| 四柳宏,田中靖人,齋藤昭彦,梅村武司,伊藤清顕,柘植雅貴,高橋祥一,中西裕之,松田香奈子,世古口悟,高橋秀明,林阳彦,田尻仁,小松陽樹,菅内文中,田尻和人,上田佳秀,奥瀬千晃,八橋弘,溝上雅史 | B 型肝炎 universal vaccination へ向けて | 肝臓 | 53 (2) | 117-130 | 2012 | |--|--|-------------|----------|-----------|------| | Zeissig S, <u>Murata K</u> , et al. | Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity | Nat Med | 18 | 1060-1068 | 2012 | | Saito H, <u>Murata K</u> , et al. | Factors responsible for
the discrepancy
between IL28B
polymorphism
prediction and the viral
response to
peginterferon plus
ribavirin therapy in
Japanese chronic
hepatitis C patients | Hepatol Res | 42 | 958-965 | 2012 | | Ito K, Murata K, et al. | LecT-Hepa, a
glyco-marker derived
from multiple lectins, as
a predictor of liver
fibrosis in chronic
hepatitis C patients. | Hepatology | 56 | 1448-1456 | 2012 | | Yoshio S, Murata K, et al. | dendritic cells are a potent producer of IFN-λ in response to hepatitis C virus. | Hepatology | In press | | 2012 | | 村田一素 | B型肝炎ウイルス感
染における宿主免疫
応答の重要性-特に
NKT 細胞の関与につ
いて- | 肝臓 | 54 | 7-18 | 2013 | Ⅳ. 研究成果の刊行物・別刷 # Genome-Wide Association Study Confirming Association of HLA-DP with Protection against Chronic Hepatitis B and Viral Clearance in Japanese and Korean Nao Nishida^{1,2*}, Hiromi Sawai², Kentaro Matsuura³, Masaya Sugiyama¹, Sang Hoon Ahn⁴, Jun Yong Park⁴, Shuhei Hige⁵, Jong-Hon Kang⁶, Kazuyuki Suzuki⁷, Masayuki Kurosaki⁸, Yasuhiro Asahina⁸, Satoshi Mochida⁹, Masaaki Watanabe¹⁰, Eiji Tanaka¹¹, Masao Honda¹², Shuichi Kaneko¹², Etsuro Orito¹³, Yoshito Itoh¹⁴, Eiji Mita¹⁵, Akihiro Tamori¹⁶, Yoshikazu Murawaki¹⁷, Yoichi Hiasa¹⁸, Isao Sakaida¹⁹, Masaaki Korenaga²⁰, Keisuke Hino²⁰, Tatsuya Ide²¹, Minae Kawashima², Yoriko Mawatari^{1,2}, Megumi Sageshima², Yuko Ogasawara², Asako Koike²², Namiki Izumi⁸, Kwang-Hyub Han⁴, Yasuhito Tanaka³, Katsushi Tokunaga², Masashi Mizokami¹ 1 Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan, 2 Department of Human Genetics, The University of Tokyo, Bunkyo-ku, Tokyo, Japan, 3 Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan, 4 Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea, 5 Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan, 6 Department of Internal Medicine, Teine Keijinkai Hospital, Sapporo, Japan, 7 Department of Gastroenterology and Hepatology, Iwate Medical University, Morioka, Japan, 8 Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan, 9 Division of Gastroenterology and Hepatology, Saitama Medical University, Saitama, Japan, 10 Department of Gastroenterology, Kitasato University School of Medicine, Kanagawa, Japan, 11 Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan, 12 Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan, 13 Department of Gastroenterology, Nagoya Daini Red Cross Hospital, Nagoya, Japan, 14 Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan, 15 Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka, Japan, 16 Department of Hepatology, Osaka City University Graduate School of Medicine, Osaka, Japan, 17 Second Department of Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan, 18 Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan, 19 Gastroenterology and Hepatology, Yamaguchi University Graduate School of Medicine, Kurume University School of Medicine, Fukuoka, Japan, 22 Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo, Japan #### **Abstract** Hepatitis B virus (HBV) infection can lead to serious liver diseases, including liver cirrhosis (LC) and hepatocellular carcinoma (HCC); however, about 85–90% of infected individuals become inactive carriers with sustained biochemical remission and very low risk of LC or HCC. To identify host genetic factors contributing to HBV clearance, we conducted genome-wide association studies (GWAS) and replication analysis using samples from HBV carriers and spontaneously HBV-resolved Japanese and Korean individuals. Association analysis in the Japanese and Korean data identified the *HLA-DPA1* and *HLA-DPB1* genes with $P_{meta} = 1.89 \times 10^{-12}$ for rs3077 and $P_{meta} = 9.69 \times 10^{-10}$ for rs9277542. We also found that the *HLA-DPA1* and *HLA-DPB1* genes were significantly associated with protective effects against chronic hepatitis B (CHB) in Japanese, Korean and other Asian populations, including Chinese and Thai individuals ($P_{meta} = 4.40 \times 10^{-19}$ for rs3077 and $P_{meta} = 1.28 \times 10^{-15}$ for rs9277542). These results suggest that the associations between the *HLA-DP* locus and the protective effects against persistent HBV infection and with clearance of HBV were replicated widely in East Asian populations; however, there are no reports of GWAS in Caucasian or African populations. Based on the GWAS in this study, there were no significant SNPs associated with HCC development. To clarify the pathogenesis of CHB and the mechanisms of HBV clearance, further studies are necessary, including functional analyses of the HLA-DP molecule. Citation: Nishida N, Sawai H, Matsuura K, Sugiyama M, Ahn SH, et al. (2012) Genome-Wide Association Study Confirming Association of HLA-DP with Protection against Chronic Hepatitis B and Viral Clearance in Japanese and Korean. PLoS ONE 7(6): e39175. doi:10.1371/journal.pone.0039175 Editor: Anand S. Mehta, Drexel University College of Medicine, United States of America Received February 1, 2012; Accepted May 16, 2012; Published June 21, 2012 **Copyright:** © 2012 Nishida et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. **Funding:** This work was supported by Grants-in-Aid from the Ministry of Health, Labour, and Welfare of Japan (H22-kanen-005, H23-kanen-005), the Japan Science and Technology Agency (09038024), and the Miyakawa Memorial Research Foundation. Partial support by Grant-in-Aid for Young Scientists (B) (22710191) from the Ministry of Education, Culture, Sports, Science, and Technology is also acknowledged. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: AK is an employee of the Central Research Laboratory, Hitachi Ltd. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials, as detailed online in the guide for authors. * E-mail: nishida-75@umin.ac.jp - 63 — #### Introduction Overall, one-third of the world's population (2.2 billion) is infected with hepatitis B virus (HBV), and about 15% of these are chronic carriers. About 75% of the chronic carriers live in the east-south Asia and east pacific area, and there are 1.3-1.5 million chronic carriers living in Japan [1]. Of chronic carriers, 10-15% develop liver cirrhosis (LC), liver failure and hepatocellular carcinoma (HCC), and the remaining individuals eventually achieve a state of nonreplicative infection, resulting in hepatitis B surface antigen (HBsAg) negative and hepatitis B core antibody (anti-HBc) positive, i.e. HBV-resolved individuals [2-3]. In Japan, although the major route of HBV transmission was perinatal transmission and horizontal transmission in early childhood, infant HBV carriers have successfully been reduced since 1986 through a selective vaccination policy by the Japanese government [4-7]. However, the prevalence of HBV genotype A in acute HBV (AHB) infection has increased markedly since 2000, reaching approximately 52% in 2008 due to the lack of a universal HB vaccination, and around 10% of AHB cases could be persistent infection [8-9]. Viral factors, as well as host factors, are thought to be associated with persistent HB infection. In 2009, significant associations between chronic hepatitis B (CHB) and a region including HLA-DPA1 and HLA-DPB1 were identified using 786 Japanese individuals having CHB and 2,201 control individuals through a two-stage genome-wide association study (GWAS) [10]. The same group was also subjected to a second GWAS using a total of 2,667 Japanese persistent HBV infection cases and 6,496 controls, which confirmed significant associations between the HLA-DP locus and CHB, in addition to associations with another two SNPs located in the genetic region including the HLA-DQ gene [11]. The associations between HLA-DP variants with HBV infection were replicated in other Asian populations, including Thai and Han Chinese individuals [10,12-13]. With regard to HBV clearance, the association between the human leukocyte antigen (HLA) class II allele and clearance of HBV was confirmed by the candidate gene approach in African, Caucasian and Asian populations [14-18]. However, in a previous GWAS using samples of Japanese CHB and control individuals, the clinical data on HBV exposure in the control individuals were unknown, and this may have led to bias. Moreover, there have been no reports of GWAS using samples from HBV carriers and HBV-resolved individuals to identify host genetic factors associated with HBV
clearance other than HLA class II molecules. Here, we performed a GWAS using samples from Japanese HBV carriers, healthy controls and spontaneously HBV-resolved individuals in order to confirm or identify the host genetic factors related to CHB and viral clearance. In the subsequent replication analysis, we validated the associated SNPs in the GWAS using two independent sets of Japanese and Korean individuals. In our study, healthy controls were randomly selected with clinically no evidence of HBV exposure, therefore, HBV-resolved individuals were prepared to clearly identify the host genetic factors related with CHB or HBV clearance. #### Results #### Protective Effects Against Chronic Hepatitis B in Japanese and Korean Individuals In this study, we conducted a GWAS using samples from 181 Japanese HBV carriers (including asymptomatic carriers (ASC), CHB cases, LC cases and HCC cases, based on the criteria described in Materials and Methods) and 184 healthy controls in order to identify the host genetic factors related to progression of CHB. All samples were genotyped using a genome-wide SNP typing array (Affymetrix Genome-Wide Human SNP Array 6.0 for 900 K SNPs). Figure 1a shows a genome-wide view of the single point association data based on allele frequencies using the SNPs that met the following filtering criteria: (i) SNP call rate ≥95%; (ii) minor allele frequency (MAF) ≥1% for HBV carriers and healthy controls; and (iii) no deviation from Hardy-Weinberg equilibrium (HWE) P≥0.001 in healthy controls. We identified significant associations of protective effects against CHB with two SNPs (rs3077 and rs9277542) using the allele frequency model, both of which are located in the 3' UTR of HLA-DPA1 and in the sixth exon of *HLA-DPB1*, respectively (rs3077, $P = 1.14 \times 10^{-7}$, and rs9277542, $P = 5.32 \times 10^{-8}$, respectively). The association for rs9277542 reached a genome-wide level of significance in the GWAS panel (Bonferroni criterion $P < 8.36 \times 10^{-8}$ 597,789)). In order to validate the results of GWAS, a total of 32 SNPs, including the associated two SNPs (rs3077 and rs9277542), were selected for replication in two independent sets of HBV carriers and healthy controls (replication-1:256 Japanese HBV carriers and 236 Japanese healthy controls; and replication-2:344 Korean HBV carriers and 151 Korean healthy controls; Table 1). The associations for the original significant SNP (rs9277542) and marginal SNP (rs3077) on GWAS were replicated in both replication sets [replication-1 (Japanese); rs3077, $P = 2.70 \times 10^{-8}$. OR = 0.48 and rs9277542, $P = 3.33 \times 10^{-6}$, OR = 0.54; replication-2 (Korean); rs3077, $P = 2.08 \times 10^{-6}$, OR = 0.47 and rs9277542, $P = 8.29 \times 10^{-5}$, OR = 0.54, Table 2]. We conducted meta-analysis to combine these studies using the DerSimonian Laird method (random effects model) to incorporate variation among studies. As shown in Table 2, the odds ratios were quite similar across the three studies (GWAS and two replication studies) and no heterogeneity was observed ($P_{het} = 0.80$ for rs3077 and 0.40 for rs9277542). P_{meta} values were 4.40×10^{-19} for rs3077 (OR = 0.46, 95% confidence interval (CI) = 0.39–0.54), and 1.28×10^{-15} for rs9277542 (OR = 0.50, 95% CI = 0.43-0.60). Among the remaining 30 SNPs in the replication study, 27 SNPs were successfully genotyped by the DigiTag2 assay with SNP call rate \geq 95% and HWE *p*-value \geq 0.01. Two SNPs (rs9276431 and rs7768538), located in the genetic region including the HLA-DQ gene, were marginally replicated in the two sets of HBV carriers and healthy controls with Mantel-Haenszel P values of 2.80×10^{-7} (OR = 0.56, 95% CI = 0.45-0.70) and $1.09 \times 10^{-7} (OR = 0.53,$ 95% CI = 0.42-0.67), respectively, when using additive, two-tailed Cochran Mantel-Haenszel (CMH) fixed-effects model with no evidence of heterogeneity ($P_{het} = 0.67$ for rs9276431 and 0.70 for rs7768538) (Table S1). Meta-analysis using the random effects model across 6 independent studies, including 5 additional published data, showed $P_{meta} = 3.94 \times 10^{-45}$, OR = 0.55 for rs3077, $P_{meta} = 1.74 \times 10^{-21}$, OR = 0.61 for rs9277535 and $P_{meta} = 1.69 \times 10^{-15}$, OR = 0.51 for rs9277542, with the SNP rs9277535 being located about 4-kb upstream from rs9277542 and showing strong linkage disequilibrium of $r^2 = 0.955$ on the HapMap JPT (Table S2). As shown in Table S2, the odds ratio was very similar among the 6 studies, and heterogeneity was negligible with $P_{het} > 0.01$. Moreover, based on GWAS using samples from 94 chronic HBV carriers with LC or HCC and 87 chronic HBV carriers without LC and HCC, we found no significant SNPs associated with CHB progression (Figure S1). Figure 1. Results of genome-wide association studies. a) HBV carriers and healthy controls, and b) HBV carriers and HBV-resolved individuals were compared. *P* values were calculated by chi-squared test for allele frequencies. Dots with arrows on chromosome 6 show strong associations with protective effects against persistent HB infection and with HBV clearance. doi:10.1371/journal.pone.0039175.g001 ## Clearance of Hepatitis B virus in Japanese and Korean Individuals We also conducted a GWAS to identify the host genetic factors related to clearance of HBV in the above 181 Japanese HBV carriers and 185 Japanese HBV-resolved individuals using a genome-wide SNP typing array (Affymetrix Genome-Wide Human SNP Array 6.0 for 900 K SNPs). The same two SNPs (rs3077 and rs9277542) showed strong associations in the allele frequency model ($P = 9.24 \times 10^{-7}$ and $P = 3.15 \times 10^{-5}$) with clearance of HBV (Figure 1b). The above 32 SNPs, including the two associated SNPs (rs3077 and rs9277542), were selected for a replication study in two independent sets of HBV carriers and HBV resolved individuals (replication-1:256 Japanese HBV carriers and 150 Japanese HBV resolved individuals; and replication-2:344 Korean HBV carriers and 106 Korean HBV resolved individuals; Table 1). All 32 SNPs were genotyped using the DigiTag2 assay and 29 of 32 SNPs were successfully genotyped (Table S3). The associations of the original SNPs were replicated in both replication sets [replication-l (Japanese): rs3077, $P=3.32\times10^{-2}$, OR = 0.72 and rs9277542, $P=1.25\times10^{-2}$, OR = 0.68; replication-2 (Korean): rs3077, $P=2.35\times10^{-7}$, OR = 0.41 and rs9277542, $P=4.97\times10^{-6}$, OR = 0.46; Table 3]. Meta-analysis using random effects model showed $P_{meta} = 1.56 \times 10^{-4}$ for rs3077 (OR = 0.51, 95% CI = 0.36-0.72), and 5.91×10^{-7} for rs9277542 (OR = 0.55, 95% CI = 0.43-0.69). While there was evidence of heterogeneity between these studies for rs3077 ($P_{\text{het}} = 0.03$) and no evidence for rs9277542 ($P_{\text{het}} = 0.19$), significant associations with HBV clearance were observed with Mantel-Haenszel $P_{meta} = 3.28 \times 10^{-12}$ for rs3077 and 1.42×10⁻¹⁰ for rs9277542, when using CMH fixedeffects model. Among the remaining 27 SNPs in the replication study, two SNPs (rs9276431 and rs7768538), located in a genetic region including HLA-DQ gene, were marginally replicated in the two sets of HBV carriers and HBV resolved individuals with Mantel-Haenszel P values of 2.10×10^{-5} (OR = 0.59) and 1.10×10^{-5} (OR = 0.56), respectively (Table S3), when using CMH fixed-effect model. Due to the existing heterogeneity among three groups (GWAS, Replication-1 and Replication-2) ($P_{het} = 0.03$ for rs9276431 and 0.04 for rs7768538), weak associations were Table 1. Number of study samples. | | | GWAS | Replication-1 | Replication-2 | | |----------------------|-------|----------|---------------|---------------|--| | population | | Japanese | Japanese | Korean | | | HBV carriers | Total | 181 | 256 | 344 | | | | IC | 20 | 94 | | | | | СН | 67 | 101 | 177 | | | | LC | 3 | 10 | - | | | | HCC | 91 | 51 | 167 | | | Healthy controls | | 184 | 236 | 151 | | | Resolved individuals | | 185 | 150 | 106 | | Abbreviation: IC, Inactive Carrier; CH, Chronic Hepatitis; LC, Liver Cirrhosis; HCC, Hepatocellular Carcinoma. doi:10.1371/journal.pone.0039175.t001 observed with $P_{meta} = 0.03$ for rs9276431 and 0.02 for rs7768538 by the random effects model meta-analysis. Meta-analysis across 6 independent studies, including 5 additional published data, showed $P_{meta}=1.48\times10^{-9}$, OR = 0.60 for rs3077, $P_{meta}=1.08\times10^{-17}$, OR = 0.66 for rs9277535 and $P_{meta}=5.14\times10^{-5}$, OR = 0.55 for rs9277542 (Table S4). As shown in Table S4, the OR for the rs9277535 and rs9277542 were similar among the 6 independent studies, and heterogeneity was negligible ($P_{het}=0.03$ for rs9277535 and 0.14 for rs9277542). However, significant level of heterogeneity for rs3077 was observed with $P_{het}=9.57\times10^{-6}$ across 5 independent studies, including our study. #### **URLs** The results of the present GWAS are registered at a public database: https://gwas.lifesciencedb.jp/cgi-bin/gwasdb/gwas_top.cgi. #### Discussion The recent genome-wide association study showed that the SNPs located in a genetic region including *HLA-DPA1* and *HLA-DPB1* genes were associated with chronic HBV infection in the Japanese and Thai population [10,11]. In this study, we confirmed a significant association between SNPs (rs3077 and rs9277542) located in the same genetic region as *HLA-DPA1* and *HLA-DPB1* and protective effects against CHB in Korean and Japanese individuals. Mata-analysis using the random effects model across 6 independent studies including our study suggested that, widely in East Asian populations, variants in antigen binding sites of *HLA-DP* contribute to protective effects against persistent HBV infection (Table S2). On GWAS and replication analysis with Japanese and Korean individuals, we identified associations between the same SNPs (rs3077
and rs9277542) in the HLA-DPA1 and HLA-DPB1 genes and HBV clearance; however, no new candidate SNPs from the GWAS were detected on replication analysis (Table S3). When the data of reference#18 was excluded from the meta-analysis across 6 independent studies, heterogeneity among 4 studies was estimated to be $P_{het} = 0.15$ and significant association of rs3077 with HBV clearance was observed with $P_{meta} = 5.88 \times 10^{-24}$, OR = 0.56 (Table S4). In our study, a negligible level of heterogeneity for rs3077 was also observed ($P_{het} = 0.03$) on meta-analysis by adding replication-1 (Table 3). Despite the heterogeneity in replication-1, a marginal association was observed for rs3077 with the same downward trend in the odds ratio ($P=3.32\times10^{-2}$, OR = 0.72). Moreover, meta-analysis using GWAS and replication-2 showed significant association of $P_{meta} = 1.89 \times 10^{-12}$, OR = 0.43 for rs3077 with no evidence of heterogeneity ($P_{het} = 0.75$). Although the reason why heterogeneity was observed in replication-1 is unclear, one possible reason is the clinical heterogeneity due to different kits being used for antibody testing. The associations of HLA-DPA1/-DPB1 with CHB and HBV clearance showed the same level of significance in the comparison of HBV patients with HBV resolved individuals (OR = 0.43 for rs3077 and 0.49 for rs9277542) as the one with healthy controls (OR = 0.46for rs3077 and 0.50 for rs9277542), when the replication-1 was excluded in the analysis (Table 2 and Table 3). The results of meta-analysis across 6 independent studies including our study also showed the same or slightly weaker associations in the Table 2. Results of replication study for protective effects against CHB. | | | Position | MAF | Allele | Stage | HBV | carrie | rs | Healt | hy co | ntrols | | OR ^b | | | |------------|-----|------------------------|----------|--------|----------------------------|--------|--------|--------|--------|--------|--------|-------|-----------------|------------------------------|--------------------| | dbSNP rsID | Chr | Buld 36.3 Nearest Gene | (allele) | (1/2) | (population) | 11 | 12 | 22 | 11 | 12 | 22 | HWEp | 95% CI | <i>P</i> -value ^c | P _{het} d | | rs3077 | 6 | 33141000 HLA-DPA1 | 0.44 | T/C | GWAS | 13 | 51 | 117 | 28 | 88 | 67 | 0.919 | 0.42 | 1.14×10^{-7} | | | | | | (T) | | (Japanese) | (7.2) | (28.2) | (64.6) | (15.3) | (48.1) | (36.6) | | (0.30-0.58) | | | | | | | | | Replication-1 | 26 | 95 | 134 | 46 | 125 | 65 | 0.309 | 0.48 | 2.70×10^{-8} | | | | | | | | (Japanese) | (10.2) | (37.3) | (52.5) | (19.5) | (53.0) | (27.5) | | (0.37-0.62) | | | | | | | | | Replication-2 | 23 | 81 | 111 | 31 | 74 | 40 | 0.767 | 0.47 | 2.08×10 ⁻⁶ | | | | | | | | (Korean) | (10.7) | (37.7) | (51.6) | (21.4) | (51.0) | (27.6) | | (0.35-0.65) | | | | | | | | | Meta-analysis ^e | | | | | | | | 0.46 | 4.40×10 ⁻¹⁹ | 0.80 | | | | | | | | | | | | | | | (0.39-0.54) | | | | rs9277542 | 6 | 33163225 HLA-DPB1 | 0.45 | T/C | GWAS | 18 | 53 | 110 | 29 | 102 | 52 | 0.073 | 0.42 | 5.32×10 ⁻⁸ | | | | | | (T) | | (Japanese) | (9.9) | (29.3) | (60.8) | (15.8) | (55.7) | (28.4) | | (0.31-0.58) | | | | | | | | | Replication-1 | 30 | 106 | 118 | 54 | 114 | 67 | 0.681 | 0.54 | 3.33×10^{-6} | | | | | | | | (Japanese) | (11.8) | (41.7) | (46.5) | (23.0) | (48.5) | (28.5) | | (0.42-0.70) | | | | | | | | | Replication-2 | 30 | 87 | 94 | 35 | 72 | 36 | 0.933 | 0.54 | 8.29×10^{-5} | | | | | | | | (Korean) | (14.2) | (41.2) | (44.5) | (24.5) | (50.3) | (25.2) | | (0.40-0.74) | | | | | | | | | Meta-analysis ^e | | | | | | | | 0.50 | 1.28×10 ⁻¹⁵ | 0.40 | | | | | | | | | | | | | | | (0.43-0.60) | | | ^aMinor allele frequency and minor allele in 198 healthy Japanese (ref#19). doi:10.1371/journal.pone.0039175.t002 comparison of HBV patients with HBV resolved individuals (OR = 0.56 for rs3077, 0.66 for rs9277535 and 0.55 for rs9277542) than in the one with healthy controls (OR = 0.55 for rs3077, 0.61 for rs9277535 and 0.51 for rs9277542), which was the opposite result as we expected (Table S2 and Table S4). These results may suggest that other unknown immune system(s) exist to eliminate the HBV in the HBV resolved individuals. Among the HLA class II loci (HLA-DPA1, HLA-DPB1 and HLA-DQB2), which were associated with CHB and HBV clearance, a weak linkage disequilibrium (r²<0.1) was observed between HLA-DOB2 locus and HLA-DPA1/-DPB1 loci in Japanese and Korean populations (Figure S2). We also found that similar linkage disequilibrium blocks (r2) were observed among three subgroups (HBV carriers, HBV resolved individuals and Healthy controls). Moreover, logistic regression analysis of HLA-DP (rs3077 and rs92775542) with use of HLA-DQ (rs9276431 and rs768538) as covariates showed that the same level of significant associations of HLA-DP with CHB and HBV clearance as shown in the singlepoint association analysis, while no associations of HLA-DQ with $P_{log} > 0.05$ were detected both in Japanese and in Korean (Table S5). These results show that HLA-DP is the main genetic factor for susceptibility to CHB and HBV clearance, and the associations of HLA-DQB2 would result from linkage disequilibrium of HLA-DPA1/-DPB1. In this study, we confirmed the significant associations between *HLA-DPA1* and *HLA-DPB1*, and protective effects against CHB and HBV clearance in Japanese and Korean individuals. These results suggest that the associations between the *HLA-DP* locus, CHB and HBV clearance are widely replicated in East Asian populations, including Chinese, Thai, Japanese and Korean individuals; however, there have been no similar GWAS performed in Caucasian and African populations. Moreover, there were no significant SNPs associated with HCC development in this study, thus suggesting that it is necessary to increase the sample size. To clarify the pathogenesis of CHB or the mechanisms of HBV clearance, further studies are necessary, including a functional study of the *HLA-DP* molecule, identification of novel host genetic factors other than *HLA-DP*, and variation analysis of HBV. #### Materials and Methods #### Ethics Statement All study protocols conform to the relevant ethical guidelines, as reflected in the *a priori* approval by the ethics committees of all participating universities and hospitals. The written informed consent was obtained from each patient who participated in this study and all samples were anonymized. #### Genomic DNA Samples and Clinical Data All of the 1,793 Japanese and Korean samples, including individuals with CHB, healthy controls and HBV-resolved individuals (HBsAg-negative and anti-HBc-positive), were collected at 20 multi-center hospitals (liver units with hepatologists) throughout Japan and Korea. The 19 hospitals in Japan were grouped into the following 8 areas: Hokkaido area (Hokkaido University Hospital, Teine Keijinkai Hospital), Tohoku area (Iwate Medical University Hospital), Kanto area (Musashino Red Cross Hospital, Saitama Medical University, Kitasato University Hospital, University of Tokyo), Koshin area (Shinshu University Hospital, Kanazawa University Hospital), Tokai area (Nagoya City University Hospital, Nagoya Daini Red Cross Hospital), Kinki area (Kyoto Prefectural University of Medicine Hospital, National Hospital Organization Osaka National Hospital, Osaka ^bOdds ratio of minor allele from two-by-two allele frequency table. ^cP value of Pearson's chi-square test for allelic model. ^dHeterogeneity was tested using general variance-based method. ^eMeta-analysis was tested using the random effects model. Table 3. Results of replication study for clearance of hepatitis B virus. | | | Position | MAF | Allele | Stage | HBV (| carriers | | Resol | ved ind | ividuals | OR ^b | | | |--|---|--|----------|--------
----------------------------|--------|----------|--------|--------|---------|----------|-----------------|------------------------------|------------------| | dbSNP rsID C | | Buld 36.3 Nearest Gene | (allele) | (1/2) | (population) | 11 | 12 | 22 | 11 | 12 | 22 | 95% CI | <i>P</i> -value ^c | P _{het} | | rs3077 | 6 | 33141000 HLA-DPA1 | 0.44 | T/C | GWAS | 13 | 51 | 117 | 29 | 82 | 74 | 0.44 | 9.24×10 ⁻⁷ | | | | | | (T) | | (Japanese) | (7.2) | (28.2) | (64.6) | (15.7) | (44.3) | (40.0) | (0.32-0.61) | | | | -0.00 - 50 Percent 10 Percent | | 99 (900) (900) Albert (1994) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) (1995) | | | Replication-1 | 26 | 95 | 134 | 20 | 64 | 60 | 0.72 | 3.32×10 ⁻² | | | | | | | | (Japanese) | (10.2) | (37.3) | (52.5) | (13.9) | (44.4) | (41.7) | (0.53-0.97) | | | | | | | | | Replication-2 | 23 | 81 | 111 | 29 | 48 | 28 | 0.41 | 2.35×10 ⁻⁷ | | | | | | | | (Korean) | (10.7) | (37.7) | (51.6) | (27.6) | (45.7) | (26.7) | (0.29-0.58) | | | | | | | | | Meta-analysis ^e | | | | | | | 0.51 | 1.56×10 ⁻⁴ | 0.03 | | | | | | | | | | | | | | (0.36-0.72) | | | | | | | | | Meta-analysis ^e | | | | | | | 0.43 | 1.89×10 ⁻¹² | 0.75 | | | | | | | (GWAS+replication-
2) | | | | | | | (0.34–0.54) | | | | rs9277542 | 6 | 33163225 HLA-DPB1 | 0.45 | T/C | GWAS | 18 | 53 | 110 | 28 | 88 | 69 | 0.51 | 3.15×10 ⁻⁵ | | | | | | (T) | | (Japanese) | (9.9) | (29.3) | (60.8) | (15.1) | (47.6) | (37.3) | (0,37-0.70) | | | | | | | | | Replication-1 | 30 | 106 | 118 | 28 | 62 | 52 | 0.68 | 1.25×10 ⁻² | | | | | | | | (Japanese) | (11.8) | (41.7) | (46.5) | (19.7) | (43.7) | (36.6) | (0.51-0.92) | | | | | | | | | Replication-2 | 30 | 87 | 94 | 30 | 53 | 22 | 0.46 | 4.97×10 ⁻⁶ | | | | | | | | (Korean) | (14.2) | (41.2) | (44.5) | (28.6) | (50.5) | (21.0) | (0,33-0.64) | | | | | | | | | Meta-analysis ^e | | | | | | | 0.55 | 5.91×10 ⁻⁷ | 0.19 | | | | | | | | | | | | | | (0.43-0.69) | | | | | | | | | Meta-analysis ^e | | | | | | | 0.49 | 9.69×10 ⁻¹⁰ | 0.65 | | The State of | | | | | (GWAS+replication-
2) | | | | | | | (0.39–0.61) | | | ^aMinor allele frequency and minor allele in 198 healthy Japanese (ref#19). doi:10.1371/journal.pone.0039175.t003 City University), Chugoku/Shikoku area (Tottori University Hospital, Ehime University Hospital, Yamaguchi University Hospital, Kawasaki Medical College Hospital) and Kyushu area (Kurume University Hospital). Korean samples were collected at Yonsei University College of Medicine. HBV status was measured based on serological results for HBsAg and anti-HBc with a fully automated chemiluminescent enzyme immunoassay system (Abbott ARCHITECT; Abbott Japan, Tokyo, Japan, or LUMIPULSE f or G1200; Fujirebio, Inc., Tokyo, Japan). For clinical staging, inactive carrier (IC) state was defined by the presence of HBsAg with normal ALT levels over 1 year (examined at least four times at 3-month intervals) and without evidence of portal hypertension. Chronic hepatitis (CH) was defined by elevated ALT levels (>1.5 times the upper limit of normal [35 IU/L]) persisting over 6 months (at least by 3 bimonthly tests). Liver cirrhosis (LC) was diagnosed principally by ultrasonography (coarse liver architecture, nodular liver surface, blunt liver edges and hypersplenism), platelet counts <100,000/ cm³, or a combination thereof. Histological confirmation by fineneedle biopsy of the liver was performed as required. Hepatocellular carcinoma (HCC) was diagnosed by ultrasonography, computerized tomography, magnetic resonance imaging, angiography, tumor biopsy or a combination thereof. The Japanese control samples from HBV-resolved subjects (HBsAg-negative and anti-HBc-positive) at Nagoya City University-affiliated healthcare center were used by comprehensive agree- ment (anonymization in an unlinkable manner) in this study. Some of the unrelated Japanese healthy controls were obtained from the Japan Health Science Research Resources Bank (Osaka, Japan). One microgram of purified genomic DNA was dissolved in 100 μ l of TE buffer (pH 8.0) (Wako, Osaka, Japan), followed by storage at $-20^{\circ}\mathrm{C}$ until use. #### SNP Genotyping and Data Cleaning For GWAS, we genotyped a total of 550 individuals, including 181 Japanese HBV carriers, 184 Japanese healthy controls and 185 spontaneously HBV-resolved Japanese individuals (HBsAgnegative and anti-HBc-positive), using the Affymetrix Genome-Wide Human SNP Array 6.0 (Affymetrix, Inc., Santa Clara, CA), in accordance with the manufacturer's instructions. The average QC call rate for 550 samples reached 98.47% (95.00-99.92%), which had an average sample call rate of 98.91% (93.55–99.74%) by determining the genotype calls of over 900 K SNPs using the Genotyping Console v4.1 software (with Birdseed v1 algorithm) provided by the manufacturer [19]. We then applied the following thresholds for SNP quality control in data cleaning: SNP call rate ≥95% and MAF ≥1% for three groups (HBV carriers, healthy controls and HBV-resolved individuals), and HWE P-value ≥0.001 for healthy controls [20]. Here, SNP call rate is defined for each SNP as the number of successfully genotyped samples divided by the number of total samples genotyped. A total of 597,789 SNPs and 590,278 SNPs on autosomal chromosomes bOdds ratio of minor allele from two-by-two allele frequency table. ^cP value of Pearson's chi-square test for allelic model. ^dHeterogeneity was tested using general variance-based method. ^eMeta-analysis was tested using the random effects model. passed the quality control filters in the genome-wide association analysis using HBV carriers and healthy controls, and using HBV carriers and HBV-resolved individuals, respectively (Figure 1). All cluster plots for the SNPs showing P<0.0001 on association analyses in the allele frequency model were confirmed by visual inspection, and SNPs with ambiguous cluster plots were excluded. In the following replication stage, we selected a set of 32 SNPs with P<0.0001 in the GWAS using HBV carriers and HBVresolved individuals. SNP genotyping in two independent sets of 256 Japanese HBV carriers, 236 Japanese healthy controls and 150 Japanese HBV-resolved individuals (Table 1, replication-1), and 344 Korean HBV carriers, 151 Korean healthy controls and 106 Korean HBV-resolved individuals (Table 1, replication-2) was completed for the selected 32 SNPs using the DigiTag2 assay [21,22] and custom TaqMan SNP Genotyping Assays (Applied Biosystems, Foster City, CA) on the LightCycler 480 Real-Time PCR System (Roche, Mannheim, Germany). #### Statistical Analysis The observed associations between SNPs and the protective effects on chronic hepatitis B or clearance of hepatitis virus B were assessed by chi-squared test with a two-by-two contingency table in allele frequency model. SNPs on chromosome X were removed because gender was not matched among HBV carriers, healthy controls and HBV-resolved individuals. A total of 597,789 SNPs and 590,278 SNPs passed the quality control filters in the GWAS stage; therefore, significance levels after Bonferroni correction for multiple testing were $P = 8.36 \times 10^{-8}$ (0.05/597,789) and $P=8.47\times10^{-8}$ (0.05/590,278), respectively. For the replication study, 29 of 32 SNPs were successfully genotyped; therefore, we applied P = 0.0017 (0.05/29) as a significance level, and none of the 29 markers genotyped in the replication stage showed deviations from the Hardy-Weinberg equilibrium in healthy controls (P > 0.01). The genetic inflation factor λ was estimated by applying the Cochrane-Armitage test on all SNPs and was found to be 1.056 and 1.030 in the GWAS using HBV carriers and healthy controls, and using HBV carriers and HBV-resolved individuals, respectively (Figure S3). These results suggest that the population substructure should not have any substantial effect on statistical analysis. In addition, the principal component analysis in a total of 550 individuals in the GWAS stage together with the HapMap samples also revealed that the effect of population stratification was negligible (Figure S4). Based on the genotype data of a total of 1,793 samples including 1,192 Japanese samples and 601 Korean samples in both GWAS and replication stages, haplotype blocks were estimated using the Gabriel's algorithm using the Haploview software (v4.2) (Figure S2). In the logistic regression analysis, two SNPs (rs9276431 and rs7768538) within the HLA-DQ locus were individually involved as a covariate (Table S5). Statistical analyses were performed using the SNP & Variation Suite 7 software (Golden Helix, MT, USA). #### **Supporting Information** Figure S1 GWAS using samples from HBV carriers with LC or HCC, and HBV carriers without LC and HCC. P values were calculated using chi-squared test for allele frequencies. (PPTX) Figure S2 Estimation of linkage disequilibrium blocks in HBV patients, HBV resolved individuals and healthy controls in Japanese and Korean. The LD blocks (r²) were analyzed using the Gabriel's algorithm. (PPTX) Figure S4 Principal component analysis on a total of 550 individuals in GWAS, together with HapMap samples (CEU, YRI and JPT). (PPTX) Table S1 Results for 29 SNPs selected in replication study using samples of HBV carriers and healthy controls. ^aP values by chi-squared test for allelic model. ^bOdds ratio of minor allele from two-by-two allele frequency table. ^cMeta-analysis was tested using additive, two-tailed CMH fixedeffects model. (XLSX) Table S2 Results of meta-analysis for protective effects against persistent HB infection across 6 independent studies, including this study. aMinor allele frequency and minor allele in 198 healthy Japanese (ref#19). bOdds ratio of minor allele from two-by-two allele frequency table. °P value of Pearson's chi-squared test for allele model. dHeterogeneity was tested using general variance-based method. eMeta-analysis was tested using the random effects model. (XLSX) Table S3 Results for 29 SNPs selected
in replication study using samples from HBV carriers and HBV**resolved individuals.** ^aP values by chi-squared test for allelic model. bOdds ratio of minor allele from two-by-two allele frequency table. ^cMeta-analysis was tested using additive, twotailed CMH fixed-effects model. Table S4 Results of meta-analysis for clearance of HBV across 6 independent studies, including this study. ^aMinor allele frequency and minor allele in 198 healthy Japanese (ref#19). bOdds ratio of minor allele from two-by-two allele frequency table. cP value of Pearson's chi-squared test for allele model. dHeterogeneity was tested using general variance-based method. eMeta-analysis was tested using the random effects model. (XLSX) Table S5 Logistic regression analysis of HLA-DP (rs3077 and rs9277542) and HLA-DQ (rs9276431 and rs7768538) with susceptibility to CHB and HBV clearance using the HLA-DQ genotypes individually as a covariate. (XLSX) #### **Acknowledgments** We thank all the patients and families who contributed to the study and Ms. Yasuka Uehara-Shibata and Ms. Yoshimi Ishibashi for technical assistance #### **Author Contributions** Conceived and designed the experiments: NN HS YT. Performed the experiments: HS Y. Mawatari M. Sageshima YO. Analyzed the data: NN MK AK. Contributed reagents/materials/analysis tools: KM M. Sugiyama SHA JYP SH JHK KS M. Kurosaki YA SM MW ET MH SK EO YI EM AT Y. Murawaki YH IS M. Korenaga KH TI NI KHH YT MM. Wrote the paper: NN M. Kawashima YT KT MM. . PLoS ONE | www.plosone.org #### References - Arauz-Ruiz P, Norder H, Robertson BH, Magnius LO (2002) Genotype H: a new Amerindian genotype of hepatitis B virus revealed in Central America. J Gen Virol 83: 2059–2073. - Hoofnagle JH, Doo E, Liang TJ, Fleischer R, Lok ASF (2007) Management of hepatitis B: Summary of a clinical research workshop. Hepatology 45: 1056– 1075. - Yokosuka O, Kurosaki M, Imazeki F, Arase Y, Tanaka Y, et al. (2011) Management of hepatitis B: Consensus of the Japan society of Hepatology 2009. Henatol Res 41: 1–21. - Tada H, Uga N, Fuse Y, Shimizu M, Nemoto Y, et al. (1992) Prevention of perinatal transmission of hepatitis B virus carrier state. Acta Paediatr Jpn 34: 656–659. - Stevens CE, Toy PT, Taylor PE, Lee T, Yip HY (1992) Prospects for control of hepatitis B virus infection: implications of childhood vaccination and long-term protection. Pediatrics 90: 170–173. - Szmuness W (1979) Large-scale efficacy trials of hepatitis B vaccines in the USA: baseline data and protocols. J Med Virol 4: 327–340. - Kwon H, Lok AS (2011) Hepatitis B therapy. Nat Rev Gastroenterol Hepatol 8: 275–284. - Kobayashi M, Ikeda K, Arase Y, Suzuki F, Akuta N, et al. (2008) Change of Hepatitis B virus genotypes in acute and chronic infections in Japan. J Med Virol 80: 1880–1884 - 80: 1880–1884. 9. Yano K, Tamada Y, Yatsuhashi H, Komori A, Abiru S, et al. (2010) Dynamic epidemiology of acute viral hepatitis in Japan. Intervirology 53: 70–75. - Kamatani Y, Wattanapokayakit S, Ochi H, Kawaguchi T, Takahashi A, et al. (2009) A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 41: 591–595. - Mbarek H, Ochi H, Urabe Y, Kumar V, Kubo M, et al. (2011) A genome-wide association study of chronic hepatitis B identified novel risk locus in a Japanese population. Hum Mol Genet 20: 3884–3892. - Li J, Yang D, He Y, Wang M, Wen Z, et al. (2011) Associations of HLA-DP variants with hepatitis B virus infection in southern and northern Han Chinese populations: a multicenter case-control study. PLoS ONE 6: e24221. - Guo X, Zhang Y, Li J, Ma J, Wei Z, et al. (2011) Strong influence of human leukocyte antigen (HLA)-DP gene variants on development of persistent chronic hepatitis B virus carriers in the Han Chinese population. Hepatol 53: 422–428. - Thursz MR, Kwiatkowski D, Allsopp CEM, Greenwood BM, Thomas HC, et al. (1995) Association between an MHC class II allele and clearance of hepatitis B virus in the Gambia. N Engl J Med 332: 1065–1069. - Godkin A, Davenport M, Hill AVS (2005) Molecular analysis of HLA class II associations with hepatitis B virus clearance and vaccine nonresponsiveness. Hepatology 41: 1383–1390. - An P, Winkler C, Guan L, O'Brien SJ, Zeng Z, et al. (2011) A common HLA-DPA1 variant is a major determinant of hepatitis B virus clearance in Han Chinese. J Infect Dis 203: 943–947. - Wang L, Wu X-P, Zhang W, Zhu D-H, Wang Y, et al. (2011) Evaluation of genetic susceptibility loci for chronic hepatitis B in Chinese: two independent case-control study. - Hu L, Zhai X, Liu J, Chu M, Pan S, et al. (2011) Genetic variants in HLA-DP/ DQ influence both hepatitis B virus clearance and Hepatocellular carcinoma development. Hepatology (in press). - Nishida N, Koike A, Tajima A, Ogasawara Y, Ishibashi Y, et al. (2008) Evaluating the performance of Affymetrix SNP Array 6.0 platform. BMC Genomics 9: 431. - Miyagawa T, Nishida N, Ohashi J, Kimura R, Fujimoto A, et al. (2008) Appropriate data cleaning methods for genome-wide association study. J Hum Genet 53: 886–893. - 21. Nishida N, Tanabe T, Takasu M, Suyama A, Tokunaga K (2007) Further development of multiplex single nucleotide polymorphism typing method, the DigiTag2 assay. Anal Biochem 364: 78–85. - Nishida N, Mawatari Y, Sageshima M, Tokunaga K (2012) Highly parallel and short-acting amplification with locus-specific primers to detect single nucleotide polymorphisms by the DigiTag2 assay. PLoS ONE 7: e29967. #### **RESEARCH ARTICLE** **Open Access** # No association for Chinese HBV-related hepatocellular carcinoma susceptibility SNP in other East Asian populations Hiromi Sawai^{1*}, Nao Nishida^{1,2}, Hamdi Mbarek³, Koichi Matsuda³, Yoriko Mawatari², Megumi Yamaoka¹, Shuhei Hige⁴, Jong-Hon Kang⁵, Koichi Abe⁶, Satoshi Mochida⁷, Masaaki Watanabe⁸, Masayuki Kurosaki⁹, Yasuhiro Asahina⁹, Namiki Izumi⁹, Masao Honda¹⁰, Shuichi Kaneko¹⁰, Eiji Tanaka¹¹, Kentaro Matsuura¹², Yoshito Itoh¹³, Eiji Mita¹⁴, Masaaki Korenaga¹⁵, Keisuke Hino¹⁵, Yoshikazu Murawaki¹⁶, Yoichi Hiasa¹⁷, Tatsuya Ide¹⁸, Kiyoaki Ito², Masaya Sugiyama², Sang Hoon Ahn¹⁹, Kwang-Hyub Han¹⁹, Jun Yong Park¹⁹, Man-Fung Yuen²⁰, Yusuke Nakamura³, Yasuhito Tanaka¹², Masashi Mizokami² and Katsushi Tokunaga¹ #### **Abstract** **Background:** A recent genome-wide association study (GWAS) using chronic HBV (hepatitis B virus) carriers with and without hepatocellular carcinoma (HCC) in five independent Chinese populations found that one SNP (rs17401966) in *KIF1B* was associated with susceptibility to HCC. In the present study, a total of 580 HBV-derived HCC cases and 1351 individuals with chronic hepatitis B (CHB) or asymptomatic carrier (ASC) were used for replication studies in order to evaluate the reported association with HBV-derived HCC in other East Asian populations. **Results:** We did not detect any associations between rs17401966 and HCC in the Japanese cohorts (replication 1: OR = 1.09, 95 % CI = 0.82-1.43; replication 2: OR = 0.79, 95 % CI = 0.54-1.15), in the Korean cohort (replication 3: OR = 0.95, 95 % CI = 0.66-1.36), or in the Hong Kong Chinese cohort (replication 4: OR = 1.17, 95 % CI = 0.79-1.75). Meta-analysis using these cohorts also did not show any associations with P = 0.97. **Conclusions:** None of the replication cohorts showed associations between rs17401966 and HBV-derived HCC. This may be due to differences in the genetic diversity among the Japanese, Korean and Chinese populations. Other reasons could be the high complexity of multivariate interactions between the genomic information and the phenotype that is manifesting. A much wider range of investigations is needed in order to elucidate the differences in HCC susceptibility among these Asian populations. Keywords: Hepatitis B, hepatocellular carcinoma, candidate SNP, replication study, genome-wide association study #### Background Hepatitis B (HB) is a potentially life-threatening liver infection caused by the hepatitis B virus (HBV), and approximately 360 million people worldwide are thought to be chronically infected with HBV. The clinical course of HBV infection is variable, including acute self-limiting infection, fulminant hepatic failure, inactive carrier state and chronic hepatitis with progression to cirrhosis and hepatocellular carcinoma (HCC). Although some HBV carriers spontaneously eliminate the virus, 2-10 % of individuals with chronic HB (CHB) develop liver cirrhosis every year, and a subset of these individuals suffer from liver failure or HCC. Around 600,000 new HCC cases are diagnosed annually worldwide, with HCC being relatively common in Asia-Pacific countries and sub-Saharan Africa; more than 70 % of HCC patients are diagnosed in Asia (with 55 % in China) [1]. However, HCC is relatively uncommon in the USA, Europe and Australia [1,2]. The majority of HCC develops in patients with cirrhosis, which is most often attributable ^{*} Correspondence: sawai@m.u-tokyo.ac.jp ¹Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Full list of author information is available at the end of the article © 2012 Sawai et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. to chronic HBV infection followed by chronic HCV in the Asia-Pacific region [3]. A recent genome-wide association study (GWAS) using Japanese CHB cases and controls confirmed that 11 SNPs in a region including *HLA-DPA1* and *-DPB1* were associated with CHB [4]. Moreover, a GWAS using chronic HBV carriers with and without HCC in five independent Chinese populations reported that one SNP (rs17401966) in *KIF1B* was associated with HCC susceptibility [5]. In the present study, we performed replication studies
using Japanese, Korean and Hong Kong Chinese cases and controls in order to evaluate the reported association with HBV-derived HCC in other East Asian populations. #### Results We performed SNP genotyping of rs17401966 located in the KIF1B gene for the purpose of replication analysis of the previous GWAS report [5]. Four distinct cohorts were used for these replication analyses (Table 1). We first examined two independent Japanese case-control samples including 179 cases and 769 controls from Biobank Japan (replication 1), and 142 cases and 251 controls from various hospitals (replication 2). We did not detect any associations between rs17401966 and HCC in the Japanese cohorts (replication 1: OR = 1.09; 95 % CI = 0.82-1.43, replication 2: OR = 0.79; 95 % CI = 0.54-1.15). We further examined Korean case-control samples comprising 164 cases and 144 controls (replication 3) and Hongkongese 94 HCC cases and 187 CHB controls (replication 4), but again did not detect any association (replication 3: OR = 0.95; 95 % CI = 0.66-1.36, replication 4: OR = 1.17; 95 % CI = 0.79-1.75). Logistic regression analysis adjusted for age and gender also did not show any association ($P_{log} = 0.65$, 0.27, 0.11, 0.56 for each replication panel). Moreover, we conducted meta-analysis to combine these studies, also not detect any association ($P_{meta} = 0.97$). #### Discussion and conclusions Zhang et al. [5] reported that SNP rs17401966 was significantly associated with HBV-related HCC (joint OR = 0.61). They conducted a GWAS using 348 cases and 359 controls in a population in Guangxi in southern China, and selected 45 SNPs for the replication study based on the results ($P < 10^{-4}$). In the first replication study, they used 276 cases and 266 controls from Beijing in northern China, and 5 SNPs showed the same direction of association as in the GWAS (P < 0.05). They performed a further replication study (of 507 cases and 215 controls) in Jiangsu in eastern China and only one SNP showed the same trend ($P = 3.9 \times 10^{-5}$). Guangdong and Shanghai samples from southern and eastern China were used for further replication studies. The association yielded a p-value of 1.7×10^{-18} on meta-analysis. We performed four replication analyses using Japanese, Korean and Hong Kong Chinese samples (Table 1). Although sample size of each cohort is smaller than that of the previous GWAS, we conducted mete-analysis of all our study. The result did not show any association between rs17401966 and HBV-derived HCC ($P_{\rm meta} = 0.97$). This may be due to differences in genetic diversity among Japanese, Korean and Chinese populations. A maximum-likelihood tree of 126 populations based on 19,934 SNPs showed that Japanese and Korean populations form a monophyletic clade with a 100 % bootstrap value [6]. However, Chinese populations form a paraphyletic clade with two other populations. This indicates that Japanese and Korean populations are genetically closer to one another than the Chinese population. Table 1 Association between rs17401966 and HBV-derived HCC | cohort | sample size | cases | | | controls | 5 | | | OR | | | |----------------------------|---------------------------------------|--------|--------|--------|----------|--------|--------|--|-------------|-------|--------------------| | | (cases/controls) | GG | AG | AA | GG | AG | AA | HWE p | (95 % CI) | Рª | P _{het} b | | replication 1 | 179/769 | 13 | 61 | 105 | 45 | 261 | 463 | 0.599 | 1.09 | 0.578 | | | (Japan 1) | | (7.2) | (34.1) | (58.7) | (5.9) | (33.9) | (60.2) | | (0.82-1.43) | | | | replication 2 | 142/251 | 5 | 46 | 91 | 14 | 91 | 146 | 1 | 0.79 | 0.212 | | | (Japan 2) | | (3.5) | (32.4) | (64.1) | (5.6) | (36.2) | (58.2) | | (0.54-1.15) | | | | replication 3 | 164/144 | 17 | 59 | 88 | 15 | 55 | 74 | 0.616 | 0.95 | 0.790 | | | (Korea) | | (10.4) | (36.0) | (53.6) | (10.4) | (38.2) | (51.4) | | (0.66-1.36) | | | | replication 4 | 94/187 | 10 | 39 | 44 | 13 | 80 | 94 | 0.767 | 1.17 | 0.432 | | | (Hong Kong) | A A A A A A A A A A A A A A A A A A A | (10.6) | (41.5) | (46.8) | (6.9) | (42.8) | (50.3) | | (0.79-1.75) | | | | Meta-analysis ^c | | | | | | | | ······································ | 0.996 | 0.965 | 0.423 | | | | | | | | | | | (0.84-1.18) | | | ^aP value of fisher's exact test for allele model. ^bResult of Breslow-Day test. ^cResults of meta-analysis were calculated by the Mantel-Haenzel method. We did not find any association with Hong Kong Chinese cohort (P = 0.43). Moreover, a study using 357 HCC cases and 354 HBV-positive non-HCC controls in Hong Kong Chinese did not show any significant difference (P = 0.91) [7]. Previous population studies have revealed that various Han Chinese populations show varying degrees of admixture between a northern Altaic cluster and a southern cluster of Sino-Tibetan/Tai-Kadai populations in southern China and northern Thailand [6]. Although Hong Kong is located closed to the Guangdong (cohort 3 of Zhang et al study), there is great heterogeneity for rs17401966 between Hong Kong cohorts (our study and Chan's study [7]) and Guangdong cohort (our study versus Zhang's study: Phet = 0.0066; Chan's study versus Zhang's study: Phet = 0.035). This result suggests the existence of other confounding factors, which can differentiate the previous study in China and this study. One of the possible reasons could be the high complexity of multivariate interactions between the genomic information and the phenotype that is manifesting. HCC development is a multiple process which links to causative factors such as age, gender, environmental toxins, alcohol and drug abuse, higher HBV DNA levels, and HBV genotype variations [8]. The eight HBV genotypes display distinct geographical and ethnic distributions. Genotypes B and C are prevalent in Asia. Specific variations in HBV have been associated with cirrhosis and HCC. These variations include in particular mutations in pre-core region (Pre-C), in basal core promoter (BCP) and in ORF encoding Pre-S1/Pre-S2/S and Pre-C/C. Because there is an overlap between Pre-C or BCP mutations and genotypes, these mutations appear to be more common in genotype C as compared to other genotypes [9]. Aflatoxins are a group of 20 related metabolites and Aflatoxin B1 is the most potent naturally occurring chemical liver carcinogen known. Aflatoxin exposures multiplicatively increase the risk of HCC in people chronically infected with HBV, which illustrates the deleterious impact that even low toxin levels in the diet can have on human health [10-12]. Liu and Wu estimated population risk for aflatoxin-induced HCC around the world [13]. Most cases occur in sub-Saharan Africa, Southeast Asia and China, where populations suffer from both high HBV prevalence and largely uncontrolled exposure to aflatoxin in food. But we could not obtain the information of these confounding factors from both of the previous GWAS study and this study. A much wider range of investigations is thus needed in order to elucidate the differences in HCC susceptibility among these Asian populations. #### Methods #### Samples Case and control samples used in this study were collected from Japan, Korea and Hong Kong listed in supplementary Additional file 1: Table S1. A total of 179 cases and 769 control subjects were analyzed in the first replication study. DNA samples from both CHB controls and HBV-related HCC cases used in this study were obtained from the BioBank Japan at the Institute of Medical Science, the University of Tokyo [14]. Among the BioBank Japan samples, we selected HBsAg-seropositive CHB patients with elevated serum aminotransferase levels for more than six months, according to the guidelines for diagnosis and treatment of chronic hepatisis from The Japan Society of Hepatology (http://www.jsh.or.jp/medical/gudelines/index. html). The mean (and standard deviation; SD) age was 62.0 (9.4) years for the cases and 54.7 (13.5) years for the controls. The second Japanese replication sample sets for the cases (n = 142) and controls (n = 251) study were obtained from 16 hospitals. The case samples for the second replication included 142 HCC patients and the controls included 135 CHB patients and 116 asymptomatic carriers (ASC). The mean (SD) age was 61.3 (10.2) years for the cases and 56.2 (10.9) years for the controls. The Korean replication samples were collected from Yonsei University College of Medicine. The third replication set was composed of 165 HCC patients and 144 CHB patients. The mean (SD) age was 52.2 (8.9) and 37.3 (11.3) years for the cases and controls, respectively. The samples in Hong Kong were collected from the University of Hong Kong, Queen Mary Hospital. The fourth replication set was composed of 94 HCC patients and 187 CHB patients. The mean (SD) age was 58.0 (10.5) and 56.9 (8.3) years for the cases and controls, respectively. All participants provided written informed consent. This research project was approved by the Research Ethics Committees at the Institute of Medical Science and the Graduate School of Medicine, the University of Tokyo, Yonsei University College of Medicine, the University of Hong Kong, Nationa Center for Global Health and Medicine, Hokkaido University Graduate School of Medicine, Teine Keijinkai Hospital, Iwate Medical University, Saitama Medical University, Kitasato University School of Medicine, Musashino Red Cross Hospital, Kanazawa University Graduate School of Medicine, Shinshu University School of Medicine, Nagoya City University Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, National Hospital Organization Osaka National Hospital, Kawasaki Medical College, Tottori University, Ehime University Graduate School of Medicine, and Kurume University School of Medicine. #### **SNP Genotyping** For the first replication samples, we genotyped rs17401966 using PCR-based Invader assay (Third Wave Technologies,
Madison, WI) [15], and for the second, third and fourth replication samples, we used TaqMan genotyping assay (Applied Biosystems, Carlsbad, CA). In the TaqMan SNP genotyping assay, PCR amplification was performed in a 5- μ l reaction mixture containing 1 μ l of genomic DNA, 2.5 μ l of KAPA PROBE FAST qPCR Master Mix (Kapa Biosystems, Woburn, MA), and 40 x TaqMan SNP Genotyping Assay probe (ABI) for this SNP. QPCR thermal cycling was performed as follows: 95°C for 3 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. The SNP call rate of each replication panel was 100 %, 100 %, 99.7 % and 99.6 %. #### Statistical analysis We performed Hardy-Weinberg equilibrium test for the case and control samples in each replication study. Fisher's exact test was applied to two-by-two contingency tables for three different genetic models; allele frequency, dominant and recessive model. Odds ratios and confidence intervals were calculated using the major alleles as references. Meta-analysis was conducted using the Mantel-Haenszel method. Heterogeneity among studies was examined by using the Breslow-Day test. Genotype-phenotype association for the SNP rs17401966 was assessed using logistic regression analysis adjusted for age and gender in plink 1.07 (http://pngu.mgh.harvard.edu/~purcell/plink/index.shtml). #### Additional file Additional file 1: Table S1. Samples used in this study. #### Abbreviations HB: Hepatitis b; HBV: Hepatitis b virus; HCC: Hepatocellular carcinoma; CHB: Chronic hepatitis b; HCV: Hepatitis c virus; GWAS: Genome-wide association study; ASC: Asymptomatic carrier. #### **Competing interests** The authors declare that they have no competing interests. #### Acknowledgements This study was supported by a grant-in-aid from the Ministry of Health, Labour, and Welfare of Japan (H23-kanen-005), and Japan Science and Technology Agency (09038024). We thank Dr. Minae Kawashima to giving us technical advices. #### Author details ¹Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. ²The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan. ³Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. ⁴Department of Internal Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan. ⁵Department of Internal Medicine, Teine Keijinkai Hospital, Sapporo, Japan. ⁶First Department of Internal Medicine, Iwate Medical University, Iwate, Japan. ⁷Division of Gastroenterology and Hepatology, Internal Medicine, Saitama Medical University, Saitama, Japan. ⁸Department of Gastroenterology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan. 9Division of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan. ¹⁰Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan. ¹¹Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan. ¹²Department of Clinical Molecular Informative Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan. 13 Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan. ¹⁴National Hospital Organization Osaka National Hospital, Osaka, Japan. ¹⁵Division of Hepatology and Pancreatology, Kawasaki Medical College, Kurashiki, Japan. ¹⁶Second department of Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan. ¹⁷Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime, Japan. ¹⁸Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Fukuoka, Japan. ¹⁹Department of International Medicine, Yonsei University College of Medicine, Seoul, Korea. ²⁰Department of Medicine, the University of Hong Kong, Queen Mary Hospital, Hong Kong, China. #### **Author contributions** Study design and discussion: H.S., N.N., Y.T., Ko.M., M.M., K.T.; sample collection: Y.T., Ko.M., Y.N., S.H.A., K.H.H., J.Y.P., M.F.Y., S.H., J.H.K., K.A., S.M., M.W., M.Ku., Y.A., N. I., M.H., S.K., E.T., Ke.M., Y.I., E.M., M.Ko., K.H., Y.Mu., Y.H., T.I., K.I., M.S., M.M.; genotyping: H.S., Y.M., M.Y., H.M.; statistical analysis: H.S.; manuscript writing: H.S., N.N., Y.T., M.M., K.T. All authors read and approved the final manuscript. Received: 2 March 2012 Accepted: 19 June 2012 Published: 19 June 2012 #### References - Parkin DM, Bray F, Ferlay J, Pisani P: Global cancer statistics, 2002. CA: a cancer journal for clinicians 2005, 55(2):74–108. - Parkin DM: Global cancer statistics in the year 2000. The lancet oncology 2001. 2(9):533–543. - Marrero CR, Marrero JA: Viral hepatitis and hepatocellular carcinoma. Archives of medical research 2007, 38(6):612–620. - Kamatani Y, Wattanapokayakit S, Ochi H, Kawaguchi T, Takahashi A, Hosono N, Kubo M, Tsunoda T, Kamatani N, Kumada H, et al: A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nature genetics 2009, 41(5):591–595. - Zhang H, Zhai Y, Hu Z, Wu C, Qian J, Jia W, Ma F, Huang W, Yu L, Yue W, et al: Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers. Nature genetics 2010, 42(9):755–758. - Abdulla MA, Ahmed I, Assawamakin A, Bhak J, Brahmachari SK, Calacal GC, Chaurasia A, Chen CH, Chen J, Chen YT et al: Mapping human genetic diversity in Asia. Science (New York, NY 2009, 326(5959):1541–1545. - Chan KY, Wong CM, Kwan JS, Lee JM, Cheung KW, Yuen MF, Lai CL, Poon RT, Sham PC, Ng IO: Genome-wide association study of hepatocellular carcinoma in Southern Chinese patients with chronic hepatitis B virus infection. PLoS One 2011, 6(12):e28798. - Sherman M: Hepatocellular carcinoma: epidemiology, surveillance, and diagnosis. Semin Liver Dis 2010, 30(1):3–16. - Yang HI, Yeh SH, Chen PJ, Iloeje UH, Jen CL, Su J, Wang LY, Lu SN, You SL, Chen DS, et al: Associations between hepatitis B virus genotype and mutants and the risk of hepatocellular carcinoma. J Natl Cancer Inst 2008, 100(16):1134–1143. - Qian GS, Ross RK, Yu MC, Yuan JM, Gao YT, Henderson BE, Wogan GN, Groopman JD: A follow-up study of urinary markers of aflatoxin exposure and liver cancer risk in Shanghai, People's Republic of China. Cancer Epidemiol Biomarkers Prev 1994, 3(1):3–10. - Ross RK, Yuan JM, Yu MC, Wogan GN, Qian GS, Tu JT, Groopman JD, Gao YT, Henderson BE: Urinary aflatoxin biomarkers and risk of hepatocellular carcinoma. Lancet 1992, 339(8799):943–946. - Wang LY, Hatch M, Chen CJ, Levin B, You SL, Lu SN, Wu MH, Wu WP, Wang LW, Wang Q, et al: Aflatoxin exposure and risk of hepatocellular carcinoma in Taiwan. International journal of cancer 1996, 67(5):620–625. - 13. Liu Y, Wu F: Global burden of aflatoxin-induced hepatocellular carcinoma: a risk assessment. Environmental health perspectives 2010, 118(6):818–824. - Nakamura Y: The BioBank Japan Project. Clin Adv Hematol Oncol 2007, 5 (9):696–697. - Ohnishi Y, Tanaka T, Ozaki K, Yamada R, Suzuki H, Nakamura Y: A highthroughput SNP typing system for genome-wide association studies. Journal of human genetics 2001, 46(8):471–477. #### doi:10.1186/1471-2350-13-47 Cite this article as: Sawai *et al.*: No association for Chinese HBV-related hepatocellular carcinoma susceptibility SNP in other East Asian populations. *BMC Medical Genetics* 2012 13:47. ### Multiple Intra-Familial Transmission Patterns of Hepatitis B Virus Genotype D in North-Eastern Egypt Mostafa Ragheb, ¹ Abeer Elkady, ² Yasuhito Tanaka, ²* Shuko Murakami, ² Fadia M. Attia, ³ Adel A. Hassan, ¹ Mohamed F. Hassan, ¹ Mahmoud M. Shedid, ¹ Hassan B. Abdel Reheem, ¹ Anis Khan, ² and Masashi Mizokami ⁴ ¹Department of Endemic and Infectious Disease, Suez Canal University, Ismailia, Egypt The transmission rate of intra-familial hepatitis B virus (HBV) and mode of transmission were investigated in north eastern Egypt. HBV infection was investigated serologically and confirmed by molecular evolutionary analysis in family members (N = 230) of 55 chronic hepatitis B carriers (index cases). Hepatitis B surface antigen (HBsAg) and hepatitis B core antibody (anti-HBc) prevalence was 12.2% and 23% among family members, respectively. HBsAg carriers were prevalent in the age groups; <10 (16.2%) and 21-30 years (23.3%). The prevalence of HBsAg was significantly higher in the family members of females (19.2%) than males (8.6%) index cases (P = 0.031). HBsAg and anti-HBc seropositive rates were higher significantly in the offspring of females (23%, 29.8%) than those of the males index cases (4.3%, 9.8%) (P = 0.001, 0.003), as well as higher in the offspring of an infected mother (26.5, 31.8%) than those of an infected father (4.7%, 10.5%) (P = 0.0006, 0.009). No significant difference was found in HBsAg seropositive rates between vaccinated (10.6%) and unvaccinated family members (14.8%). Phylogenetic analysis of the preS2 and S regions of HBV genome showed that the HBV isolates were of subgenotype D1 in nine index cases and 14 family members. HBV familial transmission was confirmed in five of six families with three transmission patterns; maternal, paternal, and sexual. It is concluded that multiple intra-familial transmission routes of HBV genotype D were determined; including maternal, paternal and horizontal. Universal HBV vaccination should be modified by including the first dose at birth with (HBIG) administration to the newborn of mothers infected with HBV. *J. Med. Virol.* **84:587–595, 2012.** © 2012 Wiley Periodicals, Inc. **KEY WORDS:** HBV genotype D; intra-familial transmission; vaccine #### INTRODUCTION Chronic hepatitis B virus (HBV) infection is a major health problem worldwide and is affecting approximately 350 million individuals [Lee, 1997]. Infection with HBV may lead to chronic state of
hepatitis in 5–10% of patients who acquired the infection in the adult life and in 80–90% of patients who acquired the infection in the infancy [Chen, 1993]. Infection with HBV can lead to a progressive liver disease including liver cirrhosis and hepatocellular carcinoma (HCC) with approximately 1 million HBV-associated deaths from HCC every year [Seeger and Mason, 2000; Kao and Chen, 2002]. Based on the proportion of the population who are seropositive for hepatitis B surface antigen (HBsAg), Accepted 19 December 2011 DOI 10.1002/jmv.23234 Published online in Wiley Online Library (wileyonlinelibrary.com). © 2012 WILEY PERIODICALS, INC. ²Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho, Nagoya, Japan ³Department of Clinical Pathology Faculty of Medicine, Suez Canal University, Ismailia, Egypt ⁴Research Centre for Hepatitis and Immunology, International Medical Centre of Japan Konodai Hospital, Tokyo, Japan Grant sponsor: The Grant for National Center For Global Health and Medicine; Grant number: 22A-9; Grant sponsor: Grant-in-Aid for Japan Society for the Promotion of Science (JSPS) Fellows; Grant number: 21.09355. Mostafa Ragheb and Abeer Elkady contributed equally to this study. $\label{eq:contributed}$ ^{*}Correspondence to: Yasuhito Tanaka, MD, PhD, Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho, Nagoya 467-8601, Japan. E-mail: ytanaka@med.nagoya-cu.ac.jp 588 Ragheb et al. the world is divided conceptually into zones of high, intermediate, and low HBV endemic areas [Lavanchy, 2004]. In countries where the HBV infection is endemic, most infections result from the vertical transmission from the mother to the child in the peripartum period or from the infection in the early childhood. In the low HBV endemic regions, the neonatal or the childhood HBV infection is rare or even sporadic and the transmission of HBV occurs primarily among unvaccinated adults through the sexual transmission and injecting drug use [Custer et al., 2004]. Patients with chronic hepatitis B are considered to be the major reservoirs for the transmission of HBV. High incidence of infection with HBV is observed within the household contacts of chronic HBV carriers and it is not rare to have several members of the same household who have evidence of infection with HBV [Milas et al., 2000; Thakur et al., 2002]. However, the precise mechanisms of intra-familial spread have not been established clearly. Different prophylactic strategies for controlling the HBV infection have been used by different countries depending on the prevalence of the HBV infection in each country [Poland and Jacobson, 2004]. The widespread immunization program against hepatitis B, which was implemented in more than 100 countries, was capable of dramatic reduction in the occurrence of chronic HBV infection and HCC [Zuckerman, 1997]. In Egypt, the HBV vaccine was included in 1992 in the Expanded Program of Immunization with injection at 2, 4, and 6 months of age [El Sherbini et al., 2006]. This program resulted in a significant reduction in the rate of acute symptomatic hepatitis B among the children in the age group eligible to receive the vaccine [Zakaria et al., 2007]. At least eight HBV genotypes have been identified based on the divergence of 8% or more of the entire nucleotide sequence and most of the HBV genotypes have a distinct geographical distribution [Okamoto et al., 1988; Norder et al., 1994; Stuyver et al., 2000]. Accumulated evidences indicated the difference in the virological characteristics among different HBV genotypes, which is reflected by the difference in the clinical outcome of infection with hepatitis B according to the infecting genotype [Miyakawa and Mizokami, 2003; Schaefer, 2005; Ozasa et al., 2006; Sugiyama et al., 2006]. However, data regarding the specificity of the transmission routes of each genotype is still scarce globally and need to be clarified. The prevalence of HBV ranges between 2% and 6% in Egypt with the predominance of infection with HBV genotype D [Zekri et al., 2007]. It is widely known that Egypt is one of the countries with highest prevalence rate of infection with HCV in the world [el-Zayadi et al., 1992; Arthur et al., 1993; el Gohary et al., 1995]. However, the burden of HBV related progressive liver disease including liver cirrhosis and HCC in Egypt is observable either single or in a dual infection with HCV [Abdel-Wahab et al., 2000; el-Zayadi et al., 2005]. J. Med. Virol. DOI 10.1002/jmv This study aimed to evaluate the prevalence of infection with HBV within the families of chronic HBV carriers in north Eastern Egypt. In addition, the intra-familial mode of transmission of HBV genotype D was also examined in the current cohort by the molecular evolutionary analyses. The impact of the HBV immunization programme in protecting this high-risk group was also investigated. #### PATIENTS AND METHODS #### **Patients** The present study was conducted between January 2008 and June 2008 at the Communicable Disease Research and Training Centre, in Suez city. The study protocol was approved by the ethics committees of the participating institution and an informed consent was obtained from the included subjects. Chronic HBV carriers were defined as individuals whose serum samples tested positive for HBsAg for at least 6-months period. Patients who fulfilled the criteria of chronic HBV carriers and were first detected within their families, were defined as the index cases (n=55). The index cases included 40 (72.7%) men and 15 (27.3%) women. Their mean age $(\pm SD)$ was 41 ± 10.7 years and all the index cases were negative for HBeAg. A total of 230 household contacts of the index cases were included in the study and defined as family members group. Data regarding their family relationship to the index cases, age, and the HBV vaccination history have been obtained. According to the kinship of the family members to the index case group, the family members included 139 offspring, 4 parents, 46 spouses, 15 siblings, and 26 defined as other relatives who are living in the same house with the index cases. #### Serological Methods Serum samples were collected from the index cases and family members groups. The Serum samples were examined for HBsAg, anti-HBc, anti-HBs, and HBeAg by the chemiluminescence enzyme immunoassay with the commercial assay kits (Fujirebio, Inc., Tokyo, Japan). The examination of the serum samples for anti-HCV and HIV was conducted using commercial kits (Abbott Laboratories, Abbott Park, IL). #### Molecular Evolutionary Analysis The HBV/DNA was extracted from 200 μ l of serum samples positive for HBsAg using the QIAamp DNA MiniKit (QIGEN, Inc., Hilden, Germany), and re-suspended in 100 μ l of a storage buffer (provided by the kit manufacturer). The entire preS2 and S regions of the HBV genome (799 nucleotides; nucleotide positions 34–833) were amplified using the primers set and the conditions described previously [Sugauchi et al., 2001]. The amplified products were sequenced using Prism Big Dye (Pekrin–Elmer Applied Biosystems, Foster City, CA) in the ABI 3100 DNA automated sequencer according to the manufacturer's protocol. The sequences were aligned together with the CLUSAL X software programme [Thompson et al., 1994]. The phylogenetic tree was constructed using the neighbor joining method with Tamura-Nei's distance correction model using the Online Hepatitis Virus database (http://s2as02.genes.nig.ac.jp/) [Shin et al., 2008]. The Bootstrap values were determined on 1000 database resampling tests. The sequences of other HBV isolates used for the construction of the phylogenetic tree were retrieved from the DDBJ/EMBL/GenBank sequence database and were indicated in their accession numbers. The new nucleotide sequences data that were reported in this manuscript will appear in the DDBJ/EMBL/GenBank sequence database with accession numbers AB561825-AB561856. #### Statistical Analysis Statistical analysis was performed with the Fisher's exact probability test and the independent t-test for the continuous variables using the SPSS software package (SPSS, Chicago, IL). P-values (two-tailed) <0.05 were considered to be significant statistically. #### RESULTS The family member included 96 (41.7%) males and 134 females (58.3%). Their mean age (\pm SD) was 20.6 \pm 14.6. The rate of seropositivity for HBsAg and anti-HBc was 12.2% (28/230) and 23% (53/230) of the family members group with no statistical significant difference between the males and females members. # Age Group Distribution of HBV Infection Within the Family Members Group Figure 1 illustrates the HBsAg and anti-HBc prevalences among different age groups of the family members. The highest prevalence of HBsAg seropositive cases was observed in the age group, 21-30 years old; (10/43; 23.3%) followed by the age group, 0–10 years old; (11/68; 16.2%). No statistical significant difference was found in the HBsAg seropositive rates between these two age groups. The prevalence of HBsAg was 7.7% (5/65), 3.4% (1/29), and 4% (1/25) in the age groups; 11-20, 31-40, and ≥ 41 years old, respectively. The prevalence of anti-HBc seropositive cases was significantly increasing with the age and the highest rate was observed in the age group ≥ 41 years old. The prevalence of anti-HBc was 8.8% (6/68), 20% (13/65), 25.6% (11/43), 37.9% (11/29), and 48% (12/25) in the age groups; 0-10, 11-20, 21-30, 31-40, and ≥ 41 years old, respectively. The HBsAg and anti-HBc seropositive rates were analyzed in the family members with respect to their Fig. 1. Age distribution and HBV serological status among family members. relationship to the index cases (Fig. 2A). As overall, the HBsAg was positive in 6.5% (3/46) spouse of index cases, 10.8% (15/139) of the offspring, 25% (1/4) of the parents, and 40% (6/15) of the siblings
(Fig. 2A). The prevalence of anti-HBc was 34.8% (16/46) in the spouse of index cases, 17.3% (24/139) in the offspring, 50% (2/4) in the parents, and 46.7% (7/15) in the siblings of the index cases (Fig. 2A). Interestingly, the prevalence of HBsAg and anti-HBc was significantly higher in the family members of the females (19.2%, 15/78) than that of the males index cases (8.6%, 13/152; P=0.034) and a trend of higher incidence of anti-HBc in the family members of the females than the males index cases (Fig. 2B). Among the offspring group, HBsAg and anti-HBc seropositive rates were significantly higher in the offspring of the females index cases (HBsAg; 23%, 11/47, anti-HBc; 29.8%, 14/47) cases than in the offspring of the males index cases (HBsAg; 4.3%, 4/92, anti-HBc; 9.8%, 9/92), (P=0.001, 0.003 respectively; Fig. 2C). Further analysis was performed regarding the HBsAg seropositive rate in the offspring according to HBV infection of both one and two parents and the parent gender who is infected with HBV. Significantly higher rate of HBsAg positive (26.5%, 13/49) and anti-HBc positive (31.8%, 14/49) off spring were found in families where the mother was positive for HBsAg compared with families where the father was HBsAg positive (HBsAg; 4.7%, anti-HBc; 10.5%), (P = 0.0006, 0.009 respectively) (data not shown). The seropositive rate of HBsAg was higher in the non-sexual contacts (13.6%, 25/184) of the index cases (parents, offspring, siblings, and cousins) than the sexual contacts (spouses; 6.5%, 3/46) with no statistical significant difference. Anti-HBc seropositive cases were observed more frequently in the sexual contacts (spouses) than in the non-sexual contacts (parents, offspring, siblings cousins) of the index cases. (Sexual vs. non-sexual contacts, 34.8% vs. 20.1%, P=0.049) (data not shown). J. Med. Virol. DOI 10.1002/jmv Fig. 2. Prevalence of HBsAg and anti-HBc within family members stratified by relationship to the index cases (A). HBV serological status of family members according to gender of the index case (B), and HBV serological status of the offspring according to HBV infected parent (C). #### Molecular Evolutionary Analysis and Transmission Pattern of Hepatitis B in the Family Members Group Eighteen index cases out of 55 (32.7%) were found to have at least one family member positive for HBsAg. The age range of these index cases was 26–56 years and 50% (9/18) of them were male (Table I). Twenty-eight family members were found to be positive for HBsAg. The data regarding the degree of relativity of each family member infected with HBV to the index case, the age of the infected family member, and the vaccination status were indicated in Table I. The mean age (\pm SD) of the family members with active HBV infection was 17.8 ± 13.0 years old (Table I). The HBV genomic region of 799-nt length and spanning PreS2 and S region was amplified in 44% (8/18) of the index cases and in 50% (14/28) of the family members infected with HBV. However, the target genomic region could be amplified and sequenced simultaneously in the index cases and their related family members in six subjects. These six subjects are defined in the present report, Table I and Figure 3 as F 3, F4, F19, F35, F37, and F 43 (Table I, Fig. 3). To confirm the family clustering, a phylogentic tree was constructed by (1) the previous mentioned sequences (2) sequences isolated from the index cases whose family members were negative for HBsAg (3) HBV nucleotide sequences isolated from HBV chronic carriers residing in different districts in Egypt (North and South) either retrieved from the data base band or further included in the present study. The phylogenetic analysis of the preS2 and S regions of the HBV genome revealed that the HBV isolates were of subgenotype D1 (Fig. 3). Using the phylogenetic analysis, in family 4 (F4), a high homology was detected between the HBV strains isolated from the grandmother together with her daughters and her grandchildren (Fig. 3). In the Family 35 and Family 43 (F35, and F43), the father and the child harbored very closely related HBV isolates and the phylogenetic analysis suggesting that the father may have been the source of infection for his child in Family 35 (F35) and Family 43 (F43). Similarly, very closely related HBV isolates were also detected in the $J.\ Med.\ Virol.\ DOI\ 10.1002/jmv$ TABLE I. Descriptive Analysis of the Family Members Positive for the HbsAg | Subject | Relation
(gender) | Age | HBV-
vaccine ^a | PreS2 + S | |------------------------------|----------------------|-----------------------|------------------------------|------------------| | F3 | Index (F) | 42 | | (+) | | F3-1b | Daughter | 13 | Yes | (+) | | F10 | Index (F) | 30 | | (-) | | F10-1 | Daughter | 3 | Yes | (+) | | F11 | Index (F) | 33 | | (+) | | F11-1 | Daughter | 8 | Yes | (-) | | F11-2 | Cousin | 10 | Yes | (-) | | F30 | Index (F) | 42 | = 1- | (-) | | F30-1 | Son | 8 | Yes | (<u> </u> | | F34 | Index (F) | 30 | | (-) | | F34-1 | Son | 7 | Yes | (+) | | F34-2 | Son | 9 | Yes | (+) | | F48 | Index (F) | 30 | | (-) | | F48-1 | Son | 5 | Yes | (-) | | F35 | Index (M) | 29 | 200 | (+) | | F35-1 ^b | Daughter | 5 | Yes | (+) | | F39 | Index (M) | 33 | | (-) | | F39-1 | Daughter | 5 | Yes | (<u>–</u>) | | F43 | Index (M) | $\overset{\circ}{47}$ | 100 | (+) | | F43-1 ^b | Daughter | $\frac{11}{12}$ | Yes | (+) | | F55 | Index (M) | 56 | 105 | (+) | | F55-1 | Daughter | $\frac{33}{12}$ | Yes | (-) | | F37 | Index (M) | 45 | 100 | (+) | | $F37-1^{b}$ | Wife | 26 | Yes | (+) | | F36 | Index (M) | 31 | 105 | (-) | | F36-1 | Brother | 26 | No | (<u> </u> | | F36-2 | Brother | $\frac{28}{28}$ | No | (<u>–</u>) | | F36-3 | Brother | $\frac{20}{22}$ | No | (+) | | F36-4 | Mother | 63 | No | (+) | | F4 | Index (F) | 54 | 110 | (+) | | F4-1 | Daughter | 35 | No | (+) | | F4-2 | Daughter | 20 | No | (+) | | F4-3 | Grandchild | 6 | Yes | (+) | | $\mathrm{F4-4}^{\mathrm{b}}$ | Grandchild | 4 | Yes | (+) | | F19 | Index (M) | 29 | 105 | (+) | | F19-1 ^b | Wife | $\frac{23}{27}$ | No | (+) | | F40 | Index (M) | 26 | 140 | (-) | | F40-1 | Relative | $\frac{26}{24}$ | No | (–) | | F40-2 | Relative | $\frac{24}{29}$ | No | (-) | | F41 | Index (F) | 53 | 110 | (-) | | F41-1 | Daughter | 23 | No | (-) | | F41-2 | Daughter | $\frac{23}{17}$ | No | (-) | | F45 | Index (M) | 33 | 110 | (+) | | F45
F45-1 | Wife | $\frac{33}{27}$ | No | (+) | | F50 | Index(F) | $\frac{27}{27}$ | 110 | (-) | | F50-1 | Sister | $\frac{27}{25}$ | No | (-) | | T-00-T | DISIGI | 20 | 110 | () | ^aHBV vaccination history is provided for the family member. ^bIndex and family members who are positive simultaneously for the PreS2and S region. man and his wife in Families 19 and 37 (F19 and F37) (Fig. 3). The molecular evolutionary analysis of the sequences isolated from the mother and her daughter in Family 3 (F3), yielded two separate but distinct groupings of the HBV isolates, suggesting that the presence of two different HBV viral isolates infecting the mother and her daughter (Fig. 3). #### Serological Markers of HBV Infection in the Vaccinated and Unvaccinated Family Members The family members group was subdivided into two subgroups according to the history of full regimen schedule of HBV vaccination as shown in Table II; (1) A group of vaccinated family members which includes a total of 142 subjects, who received the complete HBV vaccine regimen. (2) A group of unvaccinated family members, which included 88 subjects with no previous history or incomplete regimen of HBV vaccination. The family members in the unvaccinated group were significantly older (mean \pm SD; 32.5 ± 12.5 years old) than in the vaccinated group (mean \pm SD; 13.3 ± 10.4 , P=0.012). No statistical significant difference was found in the male gender distribution between the two groups. The anti-HBs seropositive rate was significantly higher in the vaccinated group than the unvaccinated group [69.8% (99/142) vs. 33% (29/88), respectively, P<0.0001] (Table II). The mean anti-HBs titre was significantly higher in the vaccinated than unvaccinated family members (70.1 \pm 129.7 vs. 21.6 \pm 51.7 mIU/ml, respectively P<0.0001). The prevalence of anti-HBc was significantly higher in the unvaccinated family members compared to vaccinated groups (37.5% vs. 14.1% respectively, P < 0.0001). Interestingly, no statistical significant difference was detected between the vaccinated and the unvaccinated groups regarding the prevalence of HBsAg [vaccinated vs. unvaccinated; 10.6% (15/142) vs. 14.8% (13/88), P = 0.4] (Table II). The HBV DNA was detected in 50% of family members positive for HBsAg with no statistical significant difference between the vaccinated (53%, 8/142) and unvaccinated groups (46.2%, 6/88) (Table II). Mutations in the "a" determinant region. The available nucleotide sequences spanning the S gene of HBV isolated from the nine vaccinated and five unvaccinated members were translated into amino acid and aligned in correspondence to the reference sequences. The amino acid substitutions in the "a" determinant region that was reported to be associated with vaccine escape mutation were not detected. However, an amino acid substitution at the second loop of "a" determinant region (T143L) was clustered in the family subject F37 (F37 and F37-1) and found in one unvaccinated family member (F4-1). Another substitution was detected in the second loop of "a" determinant region (T140I) in an unvaccinated member (F36-1). P127A substitution in first loop of the "a" determinant region was clustered in the family 43(F43 and F43-1; Fig. 4). #### DISCUSSION The investigation of the intra-familial transmission in a particular region usually reveals valuable information about the routes of HBV spread in general and may help in exploring the HBV spread problem and local peculiarities. This study is the first one in Egypt done to
explore the intra-familial spread of HBV infection and inclusively HBV genotype D transmission routes in Egypt. An evaluation of the impact of the universal HBV vaccination on the intra-familial transmission of HBV was also done. J. Med. Virol. DOI 10.1002/jmv Ragheb et al. Fig. 3. Phylogenetic tree constructed by the nucleotide sequences of the partial PreS2 and S HBV genomic region. The phylogenetic tree is constructed by the neighbor joining method and significant bootstrap values (>75%) are indicated in the tree roots. HBV sequences isolated from index cases and family members are indicated in italic bold and bold fonts respectively. Reference sequences retrieved from the GenBank/EMBL/DDBJ are indicted in their accession numbers. Solid black rounds indicate sequences from index cases with family members negative for HBsAg. (**) Strains isolated from chronic hepatitis B carriers residing in Egypt south. The country origin of the reference sequences are indicated in brackets. HBV genotypes A–H are indicated in the cluster roots. #### $J.\ Med.\ Virol.\ DOI\ 10.1002/jmv$