA (y-1, y-2) during THP-1 differentiation into macrophages, as described in RESEARCH DESIGN AND METHODS. After
treatment with siRNA (25 nmol/L), EPA (50 umol/L), and LPS, cells were harvested, and the mRNA levels of IL-10 were measured by real-time PCR
(E). The protein levels of PPAR«a and PPARy were measured using Western blot analysis, and quantitative data are expressed as the fold of the
control scrambled siRNA and are the mean = SE (F). Expression levels were standardized for GAPDH levels. The results of three separately
performed experiments are expressed relative to the control and presented as the mean = SE. 1P < 0.01, vs. group I, **P < 0.01 vs. group VI by the
Dunnett method (E). *P < 0.05, **P < 0.01 vs. scr by the Dunnett method (F). G and H: Effects of EPA on human IL-10 promoter and on binding of
PPARYy to IL-10 promoter. G: Luciferase reporter assays were performed using the luciferase reporter constructs for the human IL-10 promoter. Cells
wete transiently transfected with either pGL3-P421 (P-421) or pGL3-P384 (P-384) and the control plasmid pRL-TK. After 24 h, cells were treated
with EPA (50 wmol/L) for 24 h and were stimulated by LPS (20 ng/mL) for 6 h. Luciferase activity was measured using a luminometer, and the
results were normalized against the Renilla luciferase control. **P < 0.01 vs. cells treated without EPA using Student t test. H: IL-10 promoter ChIP
assays were performed using chromatin extracts prepared from THP-1 monocytes treated with or without EPA (50 umol/L) for 24 h and were
stimulated by LPS (20 ng/mL) for 6 h. Control PCRs were carried out with nonimmunoprecipitated genomic DNA [input: IP(-)]. ctrl, control; algG
indicates anti-rabbit IgG; aPPARy, anti-PPARy antibody. **P < 0.01 vs. cells treated without EPA using Student t test.
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AA/EPA ratio were significantly associ-
ated with the extent of coronary soft pla-
ques and calcification (21). Furthermore,
subanalysis of the JELIS has shown that
the EPA/AA ratio is markedly correlated
with a lower incidence of sudden cardiac
death and myocardial infarction (22). Be-
cause EPA competitively inhibits inflam-
matory eicosanoids produced by AA (20),
these findings raise the possibility that the
EPA-induced increase of IL-10 RNA levels
in monocytesis at least partially caused by
inhibition of the proinflammatory effects
of AA by EPA.

There are some limitations regarding
the current study. Because Pearson cor-
relation coefficients in this study are
relatively weak, it is necessary to
conduct a long-term prospective cohort
study with a larger sample size in order to
clarify the involvement of monocyte
IL-10 in the improvement of vascular
function by the treatment with EPA.
Several lines of evidence suggest the
important role of monocyte heterogeneity
for the local macrophage conditions and
inflammation in atherosclerotic lesions in
mouse (7,8). However, further investiga-
tion is needed to elucidate whether the
M1/M2-like phenotype or a higher IL-10
level of circulating monocytes reflects the
M1/M2 macrophages and contributes to
disease progression in atherosclerotic
lesions in human.

In conclusion, this study demonstrates
that EPA increases the IL-10 expression in
peripheral blood monocytes in parallel
with the decrease of arterial stiffness in
obese patients with dyslipidemia. Given the
anti-inflammatory and antiatherogenic
properties of IL-10 (4,11), the beneficial
antiatherogenic effect of EPA may be due,
at least in part, to increased IL-10 expres-
sion and secretion in monocytes. As EPA
is a specific n-3 PUFA that has been proven
to reduce the risk of major coronary events
(13), the results of this study provide im-
portant insights into its therapeutic impli-
cations in obesity-related atherosclerotic
diseases.
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