Table 2. Baseline characteristics of patients. | Features | Total (n=234) | |--|--| | Demographic data | | | Age (years) | 37 (12–74) | | Men (%) | 161 (69) | | Biolochemical markers | | | Albumin (g/dl) | 4.1 (2.5–5.0) | | Platelets (×10³/mm³) | 179 (43–338) | | ALT (IU/I) | 141 (13–2644) | | AFP (ng/ml) | 7 (0–1863) | | IP-10 (ng/ml) | 214 (66–3253) | | Virological markers | | | HBV genotypes: A/B/C (%) | 1/2/231 (0/1/99) | | HBsAg (IU/ml) | 8039 (2–261647) | | HBeAg (PEIU/ml) | 245.3 (0.01–3179.7) | | HBV DNA (log copies/ml) | 7.7 (3.6–8.9) | | HBcrAg (log U/ml) | 7.8 (5.4–9.2) | | PC mutations: wild/mix/
mutant (%) | 132/100/2 (56/43/1) | | CP mutations: wild/mix/
mutant/others (%) | 55/50/126/3 (24/21/54/1) | | Pathological features | en e | | Fibrosis stages: 0/1/2/3/4 (%) | 15/73/54/38/54 (7/31/23/16/ 23 | | Lymphocytic aggregation: 0/1/2/3/4 (%) | 6/65/107/45/11 (2/28/46/19/5) | | Piecemeal necrosis: 0/1/2/3/4 (%) | 59/52/57/58/8 (25/22/24/25/4) | | Lobular inflammation: 0/1/2/3/4 (%) | 4/91/104/32/3 (2/39/44/14/1) | | Antiviral treatments | | | Within 1 year of biopsy (%) | 91 (39) | | Antiviral agents:
1/2/3/4* (%) | 44/33/13/1 (49/36/14/1) | | Duration of follow up (months) | 86.5 (12.0–213.0) | Qualitative variables are expressed in the number with percentage in parentheses, and quantitative variables are expressed in the median with range in parentheses. ALT — alanine aminotransferase; AFP — alpha-fetoprotein; IP-10 — the interferon-gamma inducible protein-10; HBV — hepatitis B virus; HBsAg — hepatitis B surface antigen; HBeAg — hepatitis B e antigen; HBcrAg — hepatitis B virus core-related antigen; PC — precore; CP — core promoter. * 1, Interferon alpha; 2, Iamivudine; 3, Iamivudine plus interferon-alpha; 4, entecavir. piecemeal necrosis in the liver, as well as treatments within 1 year after the entry and type of antiviral agents, were not associated with early HBeAg seroconversion (Table 3). ### Evaluation of HBV markers for predicting early HBeAg seroconversion HBV markers were compared for sensitivity and specificity in predicting early HBeAg seroconversion by the receiver operating characteristic analysis (Figure 1). HBeAg at the time of liver biopsy was the best predictor of early HBeAg seroconversion, with the widest area under the curve of 0.750; it was larger than those of HBcrAg (0.708), HBV DNA (0.650) and HBsAg (0.630). Hence, HBeAg was selected as the best HBV marker predictive of early seroconversion. Based on the receiver operating characteristic curve, HBeAg titers were dichotomized by 100 PEIU/ml in the immunoassay. #### Independent predictors for early HBeAg seroconversion A multivariate logistic regression analysis was performed to select independent predictors of early HBeAg seroconversion from among variables significant in the univariate analysis (Table 4). Of all factors, including histological characteristics, HBeAg <100 PEIU/ml and grades >2 lobular inflammation remained as independent factors predictive of early HBeAg seroconversion (Table 4A). Of factors exclusive of histological parameters, HBeAg <100 PEIU/ml and ALT >200 IU/ml remained as independent factors for early HBeAg seroconversion (Table 4B). # Combinations of two independent factors for predicting early HBeAg seroconversion Two combinations of independent factors were evaluated for the performance in predicting early HBeAg seroconversion. The patients who had two predictors in combination, HBeAg <100 PEIU/ml and grades >2 lobular inflammation, achieved early HBeAg seroconversion in the highest frequency at 66.0% (31/47). In a remarkable contrast, merely 6.9% (4/58) of the patients without either of these predictors achieved early HBeAg seroconversion (Figure 2A). Likewise, early seroconversion was achieved by 18 of the 30 (60.0%) patients with the other combination of independent factors, exclusive of pathological parameters, HBeAg <100 PEIU/ml and ALT >200 IU/l. By contrast, only 6 of the 99 (6.1%) patients without either of them achieved early HBeAg seroconversion (Figure 2B). Sensitivity, specificity, positive predictive value and negative predictive value of predicting early HBeAg seroconversion are: 74.5% (31/58), 90.9% (160/176), 66.0% (31/47) and 85.6% (160/187), respectively, for the combination of HBeAg <100 PEIU/ml and grades >2 lobular inflammation; and 31.0% (18/58), 93.2% (164/176), 60.0% (18/30) and 80.4% (164/204), respectively, for the combination of HBeAg <100 PEIU/ml and ALT >200 IU/l. #### Long-term clinical outcomes Besides the 58 patients with early HBeAg seroconversion, an additional 97 patients achieved HBeAg seroconversion during a median follow-up period of 86.5 months. Cumulative **Table 3.** Univariate analysis of risk factors for early HBeAg seroconversion. | | | Early HBeAg seroconversion | | | | | |---|--------|----------------------------------|------------------------------------|---------|--|--| | Variables | | Achieved | Not achieved | p value | | | | | | (n=58) | (n=176) | | | | | Demographic data | | | | | | | | Age (years) | | 36 (17–69) | 37 (12–74) | 0.303 | | | | Men (%) | | 41 (71) | 120 (68) | 0.721 | | | | Biolochemical markers | | | | | | | | Albumin (g/dl) | | 4.1 (2.8–4.8) | 4.1 (2.5–5.0) | 0.877 | | | | Platelets (×10³/mm³) | | 171 (43–291) | 186 (57–338) | 0.487 | | | | ALT (IU/I) | | 227 (18–2072) | 121 (13–2644) | 0.002 | | | | AFP (ng/ml) | | 12 (1–1863) | 6 (0-683) | 0.070 | | | | IP-10 (ng/ml) | | 259 (77–1743) | 204 (66–3253) | 0.029 | | | | Virological markers | | | | | | | | HBV genotypes A/B/C (%) | | 0/0/58 (0/0/100) | 1/2/173 (1/1/98) | 1 | | | | HBsAg (IU/ml) | | 5127 (8–261647) | 9033 (2–128511) | 0.003 | | | | HBeAg (PEIU/ml) | | 20.9 (0.01–1985.0) | 377.1 (0.01–3179.7) | < 0.001 | | | | HBV DNA (log copies/ml) | awa ji | 7.2 (3.7–8.7) | 7.8 (3.6–8.9) | 0.001 | | | | HBcrAg (log U/ml) | \$ | 7.2 (5.7–9.2) | 8.0 (5.4–9.1) | <0.001 | | | | PC mutations: wild/mix/mutant (%) | Fig. 1 | 26/31/1 (45/53/2) | 106/69/1 (60/39/1) | 0.075 | | | | CP mutations: wild/mix/mutant/others (%) | | 8/9/40/1 (14/15/69/2) | 47/41/86/2 (27/23/49/1) | 0.040 | | | | Pathological features | | | | | | | | Fibrosis stage: 0/1/2/3/4 (%) | | 1/12/18/14/13
(2/21/31/24/22) | 14/61/36/24/ 41
(8/35/20/14/23) | 0.033 | | | | Lymphocytic aggregation: 0/1/2/3/4 (%) | | 0/11/27/17/3
(0/19/47/29/5) | 6/54/80/28/8
(3/31/45/16/5) | 0.087 | | | | Piecemeal necrosis: 0/1/2/3/4 (%) | | 7/12/18/19/2
(12/21/31/33/3) | 52/40/39/39/6
(30/23/22/22/3) | 0.068 | | | | Lobular inflammation: 0/1/2/3/4 (%) | | 0/13/29/15/1
(0/22/50/26/2) | 4/78/75/17/2
(2/44/43/10/1) | 0.002 | | | | Antiviral treatments within 1 year after biopsy (%) | | 28 (48) | 63 (36) | 0.091 | | | | Antiviral agents: 1/2/3/4* (%) | | 18/5/5/0 (64/18/18/0) | 26/28/8/1 (41/44/13/2) | 0.051 | | | Qualitative variables are expressed by the number of patients with percentage in parentheses, and quantitative variables are expressed by the median with range in parentheses. ALT — alanine aminotransferase; AFP — alpha-fetoprotein; IP-10 — the interferon-gamma inducible protein-10; HBV – hepatitis B virus; HBsAg – hepatitis B surface antigen; HBeAg – hepatitis B e antigen; HBcrAg – hepatitis B virus core-related antigen; PC – precore; CP – core promoter. * 1, Interferon alpha; 2, Iamivudine; 3, Iamivudine plus interferon-alpha; 4, entecavir. rates of HBeAg seroconversion at 1, 3, 5, 7 and 10 years were 24.8%, 50.1%, 66.3%, 71.3% and 73.1%, respectively, during the follow-up >10 years after liver biopsies (Figure 3). Of note, HCC developed in 18 of the 234 (7.7%) patients during the follow-up. Figure 4A compares cumulative HBeAg seroconversion rates stratified by HBeAg titers and grades of lobular inflammation. The patients, who had the combination of HBeAg <100 PEIU/ml and lobular inflammation grades ≥2, gained an HBeAg seroconversion rate higher than those having 3 other combinations. Likewise, cumulative HBeAg seroconversion rates stratified by HBeAg titers and ALT levels are compared in Figure 4B. HBeAg seroconversion rate of the patients, who had the combination of HBeAg <100 PEIU/ml and ALT >200 IU/l, was higher than those with 3 **Figure 1.** Receiver operating characteristic curves for evaluation of the power of predicting early HBeAg seroconversion. other combinations, with definitive (p=0.003 and p<0.001) or marginal (p=0.061) significance. #### **DISCUSSION** HBeAg seroconversion is important as a clinical target in the management of chronic hepatitis B. In the absence of therapeutic interventions, HBeAg seroconversion occurs spontaneously at a rate of 0.8–15% per year [28]. To date, many factors have been found in association with HBeAg seroconversion, including older age, high ALT levels, genotype B (compared with C), the Knodell's index of histologic activities, the amount of HBV core antigen in the liver, high serum AFP levels, increased immunoglobulin-M anti-HBc titers, increased serum β_2 -microglobulin concentrations, enhanced expression of HLA-antigens on the membrane of hepatocytes, non-vertical transmission modes, low HBV DNA levels, and high serum levels of IL-10 as well as IL-12 [7–19]. It would be clinically useful to predict early HBeAg seroconversion, because antiviral treatments can be withheld in the patients in whom HBeAg disappears and anti-HBe develops within a certain time limit, perhaps 1 year. In the present study, the majority of patients (99% of the 234 examined) were infected with HBV of genotype C. Patients with persistent HBV infection in Japan are infected with HBV of either genotype B or C, with an increasing gradient of C toward the south [29,30]. All **Table 4.** Multivariate analysis for the risk of early HBeAg seroconversion. | | Odds ratio | 95% confidence interval | p value | |------------------------
------------------------|--|--| | (A) All factors includ | ling histological cha | aracteristics | | | | 8.430 | 4.173–17.032 | <0.001 | | erania (d. A.)
eran | 4.330 | 2.009–9.331 | <0.001 | | (B) Factors exclusive | e of histological cha | racteristics | | | | 7.327 | 3.703-14.497 | <0.001 | | | 3.093 | 1.562–6.127 | 0.001 | | | (A) All factors includ | 8.430 4.330 (B) Factors exclusive of histological characteristics and the second secon | (A) All factors including histological characteristics 8.430 4.173–17.032 4.330 2.009–9.331 (B) Factors exclusive of histological characteristics 7.327 3.703–14.497 | HBeAq — hepatitis B e antigen; ALT — alanine aminotransferase. **Figure 2.** Probability of early HBeAg seroconversion. (**A**) The rate of early HBeAg seroconversion assessed by HBeAg titers and grades of lobular inflammation. (**B**) The rate of early HBeAg seroconversion assessed by HBeAg titers and ALT levels. CR703 Figure 3. Cumulative rates of HBeAg seroconversion in the 234 patients during 10 years. Cumulative rates of HBeAg seroconversion at 1, 3, 5, 7 and 10 years were 24.8%, 50.1%, 66.3%, 71.3% and 73.1%, respectively, during the follow-up. the 234 patients had received liver biopsies before they were started to be followed for HBeAg seroconversion. The present study is unique in that, not only serological variables, but also histological parameters were evaluated for the association with early HBeAg seroconversion within 1 year. By univariate analysis, many factors that have been reported in association with HBeAg seroconversion predicted early HBeAg seroconversion. Among them, only HBeAg (<100 PEIU/ml) and lobular inflammation (grades >2) remained as independent factors for early HBeAg seroconversion by multivariate analysis. Previous clinical studies have indicated that serial monitoring of HBsAg, HBeAg and HBV DNA levels during antiviral treatments is useful for predicting HBeAg seroconversion [20-23]. Although the determination of HBV DNA in sera remains as an important tool for monitoring outcomes of patients with chronic hepatitis B, it is technically challenging, costly, and subject to inconsistency. Hence, three serological markers of HBV replication, HBsAg, HBeAg and HBcrAg, were quantitated for evaluating the performance in predicting early HBeAg seroconversion, in comparison with HBV DNA levels. In the receiver operating characteristic analysis, HBeAg levels performed the best amongst these four replication markers, with an area under curve wider than those of the other three. Since the quantitation of HBeAg is relatively easy, fast, and inexpensive, HBeAg would be qualified as a sensitive and practical predictor of early HBeAg seroconversion [20-23]. The histological activity has been reported to predict early HBeAg seroconversion in previous studies [14,31]. Therefore, pathological parameters including the stage of fibrosis, as well as grades of portal inflammation, piecemeal necrosis and lobular inflammation, were evaluated in this study. By multivariate analysis, lobular inflammation of grades >2, represented by focal necrosis or acidophil bodies, was identified as an independent factor for early seroconversion. Hence, portal inflammation without necrosis would not be enough, but instead, severe lobular inflammation may be required for predicting early seroconversion. Many previous studies have identified a variety of factors associated with HBeAg seroconversion [7-19], but a combination of serum markers of HBV with pathological parameters was evaluated rarely. Therefore, the combination of HBeAg <100 PEIU/ml and grades >2 lobular inflammation was evaluated for the predictability of early HBeAg seroconversion. Patients with neither HBeAg <100 PEIU/ml nor grades >2 lobular inflammation had a minimal chance for early HBeAg seroconversion (6.9% [4/58]), whereas a high proportion of patients with both of these predictors did accomplish early seroconversion (66.0% [31/47]) (Figure 2A). Thus, the combination of histologic activity and serum HBV marker would be very useful for predicting early HBeAg seroconversion, and serve in decision making whether or not Figure 4. Cumulative rates of HBeAg seroconversion in four groups of patients. (A) Cumulative rates of HBeAg seroconversion stratified by HBeAg titers and grades of lobular inflammation. (B) Cumulative rates of HBeAg seroconversion stratified by HBeAg titers and ALT levels. HBeAg titers were dichotomized into low (<100 PEIU/ml) or high (\geq 100 PEIU/ml); lobular inflammation grades into low (<2) or high (\geq 2); and ALT levels into low (<200 IU/I) or high ($\geq 200 \text{ IU/I}$). CR to commence antiviral treatments in HBeAg-positive patients with chronic hepatitis B. Although some patients received antiviral treatments, they would not have influenced the evaluation to any serious extent. Within the first 1 year of follow-up, antiviral treatments were given comparably frequently to patients with and without early HBeAg seroconversion (48% vs. 36%, p=0.091). In addition, HBeAg seroconversion is achieved by at most 12–27% of patients who had received antiviral treatments during the first year [28]. Although liver biopsy is essential for defining the stage of disease progression, it has some limitations, in that it is invasive and accompanies the risk of complications. By multivariate analysis, exclusive of pathological factors, ALT >200 IU/l remained as an independent factor (Table 4). ALT >200 (IU/l), corresponding to 5 × the upper limit of normal [ULN], coincided with the cut-off point recognized by the receiver operating characteristic curve (data not shown). In previous studies, also, ALT levels >5 × ULN were predictive of early HBeAg seroconversion [19,32–33]. Present results are in line with these observations, and point to the capability of ALT >200 IU/l to replace lobular inflammation of grades >2 in the patients in whom liver biopsy is not feasible. #### **CONCLUSIONS** The results of this study indicate that the combination of low HBeAg titers and high grades of lobular inflammation is clinically useful for predicting early HBeAg seroconversion in patients with chronic hepatitis B. When and if liver biopsy is not to be performed, ALT can substitute for lobular inflammation. The combination of low HBeAg titers, with either high grades of lobular inflammation or elevated ALT levels, predicted not only early, but also long-term HBeAg seroconversion. #### Acknowledgments The authors are grateful to Rumiko Hamada, Mika Fukuda, Yoko Tamada, Rumiko Nakao, and Dr. Osami Inoue for valuable supports, and thank Dr. Koji Yano for his suggestions and encouragement in the preparation of this manuscript. #### REFERENCES: - 1. EASL Clinical Practice Guidelines: management of chronic hepatitis B. J Hepatol, 2009; 50: 227–42 - 2. Lee WM: Hepatitis B virus infection. N Engl J Med, 1997; 337: 1733–45 - 3. Yuen MF, Lai CL: Natural history of chronic hepatitis B virus infection. J Gastroenterol Hepatol, 2000; 15(Suppl.): E20–24 - Fattovich G, Rugge M, Brollo L et al: Clinical, virologic and histologic outcome following seroconversion from HBeAg to anti-HBe in chronic hepatitis type B. Hepatology, 1986; 6: 167–72 - 5. Hoofnagle JH, Dusheiko GM, Seeff LB et al: Seroconversion from hepatitis B e antigen to antibody in chronic type B hepatitis. Ann Intern Med, 1981; 94: 744–48 - Realdi G, Alberti A, Rugge M et al: Seroconversion from hepatitis B e antigen to anti-HBe in chronic hepatitis B virus infection. Gastroenterology, 1980; 79: 195–99 - Chu CM, Karayiannis P, Fowler MJ et al: Natural history of chronic hepatitis B virus infection in Taiwan: studies of hepatitis B virus DNA in serum. Hepatology, 1985; 5: 431–34 - 8. Kao JH, Chen PJ, Lai MY, Chen DS: Hepatitis B
virus genotypes and spontaneous hepatitis B e antigen seroconversion in Taiwanese hepatitis B carriers. J Med Virol, 2004; 72: 363–69 - Kim HS, Kim HJ, Shin WG et al: Predictive factors for early HBeAg seroconversion in acute exacerbation of patients with HBeAg-positive chronic hepatitis B. Gastroenterology, 2009; 136: 505–12 - Liaw YF, Chu CM, Huang MJ et al: Determinants for hepatitis B e antigen clearance in chronic type B hepatitis. Liver, 1984; 4: 301–6 - 11. Livingston SE, Simonetti JP, Bulkow LR et al: Clearance of hepatitis B e antigen in patients with chronic hepatitis B and genotypes A, B, C, D, and F. Gastroenterology, 2007; 133: 1452–57 - 12. Lok AS, Lai CL, Wu PC et al: Spontaneous hepatitis B e antigen to antibody seroconversion and reversion in Chinese patients with chronic hepatitis B virus infection. Gastroenterology, 1987; 92: 1839–43 - 13. Pignatelli M, Waters J, Brown D et al: HLA class I antigens on the hepatocyte membrane during recovery from acute hepatitis B virus infection and during interferon therapy in chronic hepatitis B virus infection. Hepatology, 1986; 6: 349–53 - Sanchez-Tapias JM, Costa J, Mas A et al: Analysis of factors predicting early seroconversion to anti-HBe in HBeAg-positive chronic hepatitis B. J Hepatol, 1988; 6: 15–22 - Sjogren M, Hoofnagle JH: Immunoglobulin M antibody to hepatitis B core antigen in patients with chronic type B hepatitis. Gastroenterology, 1985; 89: 252–58 - 16. Wu JF, Wu TC, Chen CH et al: Serum levels of interleukin-10 and interleukin-12 predict early, spontaneous hepatitis B virus e antigen seroconversion. Gastroenterology, 2010; 138: 165–72 e161–63 - 17. Yuen MF, Fung SK, Tanaka Y et al: Longitudinal study of hepatitis activity and viral replication before and after HBeAg seroconversion in chronic hepatitis B patients infected with genotypes B and C. J Clin Microbiol, 2004; 42: 5036–40 - Yuen MF, Sablon E, Yuan HJ et al: Significance of hepatitis B genotype in acute exacerbation, HBeAg seroconversion, cirrhosis-related complications, and hepatocellular carcinoma. Hepatology, 2003; 37: 562–67 - Yuen MF, Yuan HJ, Hui CK et al: A large population study of spontaneous HBeAg seroconversion and acute exacerbation of chronic hepatitis B infection: implications for antiviral therapy. Gut, 2003; 52: 416–19 - Fried MW, Piratvisuth T, Lau GK et al: HBeAg and hepatitis B virus DNA as outcome predictors during therapy with peginterferon alfa-2a for HBeAg-positive chronic hepatitis B. Hepatology, 2008; 47: 428–34 - Jang JW, Kim MS, Lee SY et al: Pre- and post-treatment predictors of the early achievement of HBeAg loss in lamivudine-resistant patients receiving adefovir therapy. J Gastroenterol Hepatol, 2007; 22: 1092–97 - Park NH, Shin JW, Park JH et al: Monitoring of HBeAg levels may help to predict the outcomes of lamivudine therapy for HBeAg positive chronic hepatitis B. J Viral Hepat, 2005; 12: 216–21 - 23. Tangkijvanich P, Komolmit P, Mahachai V et al: Comparison between quantitative hepatitis B surface antigen, hepatitis B e-antigen and hepatitis B virus DNA levels for predicting virological response to pegylated interferon-alpha-2b therapy in hepatitis B e-antigen-positive chronic hepatitis B. Hepatol Res, 2010; 40: 269–77 - 24. Kato H, Orito E, Sugauchi F et al: Frequent coinfection with hepatitis B virus strains of distinct genotypes detected by hybridization with typespecific probes immobilized on a solid-phase support. J Virol Methods, 2003; 110: 29–35 - Asahina Y, Izumi N, Uchihara M et al: Core promoter/pre-core mutations are associated with lamivudine-induced HBeAg loss in chronic hepatitis B with genotype C. J Hepatol, 2003; 39: 1063–69 - 26. Desmet VJ, Gerber M, Hoofnagle JH et al: Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology, 1994; 19: 1513–20 - 27. Scheuer PJ: Classification of chronic viral hepatitis: a need for reassessment. J Hepatol, $1991;\,13:\,372-74$ - Liaw YF, Lau GK, Kao JH, Gane E: Hepatitis B e antigen seroconversion: a critical event in chronic hepatitis B virus infection. Dig Dis Sci, 2010; 55: 2727–34 - Orito E, Ichida T, Sakugawa H et al: Geographic distribution of hepatitis B virus (HBV) genotype in patients with chronic HBV infection in Japan. Hepatology, 2001; 34: 590–94 - 30. Yamishita Y, Kurashina S, Miyakawa Y, Mayumi M: South-to-north gradient in distribution of the r determinant of hepatitis B surface antigen in Japan. J Infect Dis, 1975; 131: 567–69 - 31. Perrillo RP, Lai CL, Liaw YF et al: Predictors of HBeAg loss after lamivudine treatment for chronic hepatitis B. Hepatology, 2002; 36: 186–94 - 32. Liaw YF: Hepatitis flares and hepatitis B e antigen seroconversion: implication in anti-hepatitis B virus therapy. J Gastroenterol Hepatol, 2003; 18: 246–52 - 33. Lok AS, Lai CL: Acute exacerbations in Chinese patients with chronic hepatitis B virus (HBV) infection. Incidence, predisposing factors and etiology. J Hepatol, 1990; 10: 29–34 #### GENETIC POLYMORPHISM-DISFASE ASSOCIATION # HLA-DP gene polymorphisms and hepatitis B infection in the Japanese population KIYOSHI MIGITA, SEIGO ABIRU, MASASHI OHTANI, YUKA JIUCHI, YUMI MAEDA, SUNG KWAN BAE, SHIGEMUNE BEKKI, SATORU HASHIMOTO, KAKHARMAN YESMEMBETOV, SHINYA NAGAOKA, MINORU NAKAMURA, ATSUMASA KOMORI, TATSUKI ICHIKAWA, KAZUHIKO NAKAO, HIROSHI YATSUHASHI, HIROMI ISHIBASHI, and MICHIO YASUNAMI OMURA AND NAGASAKI, JAPAN he mechanisms underlying the different outcomes of hepatitis B virus (HBV) infection are not fully understood. Kamatani et al² identified an association of the single nucleotide polymorphisms (SNPs) human leukocyte antigen (HLA)-DPA1 (rs3077) and HLA-DPB1 (rs9277535) with chronic HBV infection in a genome-wide association study (GWAS). Additional studies confirmed that rs3077 and rs9277535 were associated with chronic HBV infection in the Han-Chinese population and strengthened the findings from previous GWAS. Furthermore, Hu et al² reported that SNPs in HLA-DP (rs3077 and rs9277535) were associated with both HBV clearance and hepatocellular carcinoma (HCC) development. To investigate the association of these HLA-DP variants with the disease progression of HBV infection, we genotyped the 2 SNPs (rs3077 and rs9277535) in different clinical stages of liver disease in Japanese HBV carriers. #### **CLINICAL SUMMARY** A total of 241 HBV carriers (positive for hepatitis B surface antigen) who visited the clinics for liver diseases at the Nagasaki University Hospital or Nagasaki Medical Center between 1999 and 2007 were enrolled. As controls, 143 healthy Japanese volunteers (56 men and 87 women aged 16-63 years, with a mean age of 31.3 \pm 8.9 years) without any history of liver disease were enrolled. All patients did not have any other types of liver diseases, such as chronic hepatitis C, alcoholic liver disease, autoimmune liver disease, or metabolic liver disease. The study protocol was approved by the Ethics Committees of National Nagasaki Medical Center, and informed consent was obtained from each individual. Of the 241 HBV carriers, 69 were considered to be asymptomatic carriers on the basis of sustained normalization of the serum alanine aminotransferase (ALT) levels together with seropositivity for anti-hepatitis Be antigen throughout the study. On the other hand, 172 of the 241 HBV carriers were considered to have chronic liver disease, such as chronic hepatitis (57), cirrhosis (65), or HCC (50) manifested by elevated ALT levels and by clinical or histologic findings on examination of liver tissue during the follow-up period. Of the 50 patients with HCC, 6 (12%) were found to have chronic hepatitis and 44 (88%) had cirrhosis. All patients were regularly followed with measurements of serum ALT and HBV markers, such as hepatitis B surface antigen, hepatitis Be antigen, anti-hepatitis Be antibody, and HBV-DNA. A total of 79 patients had undergone liver biopsy during the study to assess the degree of liver fibrosis. However, liver biopsy was not performed in patients who had apparent biochemical, endoscopic, and ultrasound features of liver cancer. Tumor markers such as alpha-fetoprotein and des-y-carboxy-prothrombin were measured with ultrasonography of the liver every 6 months to detect HCC in an early stage. The diagnosis of HCC was made by several imaging modalities in all patients and confirmed histologically by sonography-guided fine-needle tumor biopsy specimens. The genotype of rs3077 (HLA-DPA1) and rs9277535 (HLA- From the Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan; Department of Gastroenterology, Nagasaki University Hospital, Nagasaki, Japan; Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan. Conflict of interests: None Funding: This study was supported by a grant from the National Hospital Organization (Liver-net work study). Submitted for publication May 25, 2012; revision submitted June 8, 2012; accepted for publication June 9, 2012. *DPB1*) was determined by direct sequencing. The apolipoprotein B mRNA-editing enzyme catalytic peptide 3G (*APOBEC3G* H186R) genotyping was performed on the basis of the report by An et al.⁸ The frequencies of the 2 SNPs of *HLA-DPA1* (rs3077) and *HLA-DPB1* (rs9277535) are listed in Table I. There was a significant difference in the frequencies between these 2 SNPs between Japanese HBV carriers and healthy subjects, as described previously.³ We divided HBV carriers into 2 groups: a nonadvanced group (asymptomatic carriers or chronic hepatitis, n = 115) and an advanced group (liver cirrhosis or HCC, n = 126). The frequencies of CC (rs3077) or GG (rs9277535) genotypes were higher in the advanced group compared with those in the nonadvanced group; however, the difference was not significant (Table I). Next, we stratified the HBV carriers for the presence or absence of the *APOBEC3G* H186R variant and examined the effects of *HLA-DP* polymorphisms on the progression of HBV-related liver disease. Both C and G alleles of rs3077 and
rs9277535 significantly increased the risk for advanced liver disease in HBV carriers lacking the H186R variant (Table II). A 2-stage GWAS identified SNPs including rs3077 and rs9277535 located in *HLA-DPA1* and *HLA-DPB1*, which were associated with a susceptibility to chronic HBV infection.² After the first Japanese GWAS, 5 studies replicated the association of these 2 *HLA-DP* SNPs (rs3077 and rs9277535) and chronic HBV infection in the Han-Chinese population.³⁻⁷ Among these studies, an association between HBV-related HCC and rs9277535 or rs3077 was demonstrated.⁷ In this study, we examined whether these 2 SNPs (rs3077 and rs9277535) in *HLA-DP* genes were associated with the disease progression and susceptibility to HBV infection in a Japanese population. As demonstrated previously, we reconfirmed that rs3077 and rs9277535 in the *HLA-DPA1* and *HLA-DPB1* genes were significantly associated with HBV infection. Although some differences in the frequencies of rs3077 and rs9277535 genotypes between HBV carriers with advanced liver disease (liver cirrhosis and HCC) and those without advanced liver disease were observed, these differences were not statistically significant. Recent evidence suggests that APOBEC3G inhibits HBV production by interfering with HBV replication through hypermutation of the majority of the HBV genome. Because of the APOBEC3G gene's ability to regulate HBV replication, mutations of the gene may cause a deleterious variation that may affect the outcome of HBV infection. Among the SNPs identified in the APOBEC3G gene, H186R variant was strongly associated with a decline in CD4* T-cell numbers and accelerated progression to acquired immune deficiency syndrome—defining conditions in human immunodeficiency virus—infected individuals. 9.10 Viral disease outcome is influenced by host variability in immune response genes and genes that control viral replication or mutation rate. POBEC3G coding region variant might influence the progression of HBV infection by inducing the replication of HBV. Therefore, genetic diversity of immune response genes, such as HLA, and genes that control viral replication, such as APOBEC3G, could contribute to the variability in outcome of HBV infection. To minimize the effects Reprint requests: Kiyoshi Migita, MD, Clinical Research Center, NHO Nagasaki Medical Center, Kubara 2-1001-1, Omura 856-8652, Japan; e-mail: migita@nmc.hosp.go.jp. 1931-5244/\$ - see front matter © 2012 Mosby, Inc. All rights reserved. http://dx.doi.org/10.1016/j.trsl.2012.06.003 443 Table I. Association between HLA-DP polymorphisms (rs3077, rs9277535) and HBV infection | | HBV carrier subject | Healthy
subjects | | | Advanced
HBV carrier | Nonadvanced
HBV carrier | <i>P</i> value* | OR
(95% CI) | |------------------|---------------------|---------------------|----------|---------------------|-------------------------|----------------------------|-----------------|----------------| | SNP ID | | n = 143 (%) | P value* | OR
(95% CI) | n = 115 (%) | n = 126 (%) | | | | rs3077 | | | | | | | | | | C/C | 148 (61.4) | 47 (32.9) | | | 77 (67.0) | 71 (56.3) | | | | C/T | 79 (32.8) | 72 (50.3) | | | 33 (28.7) | 46 (36.5) | | | | T/T | 14 (5.8) | 24 (16.8) | | | 5 (4.3) | 9 (7.1) | | | | C allele (allele | 375 (77.8) | 166 (58.0) | < 0.0001 | 2.533 (1.843-3.483) | 187 (81.3) | 188 (74.6) | 0.077 | 1.480 | | frequencies) | | | | | | | | (0.957-2.290) | | rs9277535 | | | | | | | | | | G/G | 143 (59.3) | 45 (31.5) | | | 73 (63.5) | 70 (55.6) | | | | A/G | 82 (34.0) | 72 (50.3) | | | 36 (31.3) | 46 (36.5) | | | | A/A | 16 (6.6) | 26 (18.2) | | | 6 (5.2) | 10 (7.9) | | | | G allele (allele | 368 (76.3) | 162 (56.6) | < 0.0001 | 2.471 (1.804-3384) | 182 (79.1) | 186 (73.8) | 0.170 | 1.345 | | frequencies) | | | | | | | | (0.880-2.056) | Abbreviations: CI, confidence interval; HBV, hepatitis B virus; OR, odds ratio; SNP, single-nucleotide polymorphism. **Table II.** Association between *HLA-DP* polymorphisms (rs3077, rs9277535) and the outcome of HBV infection in HBV carrier without H186R variant | SNP ID | Advanced HBV carrier n = 90 (%) | Nonadvanced HBV carrier n = 108 (%) | P value* | OR (95% CI) | |-------------------------------|---------------------------------|-------------------------------------|----------|---------------------| | rs3077 | | | | | | C/C | 64 (71.1) | 60 (55.6) | | | | C/T | 22 (24.4) | 40 (37.0) | | | | T/T | 4 (4.4) | 8 (7.4) | | | | C allele (allele frequencies) | 150 (83.3) | 160 (74.1) | 0.026 | 1.750 (1.065-2.874) | | rs9277535 | | | | | | G/G | 5 (5.6) | 10 (9.3) | | | | A/G | 24 (26.7) | 39 (36.1) | | | | A/A | 61 (67.8) | 59 (54.6) | | | | G allele (allele frequencies) | 146 (81.1) | 157 (72.7) | 0.049 | 1.614 (1.000-2.604) | Abbreviations: CI, confidence interval; HBV, hepatitis B virus; OR, odds ratio; SNP, single-nucleotide polymorphism. of viral factors, such as APOBEC3G-mediated HBV editing, and evaluate the effect of *HLA-DP* more precisely, we focused on the subjects without the H186R variant. Because the *APOBEC3G* coding region variant might influence the progression of HBV infection, ¹¹ we investigated the effect of *HLA-DP* polymorphisms on the outcome of HBV infection in HBV carriers lacking the H186R variant. Our results showed that *HLA-DP* polymorphisms were associated with the progression of HBV infection and that this association was significant in Japanese HBV carriers lacking H186R variants. Our data demonstrated that *HLA-DP* polymorphisms are important in determining the susceptibility and the progression of HBV infection in the Japanese population. One limitation of our study is the lack of information of HBV genotypes in the patients studied. Another limitation is that the number of HBV carriers (n=241) is relatively small. Larger studies are needed to confirm the results of our study. #### **CONCLUSIONS** We confirmed that rs3077 and rs9277535 SNPs in the *HLA-DP* locus are associated with the susceptibility and progression of HBV infection in the Japanese population. Further functional analyses are warranted to validate the biological plausibility of these SNPs in chronic HBV infection. #### REFERENCES - Ganem D, Prince AM. Hepatitis B virus infection-natural history and clinical consequences. N Engl J Med 2004;350:1118-29. - Kamatani Y, Wattanapokayakit S, Ochi H, et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet 2009;41:591–5. - An P, Winkler C, Guan L, O'Brien SJ, Zeng Z. HBV Study Consortium. A common HLA-DPA1 variant is a major determinant of hepatitis B virus clearance in Han Chinese. J Infect Dis 2011;203:943-7. - Guo X, Zhang Y, Li J, et al. Strong influence of human leukocyte antigen (HLA)-DP gene variants on development of persistent chronic hepatitis B virus carriers in the Han Chinese population. Hepatology 2011;53:422-8. - Wang L, Wu XP, Zhang W, et al. Evaluation of genetic susceptibility loci for chronic hepatitis B in Chinese: two independent case-control studies. PLoS One 2011:6:e17608. - Li J, Yang D, He Y, et al. Associations of HLA-DP variants with hepatitis B virus infection in southern and northern Han Chinese populations: a multicenter case-control study. PLoS One 2011;6:e24221. - Hu L, Zhai X, Liu J, et al. Genetic variants in HLA-DP/DQ influence both hepatitis B virus clearance and hepatocellular carcinoma development. Hepatology 2012;55:1426–31. - An P, Bleiber G, Duggal P, et al. APOBEC3G genetic variants and their influence on the progression to AIDS. J Virol 2004;78:11070–6. - Suspène R, Guétard D, Henry M, Sommer P, Wain-Hobson S, Vartanian JP. Extensive editing of both hepatitis B virus DNA strands by APOBEC3 cytidine deaminases in vitro and in vivo. Proc Natl Acad Sci U S A 2005;102: 8321–6. - Do H, Vasilescu A, Diop G, et al. Exhaustive genotyping of the CEM15 (APOBEC3G) gene and absence of association with AIDS progression in a French cohort. J Infect Dis 2005;191:159-63. - Martin MP, Carrington M. Immunogenetics of viral infections. Curr Opin Immunol 2005;17:510–6. - Bonvin M, Greeve J, Hepatitis B. modern concepts in pathogenesis—APO-BEC3 cytidine deaminases as effectors in innate immunity against the hepatitis B virus. Curr Opin Infect Dis 2008;21:298–303. ^{*}P values were calculated using the chi-square test. ^{*}P values were culculated using the chi-square test. #### **Original Article** # Long-term outcomes of add-on adefovir dipivoxil therapy to ongoing lamivudine in patients with lamivudine-resistant chronic hepatitis B Takashi Toyama,¹ Hisashi Ishida,¹ Hiromi Ishibashi,² Hiroshi Yatsuhashi,² Makoto Nakamuta,³ Masaaki Shimada,⁴ Hajime Ohta,⁵ Takeaki Satoh,⁶ Michio Kato,⁶ Taizo Hijioka,⁶ Hirotsugu Takano,⁶ Toshiki Komeda,¹⁰ Michiyasu Yagura,¹¹ Hiroshi Mano,¹² Yukio Watanabe,¹³ Masakazu Kobayashi¹⁴ and Eiji Mita¹ ¹Department of Gastroenterology and Hepatology, NHO, Osaka National Hospital, Osaka, ²Department of the Clinical Research Center, NHO, Nagasaki Medical Center, Nagasaki, ³Department of Gastroenterology, NHO, Kyushu Medical Center, Kyushu, ⁴Department of Gastroenterology, NHO, Nagoya Medical Center, Nagoya, ⁵Department of Gastroenterology, NHO, Kanazawa Medical Center, Kanazawa, ⁴Center for Liver Disease, NHO, Kokura Medical Center, Kokura, ¹Department of Hepatology, NHO, Minamiwakayama Medical Center, Minamiwakayama, ³Department of Gastroenterology, NHO, Osaka Minami Medical Center, Osaka, ⁰Department of Gastroenterology, NHO, Kyoto Medical Center, Kyoto, ¹¹Department of Gastroenterology, NHO, Tokyo National Hospital, Tokyo, ¹²Department of Gastroenterology, NHO, Sagamihara National Hospital, Sagamihara, and ¹⁴Department of Gastroenterology, NHO, Matsumoto Medical Center, Matsumoto, Japan Aim: Add-on adefovir dipivoxil (ADV) therapy has been a standard rescue treatment for patients with lamivudine (LAM)-resistant chronic hepatitis B, but the overall benefits of long-term add-on ADV therapy are still
limited. The aim of this study was to evaluate the long-term efficiency of add-on ADV treatment and to explore predictive factors associated with it. Methods: A total of 158 patients with LAM-resistant chronic hepatitis B were included in this retrospective, multicenter, nationwide study in Japan. After confirming LAM resistance, ADV was added to LAM treatment. Three types of events were considered as outcomes: virological response, hepatitis B e antigen (HBeAg) clearance and alanine aminotransferase (ALT) normalization. Virological response was defined as serum hepatitis B virus (HBV) DNA levels of less than 3 log copies/mL. Baseline factors contributing to these outcomes were examined by univariate and multivariate analyses. Results: The median total duration of ADV treatment was 41 months (range, 6–84). The rate of virological response was 90.8% at 4 years of treatment; HBeAg clearance and ALT normalization were achieved by 34.0% and 82.7%, respectively, at the end of follow up. Each outcome had different predictive factors: baseline HBV DNA and albumin level were predictive factors for virological response, history of interferon therapy and ALT level for HBeAg clearance, and sex and baseline albumin level for ALT normalization. Conclusion: Long-term add-on ADV treatment was highly effective in LAM-resistant chronic hepatitis B patients in terms of virological and biochemical responses. Lower HBV replication and lower albumin level at baseline led to better outcomes. Key words: adefovir dipivoxil, alanine aminotransferase normalization, chronic hepatitis B, hepatitis B e antigen clearance, lamivudine resistance, virological response Correspondence: Dr Eiji Mita, Department of Gastroenterology and Hepatology, NHO, Osaka National Hospital, 2-1-14 Hoenzaka, Chuo-ku, Osaka 540-0006, Japan. Email: eijim67@onh.go.jp Received 29 January 2012; revision 11 April 2012; accepted 15 April 2012. #### INTRODUCTION CHRONIC HEPATITIS B (CHB) is an important cause of morbidity and mortality worldwide. ¹⁻³ The main goals of therapy in CHB patients are to prevent the development of liver failure, due to subsequent liver cirrhosis, and the emergence of hepatocellular carcinoma (HCC). All of these are likely be achieved by suppressing hepatitis B virus (HBV) replication, which thereby leads to remission of liver disease.4 Lamivudine (LAM) treatment has been used to prevent the progression of CHB and the development of HCC.5 LAM is an effective and well-tolerated treatment for patients with CHB, but it has the major limitation of drug-resistant mutants arising at a rate of 16-32% during the first year of treatment and increasing by 15% with each additional year of treatment.6-8 The widespread use of LAM monotherapy in CHB patients before introduction of entecavir, which is more potent, has progressively increased the numbers of patients with LAM-resistant HBV mutant strains. Adefovir dipivoxil (ADV) has been reported to be effective in suppressing HBV replication and approved as a standard therapy in LAM-resistant patients.9,10 However, data concerning the long-term efficacy of ADV treatment in LAM-resistant CHB patients are still limited. The aims of this study were to evaluate the long-term efficiency of ADV add-on treatment based on virological response (VR), hepatitis B e antigen (HBeAg) clearance and alanine aminotransferase (ALT) normalization, and to explore the predictive factors associated with ADV add-on treatment. #### **METHODS** #### **Patients** TOTAL OF 158 patients (109 males and 49 **A**females) were included in this retrospective study from 21 medical centers of the National Hospital Organization (NHO) in Japan. Both HBeAg positive and negative CHB patients were considered eligible if they had documented LAM resistance confirmed by detection of mutations in the YMDD motif of the reverse transcriptase gene of the virus (genotypic resistance), elevated serum HBV DNA levels (≥4 log copies/mL and/or >1 log copies/mL elevation from the LAM on-treatment nadir) and/or elevated serum ALT levels (>40 IU/L). Patients were excluded if they had decompensated liver cirrhosis, HCC at the initiation of ADV, or if they had co-infections (human immunodeficiency virus, hepatitis C virus) or other concomitant liver diseases such as autoimmune liver disease. Patients with no available clinical, biochemical, serological or virological data at baseline as well as every 6 months during treatment were also excluded. Patient records were extracted from each institutional database. All data were labeled with their respective institution and pooled. In total, 20 variables were examined to evaluate the long-term responses. The following variables were used as baseline factors: sex, HBeAg status, liver disease, age, body mass index, duration of LAM monotherapy, history of interferon (IFN) therapy, serum HBV DNA level, aspartate aminotransferase (AST), ALT, γ -glutamyl transpeptidase (γ -GTP), platelet (PLT) counts, and total bilirubin (T-Bil), albumin (Alb), prothrombin time (PT) and α -fetoprotein (AFP) levels. All were measured at the initiation of ADV therapy. For each variable, it was not used in the stepwise analysis if missing data accounted for more than 10% of the cases. The study conformed to the ethical guidelines of the 1975 Declaration of Helsinki. Written informed consent was obtained from all patients and approval of this study was obtained from the NHO. #### Statistical analysis Three types of events were considered as outcomes: (i) VR; (ii) HBeAg clearance; and (iii) ALT normalization. VR was defined as serum HBV DNA levels of less than 3 log copies/mL by a quantitative real-time polymerase chain reaction assay, and ALT normalization was defined as a decrease in ALT levels to less than 31 IU/L during the on-treatment follow-up period. Baseline factors that could have an impact in the prediction of VR, HBeAg clearance as well as ALT normalization were investigated. The predictive value of several baseline parameters for VR was evaluated using time-to-event methods, because of the varying length of follow up. Time-to-event analysis was carried out using Kaplan-Meier estimates to draw cumulative incidence curves, compared by log-rank tests, as well as using univariate and multivariate Cox's proportional hazards models in combination with stepwise regression analysis. Factors contributing to HBeAg clearance and ALT normalization during ADV add-on therapy were estimated using multivariate multiple logistic regression analysis in combination with stepwise regression analysis. A stepwise variable selection procedure was used for variables that were at least marginally associated with the outcomes. Covariates included in these analyses were binomial or continuous variables. Quartile analysis was initially performed separately for each continuous variable to make the decision regarding cut-off points. At first, we divided each continuous data into quarters to convert numerical values into four categorical values. Then, we estimated whether there was a regular trend among these four ordinal categorical data with outcome and selected a cut-off point among the 25th, 50th and 75th percentiles so that these variables could be appropriately Table 1 Baseline characteristics at the initiation of add-on ADV therapy in LAM-resistant CHB patients based on HBeAg status | Baseline characteristics | HBeAg positive $n = 99$ | HBeAg negative $n = 59$ | |---|-------------------------|-------------------------| | Age (years) | 51.6 (25.5–80.4) | 59.3 (33.3-76.9) | | Sex (male/female) | 73/26 | 36/23 | | Liver disease (CH/cirrhosis) | 79/20 | 38/21 | | Duration of LAM therapy (months) | 29.8 (6.0-82.4) | 39.3 (8.4-91.2) | | History of IFN therapy (months) | 39 | 15 | | HBV DNA (log copies/mL) | 7.5 (2.1-7.6) | 5.9 (2.1-7.6) | | ≤6 | 15 | 31 | | 6-7.5 | 38 | 21 | | >7.5 | 46 | 7 | | Total bilirubin (mg/dL) | 0.8 (0.3-5.2) | 0.9 (0.41-3.7) | | AST (IU/L) | 60 (18-959) | 60 (17-464) | | ALT (IU/L) | 80 (11-697) | 86 (17-724) | | γ-GTP (ÍU/L) | 38 (12–325) | 53 (10-740) | | Albumin (g/dL) | 4.3 (2.6-5.4) | 4.3 (2.7-5.2) | | Platelet count (×10 ⁴ /mm ³) | 15.5 (3.7-50.0) | 12.3 (1.7-33.2) | Continuous variables are expressed in median (range) and categorized variables in number. ALT, alanine aminotransferase; AST, aspartate aminotransferase; CH, chronic hepatitis; γ-GTP, γ-glutamyl transpeptidase; HBeAg, hepatitis B e antigen; HBV, hepatitis B virus; LAM, lamivudine. dichotomized. The hazards ratio (HR) and the odds ratio (OR) are presented with 95% confidence intervals (CI) and *P*-values, with less than 0.05 being considered statistically significant. All data analyses were processed using the R statistical software ver. 2.13. #### **RESULTS** IN THIS RETROSPECTIVE nationwide analysis of add-on ADV therapy in Japan, a total of 158 patients were enrolled from 2003–2010, consisting of 99 HBeAg positive and 59 HBeAg negative patients. Table 1 summarizes the baseline characteristics of the study popula- tion; most were HBV genotype C. At the time of this analysis, the median total duration of ADV treatment was 41 months (range, 6–84), and the median time of LAM monotherapy, prior to initiation of ADV, was 34 months (range, 6–91). #### **VR** Figure 1 shows a Kaplan–Meier curve displaying the cumulative probability of VR based on HBV DNA levels among HBeAg positive and negative patients. Patients with a lower HBV DNA level displayed earlier VR than those with a higher HBV DNA level among both HBeAg positive and negative patients (P < 0.001, P = 0.002, Figure 1 Cumulative rate of virological response on treatment with lamivudine plus adefovir dipivoxil depending on hepatitis B virus (HBV) DNA load in HBeAg positive and negative patients. hepatitis B e antigen (HBeAg) negativity and low HBV replication had a higher probability of virological response compared with HBeAg positivity or
higher HBV replication. —, ≤6.0; ---, 6.1–7.5; ----, ≥7.6. © 2012 The Japan Society of Hepatology Table 2 Univariate and multivariate Cox's regression analysis of predictors of virological response | Variable | | HBeA
n | HBeAg negative $n = 59$ | | | | |---|------------|-----------|-------------------------|----------|------------|---------| | | Univariate | | Mult | ivariate | Univariate | | | | HR | P-value | HR | P-value | HR | P-value | | Age (years) (<45/45≤) | 0.91 | 0.69 | | | 0.66 | 0.34 | | Sex (male/female) | 1.07 | 0.86 | | | 0.71 | 0.21 | | Liver disease (CH/cirrhosis) | 0.61 | 0.069 | | | 1 | 0.99 | | Duration of LAM therapy (months) (<34/34≤) | 0.92 | 0.76 | | | 1.72 | 0.076 | | History of IFN therapy (-/+) | 0.83 | 0.43 | | | 0.89 | 0.73 | | HBV DNA (log copies/mL) (<7.0/7.0≤) | 0.28 | < 0.001 | < 0.001 | < 0.001 | 0.44 | 0.012 | | Total bilirubin (mg/dL) (<1.0/1.0≤) | 1.66 | 0.067 | 1.73 | 0.06 | 1.54 | 0.13 | | AST (IU/L) (<100/100≤) | 1.57 | 0.061 | | | 1.11 | 0.71 | | ALT (IU/L) (<130/130≤) | 1.51 | 0.085 | | | 1.05 | 0.87 | | γ-GTP (IU/L) (<70/70≤) | 1.53 | 0.113 | | | 1.33 | 0.3 | | Albumin (g/dL) ($<4.1/4.1\le$) | 0.51 | 0.011 | 0.48 | 0.0065 | 1.41 | 0.32 | | Platelet count ($\times 10^4$ /mm ³) ($< 15/15 \le$) | 0.93 | 0.77 | | | 1.1 | 0.74 | ALT, alanine aminotransferase; AST, aspartate aminotransferase; CH, chronic hepatitis; HBeAg, hepatitis B e antigen; HBV, hepatitis B virus; HR, hazard ratio; IFN, interferon; γ-GTP, γ-glutamyl transpeptidase; LAM, lamivudine. respectively; log-rank test). HBeAg negative patients displayed higher VR rates than HBeAg positive patients at month 12 (89.9% vs 45.5%), month 24 (95.0% vs 61.5%), month 36 (98.4% vs 79.6%) and month 48 (98.4% vs 86.4%) of treatment. Even at a higher HBV DNA level (HBV DNA ≥7.0 log copies/mL), HBeAg negative patients displayed more rapid VR than HBeAg positive patients (P < 0.001). Seven patients did not achieve VR during the 4-year treatment, and one HBeAg positive patient developed ADV-resistant mutations without VR at month 44 of treatment. According to the results of the univariate Cox regression model, HBV DNA level and Alb level were associated with VR in HBeAg positive patients, while only the HBV DNA level was in HBeAg negative patients (HR = 0.44, 95% CI = 0.24-0.84, P = 0.012). In multivariate analysis, both lower HBV DNA level and lower Alb level were independent predictive factors associated with VR in HBeAg positive patients (HR = 0.26, 0.48, 95% Cl = 0.15 - 0.44, 0.28 - 0.81, P < 0.001, P = 0.0065, respectively) (Table 2), while only the HBV DNA level was selected by a stepwise analysis for HBeAg negative patients. #### HBeAg clearance or HBeAg seroconversion Among 99 HBeAg positive patients, HBeAg clearance and seroconversion were achieved by 17.1% and 11.0% at month 24, by 24.3% and 14.3% at month 36 of treatment, and by 34.0% and 16.0% by the end of follow up, respectively. Except for a history of IFN therapy (OR = 2.46, 95% CI = 0.94–6.6, P = 0.047), none of the other baseline variables were significantly associated with HBeAg clearance, according to the results of the univariate logistic regression analysis. In multivariate analysis, serum ALT level and history of IFN therapy were independent predictive factors for HBeAg clearance (Table 3). No patient experienced a reappearance of HBeAg or reverse seroconversion to HBeAg positive status during this treatment. #### Normalization of ALT levels The mean ALT level declined from 138.2 to 24.7 IU/L by add-on ADV therapy. Furthermore, addition of ADV to LAM-resistant CHB led to normalization of ALT levels in 75.2%, 79.5% and 82.7% of the patients at months 24 and 36, and at the final follow up, respectively. We next estimated the predictive factors for ALT normalization. Univariate logistic regression analysis revealed that only the baseline Alb level was significantly related to the ALT normalization. In the multivariate model, female patients (OR = 0.19, P = 0.037) and lower Alb level (OR = 0.19, P = 0.0017) were found to be independent predictors of ALT normalization. #### DISCUSSION DD-ON ADV therapy has been a standard rescue A DD-ON ADV uncapy, Amo 221... A treatment for patients with LAM-resistant HBV, but the overall benefits of long-term add-on ADV therapy Table 3 Univariate and multivariate logistic regression analysis of predictors of HBeAg clearance and ALT normalization | Variable | HBeAg loss, $n = 99$ | | | | ALT normalization | | | | |--|----------------------|---------|---------------|---------|-------------------|---------|--|--| | | Univariate | | Multivariate | | Univariate | | Multivariate | | | | Odds
ratio | P-value | Odds
ratio | P-value | Odds
ratio | P-value | Odds
ratio | P-value | | Age (years) (<45/45≤) | 0.42 | 0.065 | | | 0.94 | 0.85 | assault in am tan such taller direct mit term direct in direct and an am such as a such as a such as a such as | Prilite Printer (Printer de l'ambient l'A | | Sex (male/female) | 3.02 | 0.075 | 2.99 | 0.081 | 0.4 | 0.34 | 0.19 | 0.037 | | Liver disease (CH/cirrhosis) | 0.76 | 0.59 | | | 0.54 | 0.73 | | | | Duration of LAM therapy (months) (<34/34≤) | 1.1 | 0.97 | | | 0.59 | 0.39 | | | | History of IFN therapy (-/+) | 2.46 | 0.047 | 2.67 | 0.041 | 1.2 | 0.78 | | | | HBV DNA (log copies/mL) (<7.0/7.0≤) | 0.49 | 0.15 | | | 0.32 | 0.21 | | | | Total bilirubin (mg/dL) ($<1.0/1.0\le$) | 1.03 | 0.83 | | | 1.83 | 0.72 | | | | AST (IU/L) (<100/100≤) | 1.52 | 0.47 | | | 3.99 | 0.075 | | | | ALT (IU/L) (<130/130≤) | 2.44 | 0.061 | 2.74 | 0.043 | 3.71 | 0.13 | | | | γ-GTP (IU/L) (<70/70≤) | 2.16 | 0.17 | | | 1.29 | 0.98 | | | | Albumin (g/dL) ($<4.4/4.4\le$) | 0.9 | 0.99 | | | 0.17 | 0.0047 | 0.19 | 0.0017 | | Platelet count ($\times 10^4/\text{mm}^3$) ($<15/15\le$) | 1.21 | 0.82 | | | 0.52 | 0.39 | | | ALT, alanine aminotransferase; AST, aspartate aminotransferase; CH, chronic hepatitis; HBeAg, hepatitis B e antigen; HBV, hepatitis B virus; HR, hazard ratio; IFN, interferon; γ -GTP, γ -glutamyl transpeptidase; LAM, lamivudine. have not yet been fully assessed. In this multicenter study of 158 patients from 21 hospitals over a mean follow-up period of 43.5 months, we tried to evaluate the long-term efficacy of add-on ADV therapy to LAM-resistant patients, and also to investigate which baseline factors were associated with VR, HBeAg clearance and ALT normalization. We found long-term add-on ADV treatment produced long-term virological and biochemical improvement. In addition, each outcome had different predictive factors; baseline HBV DNA and Alb level were predictive factors for VR in HBeAg positive patients, history of IFN therapy and ALT level for HBeAg clearance, and sex and Alb level for ALT normalization. The rate of VR was 90.8% at 4 years of treatment. The strongest predictive factor for VR in both HBeAg positive and negative patients were confirmed by previous observations showing that add-on ADV therapy achieves more rapid and higher rates of VR when ADV is initiated in LAM-resistant patients with low viral replication levels.11-17 We also found that lower Alb level was an independent predictive factor for VR in HBeAg positive patients. In fact, baseline Alb correlated with PLT counts (r = 0.51, P < 0.001) and T-Bil (r = -0.38, P < 0.001), indicating that a lower Alb level reflected progression of liver disease. Little attention has been given to the relation of Alb level with VR - further studies will be needed to confirm our findings and understand its underlying mechanisms - but progression of chronic hepatitis might be predictive of VR under the add-on ADV treatment. This is the first report to show the significance
of baseline Alb levels as we used a time-to-event method for large populations, which is a more powerful and informative method to assess the association of factors to time-to-event outcomes. The rate of HBeAg clearance was 34% at the end of follow up, which was compatible with previous observations. 10,18 According to the results of multivariate analysis, IFN history was the strongest predictor of HBeAg clearance. Of the 37 patients, 17 (46%) who had previously received IFN therapy achieved HBeAg loss, suggesting that previous IFN therapy might have some immune modulatory effect on the ongoing combination therapy. IFN-induced HBeAg loss has been reported to be durable after a follow-up period of 4-8 years. 19-21 In addition, baseline ALT levels were also significantly associated with HBeAg clearance in this study. Our results agree with those of many clinical studies that have shown baseline ALT levels to be the strongest predictor of HBeAg seroconversion in response to IFN therapy²² as well as nucleos(t)ide analog therapy.^{23,24} Alanine aminotransferase normalization was achieved in 82.7% of the patients. ALT normalization and VR were independent of each other. Actually, among 24 patients who did not achieve ALT normalization, only seven had not achieved VR, suggesting that ALT elevation after sustained suppression of HBV replication might be associated with some conditions other than CHB. In addition, lower baseline Alb was revealed to be an independent and positive predictive factor for ALT normalization. Considering that patients who did achieve ALT normalization had lower Alb levels than patients with elevated ALT at the final follow up (4.4 vs 4.6 g/dL, P < 0.01), and Alb levels are significantly higher in non-alcoholic fatty liver disease,25 we speculate that fatty liver disease is related to the abnormal ALT. To clarify this, further studies by liver biopsy and/or ultrasonography will be needed. In conclusion, long-term ADV treatment was highly effective in LAM-resistant CHB patients in terms of virological and biochemical response. In addition, the emergence of resistance to the add-on ADV therapy appears to be delayed and infrequent, in contrast to LAM. Furthermore, lower HBV DNA level and lower Alb level were significant predictive factors for better outcomes. Even though add-on ADV therapy in LAM-resistant CHB patients was highly effective in the long term, CHB patients with LAM or entecavir monotherapy need to be carefully followed-up and the optimal timing of ADV intervention should be determined on the basis of HBV DNA level and progression of liver disease. #### **ACKNOWLEDGMENTS** THIS STUDY WAS supported in part by a Grant-in-Aid from the NHO (no. H21-NHO(Kan)-01). We express our deepest appreciation to the members of the Liver Disease Network Group of the NHO and to their institutions. For complete details, please see Appendix I. #### REFERENCES - 1 Lok ASF. Chronic hepatitis B. N Engl J Med 2002; 346: - 2 Iloeje UH, Yang H-I, Su J, Jen C-L, You S-L, Chen C-J. Predicting cirrhosis risk based on the level of circulating hepatitis B viral load. Gastroenterology 2006; 130: 678-86. - 3 Chen C-J, Yang H-I, Su J et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA 2006; 295: 65-73. - 4 Conjeevaram HS, Lok AS-F. Management of chronic hepatitis B. J Hepatol 2003; 38 (Suppl 1): S90-103. - 5 Lai CL, Chien RN, Leung NW et al. A one-year trial of lamivudine for chronic hepatitis B. Asia Hepatitis Lamivudine Study Group. N Engl J Med 1998; 339: 61-8. - 6 Lai C-L, Dienstag J, Schiff E et al. Prevalence and clinical correlates of YMDD variants during lamivudine therapy for patients with chronic hepatitis B. Clin Infect Dis 2003; 36: 687-96. - 7 Lok ASF, Lai C-L, Leung N et al. Long-term safety of lamivudine treatment in patients with chronic hepatitis B. Gastroenterology 2003; 125: 1714-22. - 8 Dienstag JL, Schiff ER, Wright TL et al. Lamivudine as initial treatment for chronic hepatitis B in the United States. N Engl J Med 1999; 341: 1256-63. - 9 Perrillo R, Hann H-W, Mutimer D et al. Adefovir dipivoxil added to ongoing lamivudine in chronic hepatitis B with YMDD mutant hepatitis B virus. Gastroenterology 2004; 126: 81-90. - 10 Peters MG, Hann Hw H, Martin P et al. Adefovir dipivoxil alone or in combination with lamivudine in patients with lamivudine-resistant chronic hepatitis B. Gastroenterology 2004; 126: 91-101. - 11 Lampertico P, Viganò M, Manenti E, Iavarone M, Lunghi G, Colombo M. Adefovir rapidly suppresses hepatitis B in HBeAg-negative patients developing genotypic resistance to lamivudine. Hepatology 2005; 42: 1414-19. - 12 Papatheodoridis GV, Dimou E, Dimakopoulos K et al. Outcome of hepatitis B e antigen-negative chronic hepatitis B on long-term nucleos(t)ide analog therapy starting with lamivudine. Hepatology 2005; 42: 121-9. - 13 Rapti I, Dimou E, Mitsoula P, Hadziyannis SJ. Adding-on versus switching-to adefovir therapy in lamivudineresistant HBeAg-negative chronic hepatitis B. Hepatology 2007; 45: 307-13. - 14 Kurashige N, Hiramatsu N, Ohkawa K et al. Factors contributing to antiviral effect of adefovir dipivoxil therapy added to ongoing lamivudine treatment in patients with lamivudine-resistant chronic hepatitis B. J Gastroenterol 2009; 44: 601-7. - 15 Shin SR, Koh KC, Gwak G-Y et al. A low viral load predicts a higher initial virologic response to adefovir in patients with Lamivudine-resistant chronic hepatitis B. Gut Liver 2010; 4: 530-6. - 16 Mitsui F, Tsuge M, Kimura T et al. Importance of serum concentration of adefovir for Lamivudine-adefovir combination therapy in patients with lamivudine-resistant chronic hepatitis B. Antimicrob Agents Chemother 2010; 54: 3205-11. - 17 Aizawa M, Tsubota A, Fujise K et al. Clinical course and predictive factors of virological response in long-term lamivudine plus adefovir dipivoxil combination therapy for lamivudine-resistant chronic hepatitis B patients. J Med Virol 2011; 83: 953-61. - 18 Buti M, Elefsiniotis I, Jardi R et al. Viral genotype and baseline load predict the response to adefovir treatment in lamivudine-resistant chronic hepatitis B patients. I Hepatol 2007; 47: 366-72. - 19 Lok AS, Chung HT, Liu VW, Ma OC. Long-term follow-up of chronic hepatitis B patients treated with interferon alfa. Gastroenterology 1993; 105: 1833-8. - 20 van Zonneveld M, Honkoop P, Hansen BE et al. Long-term follow-up of alpha-interferon treatment of patients with chronic hepatitis B. Hepatology 2004; 39: 804-10. - 21 Niederau C, Heintges T, Lange S et al. Long-term follow-up of HBeAg-positive patients treated with interferon alfa for chronic hepatitis B. N Engl J Med 1996; 334: 1422-7. - 22 Lok AS, Lai CL, Wu PC, Leung EK. Long-term follow-up in a randomised controlled trial of recombinant alpha 2-interferon in Chinese patients with chronic hepatitis B infection. *Lancet* 1988; 2: 298–302. - 23 Perrillo RP, Lai C-L, Liaw Y-F et al. Predictors of HBeAg loss after lamivudine treatment for chronic hepatitis B. Hepatology 2002; 36: 186–94. - 24 Schalm SW, Heathcote J, Cianciara J et al. Lamivudine and alpha interferon combination treatment of patients with chronic hepatitis B infection: a randomised trial. Gut 2000; 46: 562–8. - 25 Jimba S, Nakagami T, Takahashi M et al. Prevalence of non-alcoholic fatty liver disease and its association with impaired glucose metabolism in Japanese adults. *Diabetic Med* 2005; 22: 1141–5. #### SUPPORTING INFORMATION ADDITIONAL SUPPORTING INFORMATION may be found in the online version of this article: Appendix S1 Relationship of liver cirrhosis with virological response on the basis of fibrosis, using 60 out of 158 patients liver biopsy had been performed. Fibrosis was related with platelet counts but neither with albumin levels nor with the virological response. #### APPENDIX I THE LIVER DISEASE Network Group of the National Hospital Organization consists of the following physicians and their institutions: Hiromi Ishibashi, Hiroshi Yatsuhashi, Department of Clinical Research Center, Nagasaki Medical Center; Makoto Nakamuta, Department of Gastroenterology, Kyushu Medical Center; Michiyasu Yagura, Department of Gastroenterology, Tokyo National Hospital; Hirotsugu Takano, Department of Gastroenterology, Kure Medical Center; Takeaki Satoh, Center for Liver Disease, Kokura Medical Center; Toyokichi Muro, Department of Gastroenterology, Oita Medical Center; Hideo Nishimura, Department of Gastroenterology, Asahikawa Medical Center; Hiroshi Mano, Department of Gastroenterology, Sendai Medical Center; Fujio Makita, Department of Gastroenterology, Nishigunma National Hospital; Akira Saitou, Department of Gastroenterology, Nishisaitama-chuo National Hospital; Masahiko Takahashi, Department of Gastroenterology, Tokyo Medical Center; Shigeo Hayashi, Department of Gastroenterology, National Disaster Medical Center; Tatsuji Komatsu, Department of Gastroenterology, Yokohama Medical Center; Yukio Watanabe, Department of Gastroenterology, Sagamihara National Hospital; Masakazu Kobayashi, Department of Gastroenterology, Matsumoto Medical Center; Hideo Morimoto, Hajime Ohta, Department of Gastroenterology, Kanazawa Medical Center; Masaaki Shimada, Department of Gastroenterology, Nagoya Medical Center. Toshiki Komeda, Department of Gastroenterology, Kyoto Medical Center; Taizo Hijioka, Department of Gastroenterology, Osaka Minami Medical Center; Haruhiro Yamashita, Department of Gastroenterology, Okayama Medical Center; Eiichi Takesaki, Department of Gastroenterology, Higashi Hirosima Medical Center; Toru Hayashi, Department of Gastroenterology, Zentsuji National Hospitail; Mitsuaki Koga, Department of Gastroenterology, Ureshino Medical Center; Kazuhiro Sugi, Departoment of Gastroenterology, Kumamoto Medical Center; Hironori Sakai, Department of Gastroenterology, Beppu Medical Center; Tetsuo Yamamoto, Department of Gastroenterology, Yonago Medical Center; Yukio Oohara, Department of
Gastroenterology, Hokkaidou Medical Center; Michio Kato, Department of Hepatology, Minamiwakayama Medical Center; Naohiko Masaki, Department of Gastroenterology, Kohnodai Hospital. ORIGINAL ARTICLE # Hepatitis B virus strains of subgenotype A2 with an identical sequence spreading rapidly from the capital region to all over Japan in patients with acute hepatitis B Yoko Tamada,^{1,2} Hiroshi Yatsuhashi,^{1,2} Naohiko Masaki,³ Makoto Nakamuta,⁴ Eiji Mita,⁵ Tatsuji Komatsu,⁶ Yukio Watanabe,⁷ Toyokichi Muro,⁸ Masaaki Shimada,⁹ Taizo Hijioka,¹⁰ Takeaki Satoh,¹¹ Yutaka Mano,¹² Toshiki Komeda,¹³ Masahiko Takahashi,¹⁴ Hiroshi Kohno,¹⁵ Hajime Ota,¹⁶ Shigeki Hayashi,¹⁷ Yuzo Miyakawa,¹⁸ Seigo Abiru,^{1,2} Hiromi Ishibashi^{1,2} For numbered affiliations see end of article. #### Correspondence to Professor Hiroshi Yatsuhashi, Clinical Research Center, NHO National Nagasaki Medical Center and Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Address: 2-1001-1 Kubara, Omura, Nagasaki 856-8562, Japan; yatsuhashi@nmc.hosp.go.jp Revised 3 October 2011 Accepted 5 October 2011 #### **ABSTRACT** **Objective** To examine recent trends of acute infection with hepatitis B virus (HBV) in Japan by nationwide surveillance and phylogenetic analyses. **Methods** During 1991 through 2009, a sentinel surveillance was conducted in 28 national hospitals in a prospective cohort study. Genotypes of HBV were determined in 547 patients with acute hepatitis B. Nucleotide sequences in the preS1/S2/S gene of genotype A and B isolates were determined for phylogenetic analyses. Results HBV genotype A was detected in 137 (25% (accompanied by genotype G in one)) patients, B in 48 (9%). C in 359 (66%), and other genotypes in the remaining three (0.5%). HBV persisted in five with genotype A including the one accompanied by genotype G; another was co-infected with HIV type 1. The genotype was A in 4.8% of patients during 1991-1996, 29.3% during 1997-2002, and 50.0% during 2003-2008 in the capital region, as against 6.5%, 8.5% and 33.1%, respectively, in other regions. Of the 114 genotype A isolates, 13 (11.4%) were subgenotype A1, and 101 (88.6%) were A2, whereas of the 43 genotype B isolates, 10 (23.3%) were subgenotype B1, 28 (65.1%) were B2, two (4.7%) were B3, and three (7.0%) were B4. Sequences of 65 (64%) isolates of A2 were identical, as were three (23%) of A1, and five (18%) of B2, but none of the B1, B3 and B4 isolates shared a sequence. Conclusions Acute infection with HBV of genotype A, subgenotype A2 in particular, appear to be increasing, mainly through sexual contact, and spreading from the capital region to other regions in Japan nationwide. Infection persisted in 4% of the patients with genotype A, and HBV strains with an identical sequence prevailed in subgenotype A2 infections. This study indicates the need for universal vaccination of young people to prevent increases in HBV infection in Japan. Hepatitis B virus (HBV) has been classified into 10 genotypes, designated A–J, based on a >8% divergence in the full-genome sequence. ^{1–7} Different genotypes are associated with distinct clinical manifestations, such as severity and progression of #### Significance of this study #### What is already known about this subject? - ▶ In Japan, a national prevention programme was started in 1986 with selective vaccination of babies born to mothers who carry hepatitis B virus (HBV). Since then, the prevalence of hepatitis B surface antigen among younger generations has decreased sharply. - However, retrospective studies indicate that the frequency of HBV genotype A is increasing among patients with acute hepatitis B (AHB) within the capital region of Japan. - Infection with genotype A more often persists than infection with other genotypes. - Because there is no reliable and comprehensive surveillance system for AHB in Japan, the incidence of AHB and factors responsible for changes over many years are not known. #### What are the new findings? - ► This is a prospective cohort study for surveillance of AHB throughout Japan in a national research programme. - ► The incidence of AHB in Japan has not decreased, because genotype A infections have increased over time. - Genotype A infections started to increase in the capital region of Japan, and then spread to other regions 5-6 years later. - ► About 90% of genotype A found in AHB patients in Japan is subgenotype A2. - Subgenotype A2 isolates from patients with AHB tend to preserve sequence identity over time, indicating that particular subgenotype A2 strains have been transmitted without undergoing mutations. liver disease, as well as response to antiviral treatments. $^{8-10}$ Some genotypes are subclassified: genotype A into at least two subgenotypes, A1 (Asian/African type) and A2 (European type) $^{11-13}$; #### Viral hepatitis #### Significance of this study # How might it impact on clinical practice in the foreseeable future? - It needs to be noted that subgenotype A2 infections are spreading among sexually active generations in Japan. - ► Although selective vaccination has prevented mother-to-baby transmission of HBV since 1986, it does not contain sporadic infections in Japan. - Herd vaccination of younger generations needs to be considered in Japan. B into B1 (Japanese type) and B2 (Asian type) $^{14\ 15};$ and C into C1 (Southeast-Asian type) and C2 (East-Asian type). 16 Subgenotypes also influence the replication of HBV and clinical manifestation. $^{15\ 17\ 18}$ According to a report from Japan in 2001, ¹⁹ genotype C was the most prevalent (84.7%), followed by genotype B (12.2%) and A (1.7%), among patients with chronic hepatitis B. In 2002, genotype A became the most prevalent in patients with acute hepatitis B (AHB) around Tokyo, the capital region of Japan. ²⁰ ²¹ Several reports have shown that infection with HBV genotype A is associated with particular sexual behaviours, such as homosexual activity and promiscuous sexual contacts, and tends to persist longer than that with HBV genotype C. ²² ²³ These reports have raised concerns about the horizontal HBV infection in adults, which, in general, is considered to resolve spontaneously. However, adult-acquired HBV infection may result in chronic HBV infection in some instances. Information on changes in genotype distribution over time, as well as genotype-specific clinical manifestations, may help in planning preventive measures and antiviral therapy strategies. Therefore it is important to examine how genotype A infection has spread in Japan, and what clinical and virological characteristics it possesses. We have been conducting a nationwide, sentinel surveillance on acute viral hepatitis for more than 30 years. As part of this surveillance, a prospective cohort study has been conducted on 547 patients with AHB in 28 medical centres over the 19 years from 1991 to 2009. Geographical and longitudinal distributions of HBV genotypes/subgenotypes were surveyed, and their influence on clinical outcome was evaluated. ## PATIENTS AND METHODS Patients A total of 681 patients with sporadic AHB were enrolled consecutively in a survey carried out by the Japan National Hospital Acute Hepatitis Study Group (JNHAHSG). They were admitted to 28 national hospitals from January 1991 to the end of December 2009. They were grouped geographically into two areas: the capital region (Gunma, Saitama, Tokyo and Kanagawa) and other regions (figure 1). Patients were also longitudinally categorised into three periods: 1st (1991–1996), 2nd (1997–2002) and 3rd (2003–2008). In addition, the year 2009 provided the most recent data. Of the 681 patients, 547 (80.3%) entered the study, for whom serum samples were available on admission and had been stored at $-20^{\circ}\mathrm{C}$. The diagnosis of AHB was based on the following criteria: (1) acute onset of liver injury without a history of liver dysfunction; (2) detection of hepatitis B surface antigen (HBsAg) in the Figure 1 Locations of participating hospitals in Japan. Hospitals in the capital region (M1-M8) are indicated by eight closed circles, and those in other regions (09-028) by 20 open circles. Numbers in parentheses indicate the total number of enrolled subjects for each site. The hospitals are: M1, Nishigunma Hospital, Gunma; M2, Nishisaitama-Chuo Hospital, Saitama; M3, National Disaster Medical Center, Tokyo; M4, Tokyo Hospital, Tokyo; M5, Tokyo Medical Center, Tokyo; M6, National Center for Global Health and Medicine, Tokyo; M7, Sagamihara Hospital, Kanagawa; M8, Yokohama Medical Center, Kanagawa; 09, Asahikawa Medical Center, Hokkaido; 010, Hokkaido Medical Center, Hokkaido; 011, Sendai Medical Center, Miyagi; 012, Matsumoto Medical Center, Nagano; 013, Kanazawa Medical Center, Ishikawa; 014, Nagoya Medical Center, Aichi; 015, Kyoto Medical Center, Kyoto; 016, Osaka National Hospital, Osaka; 017, Osaka-Minami Medical Center, Osaka; 018, Zentsuji Hospital, Kagawa; 019, Yonago Medical Center, Tottori; 020, Okayama Medical Center, Okayama; 021, Kure Medical Center and Chugoku Cancer Center, Hiroshima; 022, Kokura Medical Center, Fukuoka; 023, Kyushu Medical Center, Fukuoka; 024, Beppu Medical Center, Oita; O25, Oita Medical Center, Oita; O26, Kumamoto Medical Center, Kumamoto; 027, Ureshino Medical Center, Saga; and 028, Nagasaki Medical Center, Nagasaki. serum; (3) positivity for IgM antibody to HBV-core antigen (IgM anti-HBc) in high titres (detectable in sera diluted 10-fold); and (4) absence of past or family history of chronic HBV infection. Severe acute hepatitis (SAH) was defined as prothrombin time (PT) ≤40% and hepatic encephalopathy of grade ≤I. Fulminant hepatitis (FH) was diagnosed from PT ≤40% and hepatic encephalopathy of grade ≥II. Patients in whom HBsAg remained in the serum for >6 months after onset were considered to have acquired chronic HBV infection. The following information was collected from each patient: year and age at onset, gender, residential
area, HBsAg, IgM anti-HBc, alanine aminotransferase, total bilirubin, PT, severity of liver disease, mortality, routes of transmission, sexual behaviours, travelling abroad in recent past, HBV genotype, mutations in precore (PreC) and core promoter (CP) regions, and RNA of hepatitis D virus. Antibody to HIV type 1 (anti-HIV) was determined in patients who were at high risk and gave consent to testing. Informed consent was obtained from each patient. The study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki and the Ministry of Education, Culture, Sports Science and Technology of Japan, and was approved by the ethics committee of each institution. #### **Extraction of HBV DNA** HBV DNA was extracted from serum (100 μ l) by the SMITEST EX-R&D Nucleic Acid Extraction Kit (MBL Co, Nagoya, Japan) and used for genotyping/subgenotyping and detecting mutations in PreC and CP regions. #### **HBV** genotypes Genotypes were determined in Nagasaki Medical Center with the SMITEST HBV Genotyping Kit (MBL) by hybridisation with type-specific probes immobilised on a solid-phase support.²⁴ #### **Determination of HBV subgenotypes** For subgenotyping, HBV DNA was amplified by PCR with TaKaRa Ex Taq (Takara Bio, Shiga, Japan). PCR was performed with appropriate nested primers to amplify a ~1.2 kb sequence in the preS1/S2/S gene (nucleotides 2854—835 in the reference isolate (AB116077)). PCR products were purified, subjected to cycle sequencing reaction with the BigDye Terminator v1.1 (Applied Biosystems, Tokyo, Japan), and applied to the DNA sequencer (3100-Avant; Applied Biosystems). #### Mutations in the PreC and CP regions The A1896 mutation in the PreC region was detected by the enzyme-linked minisequence assay (SMITEST HBV PreC ELMA; Roche Diagnostics, Tokyo, Japan), and mutations in the CP region for T1762/A1764 by the enzyme-linked specific probe assay (SMITEST HBV Core Promoter Mutation Detection Kit; Roche Diagnostics). The results were recorded as 'wild-type' and 'mutant types' dominantly expressed by HBV isolates. ²⁵ #### Phylogenetic analyses Nucleotide sequences were aligned, and phylogenetic trees were constructed by the CLUSTAL W program v1.83 (DDBJ homepage: http://clustalw.ddbj.nig.ac.jp/top-j.html). The statistical validity was assessed by bootstrap resampling with 1000 replicates. Reference HBV strains were retrieved from the GenBank database. #### Statistical analysis Results were expressed as percentage or mean \pm SD. Statistical differences were evaluated by χ^2 and Fisher exact tests for categorical variables, and analysis of variance and Scheffe's test for quantitative variables, using the SPSS software. The 95% CI, for the difference in means, was calculated in analyses for quantitative variables. p<0.05 was considered significant. #### **RESULTS** #### Distribution of HV genotypes HBV genotypes were determined in the 547 patients with AHB. The genotype was A in 137 (25.0%) patients (accompanied by G in one (0.2%)), B in 48 (8.8%), C in 359 (65.6%), D in one (0.2%), E in one (0.2%), and H in one (0.2%). Because HBV genotype G is a defective virus and cannot replicate by itself, ²⁶ ²⁷ the single patient with mixed genotypes A and G was included in the 137 patients with genotype A in further analyses. RNA of hepatitis D virus was detected in three of the 453 (0.7%) patients. Anti-HIV was examined in patients at high risk of infection and detected in 14 of the 53 (26.4%) who gave consent to testing. # Demographic and clinical differences among patients infected with HBV of distinct genotypes Demographic and clinical characteristics of patients with different genotypes are compared in table 1. There was no difference in mean age among patients with genotypes A, B and C. The proportion of men was higher in patients with genotype A than B or C (94.2% vs 79.2%, p<0.05; or 56.0%, p<0.0001), and in those with genotype B than C (79.2% vs 56.0%, p<0.05). Maximum levels of total bilirubin were higher in patients with genotype A than C (9.6 \pm 7.6 vs 7.1 \pm 6.2 mg/dl, p<0.05), with a difference of 2.5 mg/dl (95% CI 0.93 to 4.08), whereas the highest alanine aminotransferase activity and lowest PT values did not differ among patients with distinct genotypes. SAH developed in four (2.9%) patients with genotype A, four (8.3%) with genotype B, and 26 (7.2%) with genotype C. FH developed in one (2.1%) patient with genotype B and eight (2.2%) with genotype C; no patients with genotype A developed FH. Eight (1.5%) patients died, including one with genotype B and seven with genotype C. There were no significant differences among patients with different genotypes in the frequency of SAH or FH or mortality. The outcome of AHB was traceable in 514 of the 547 (94.0%) patients. Chronic infection with persistence of HBsAg for >6 months developed in five of the 123 (4.1%) patients with genotype A (including the one accompanied by genotype G), none of the 46 (0%) with genotype B, and none of the 342 (0%) with genotype C; it was more common in patients with genotype A than C (p<0.05). HBV infection persisted exclusively in the patients with genotype A, either alone (four patients) or together with genotype G (one). Among the five patients who acquired chronic HBV infection, four (three with genotype A and one with mixed genotypes A and G) were examined for anti-HIV, and one with genotype A was found to be positive. HBV infection persisted in three (including the one with anti-HIV) of the five patients for >1 year after the onset, and the remaining two (both without anti-HIV) cleared HBsAg from the serum after retaining it for >6 months. Mutations in the PreC and/or CP region were detected in 3.7% (4/109) of patients with genotype A, 15.4% (6/39) of those with genotype B, and 25.5% (79/310) of those with genotype C. They were significantly less common in patients with genotype A than B or C (A vs B, p<0.05; A vs C, p<0.0001). The only patient with genotype A who had the PreC mutation was simultaneously infected with genotype G. Routes of transmission were identifiable in 275 of the 547 (50%) patients, and the main route was heterosexual contacts; those in the remaining patients could not be disclosed. The frequency of heterosexual activity did not differ among patients with distinct genotypes. However, homosexual activity was more common in patients with genotype A than B or C (21.2%, 0% and 0.8%, respectively (A vs B, p<0.001; A vs C, p<0.0001)). Among the 32 homosexual men, HBV genotype A was detected in 29 (91%). Consent to anti-HIV testing was given by 10 of the 29 patients, and four of these (40%) were positive. #### Longitudinal changes in the distribution of genotypes Figure 2 illustrates changes in the distribution of HBV genotypes through three 6-year periods over 18 years (1991—2008). In addition, data from 2009 are shown. HBV genotype A accounted #### Viral hepatitis Demographic and clinical characteristics of patients with acute hepatitis who were infected with HBV of different genotypes (1991-2009) | | | HBV genotypes | | | | | |----------------------------|-----------------|------------------------|-----------------|-------------------|----------------------|--| | Feature | Total (n = 547) | A (n=137)† (25.0%) | B (n=48) (8.8%) | C (n=359) (65.6%) | Others (n=3)‡ (0.5%) | | | Age (years) | 35.6±14.8 | 35.2±12.2 | 39.6±15.6 | 35.1±15.5 | 49.7±13.6 | | | Male | 367 (67.1%) | 129 (94.2%)¶ * †† *** | 38 (79.2%)†† * | 201 (56.0%) | 3 (100%) | | | ALT (IU/I)§ | 2553 ± 1563 | 2289 ± 1069 | 2557 ± 1412 | 2342±1728 | 3333 ± 2406 | | | T-Bil (mg/dl)§ | 7.8 ± 6.7 | 9.6±7.6††* | 7.7 ± 7.4 | 7.1 ± 6.2 | 9.0 ± 2.5 | | | PT (%)§ | 74.6 ± 22.6 | 75.2 ± 15.9 | 73.8 ± 24.5 | 74.7 ± 24.5 | 15.8‡‡ | | | Severe hepatitis | 34 (6.2%) | 4 (2.9%) | 4 (8.3%) | 26 (7.2%) | 0 (0.0%) | | | Fulminant hepatitis | 10 (1.8%) | 0 (0.0%) | 1 (2.1%) | 8 (2.2%) | 1 (33.3%) | | | Mortality | 8 (1.5%) | 0 (0.0%) | 1 (2.1%) | 7 (1.9%) | 0 (0.0%) | | | HBsAg persisting >6 months | 5/514 (1.0%) | 5/123 (4.1%)†† * | 0/46 (0.0%) | 0/342 (0%) | 0/3 (0.0%) | | | PreC/CP mutations | | | | | | | | PreC | 43/461 (9.3%) | 1/109 (0.9%)¶ * †† * | 6/39 (15.4%) | 34/310 (11.0%) | 2/3 (66.7%) | | | CP | 69/461 (15.0%) | 3/109 (2.8%)++ *** | 0/39 (0.0%)†† * | 63/310 (20.3%) | 3/3 (100%) | | | PreC and/or CP | 92/461 (20.0%) | 4/109 (3.7%)¶ * †† *** | 6/39 (15.4%) | 79/310 (25.5%) | 3/3 (100%) | | | Transmission route | | | | | | | | Homosexual | 32 (5.9%) | 29 (21.2%)¶ ** †† *** | 0 (0.0%) | 3 (0.8%) | 0 (0.0%) | | | Heterosexual | 217 (39.5%) | 52 (38.0%) | 25 (52.1%) | 139 (39.6%) | 1 (33.3%) | | | Medical procedure | 16 (2.9%) | 2 (1.5%) | 2 (4.2%) | 12 (3.3%) | 0 (0.0%) | | | Other | 10 (1.8%) | 1 (0.7%) | 1 (2.1%) | 7 (1.9%) | 1 (33.3%) | | | Undetermined | 272 (49.7%) | 53 (38.7%)++ * | 20 (41.7%) | 198 (55.2%) | 1 (33.3%) | | | Anti-HIV | 14/53 (26.4%) | 11/35 (31.4%) | 0/3 (0.0%) | 3/15 (20.0%) | 0/0 | | Values are mean ±SD or number (%). for 6% (9/150) in the 1st period, 15.4% (19/123) in the 2nd, and 39.4% (89/226) in the 3rd, with significant differences between 1st and 2nd (p<0.05), 2nd and 3rd (p<0.0001), and 1st and 3rd (p<0.0001). Conversely, AHB associated with genotype C decreased through three periods with significant differences, while AHB associated with genotype B did not change On the basis of these results, the yearly incidence in each of the three 6-year periods is calculated to be: 25.0 cases including 1.5 with genotype A in the 1st period; 20.5 cases including 3.2 with genotype A in the 2nd; and 37.7 cases including 14.8 with genotype A in the 3rd. Hence, the incidence of AHB had not changed markedly over the 12 years from 1991 to 2002, but increased thereafter until 2008. Of the increment in the 3rd period of 17.2 (37.7 minus 20.5) cases, there were 11.6 (14.8 minus 3.2) with genotype A; they accounted for 67% (11.6/17.2) of the recent increase in
AHB. #### Regional distributions and longitudinal changes in genotype A Among the 183 patients from the capital region, the genotype was A in 65 (35.5%), B in 22 (12.0%), C in 94 (51.4%), E in one (0.5%), and H in one (0.5%) (table 2). Of the remaining 364 (66.5%) patients from other regions, by contrast, the genotype was A in 72 (19.8%), B in 26 (7.1%), C in 265 (72.8%), and D in one (0.3%). Genotype A was significantly more common in the capital than in other regions (35.5% vs 19.8%, p<0.0001). In the capital region, genotype A accounted for 4.8% (2/42) in the 1st period, 29.3% (12/41) in the 2nd, and 50.0% (42/84) in the 3rd. There were significant differences between the 1st and 2nd periods (p<0.05), 2nd and 3rd (p<0.05), and 1st and 3rd (p<0.0001). In other regions, by contrast, genotype A accounted for 6.5% (7/108) in the 1st period, 8.5% (7/182) in the 2nd, and 33.1% (47/142) in the 3rd. For the first time in other regions, genotype A increased in the 3rd period, in comparison with the 1st and 2nd (1st vs 3rd, p<0.0001; 2nd vs 3rd, p<0.0001). #### Subgenotypes of genotype A Of the 137 genotype A isolates, amplification and sequencing of HBV DNA were feasible in 114 (83.2%); the isolate from the single patient with genotypes A and G was excluded. A phylogenetic tree was constructed, on the entire preS1/S2/S genes of ~1.2 kb, for these 114 isolates along with 34 genotype A isolates retrieved from the database (figure 3). Of the 114 isolates in this study, 101 (88.6%) were subgenotype A2, and the remaining 13 (11.4%) were subgenotype A1. In a pair-wise comparison, the sequence divergence among the 101 subgenotype A2 isolates was 0-1.3%, and that among the 13 subgenotype A1 isolates spanned 0% to 2.3%. The sequence divergence between subgenotype A2 and A1 isolates ranged from 2.6% to 4.7%. A sequence of 1203 nucleotides was possessed in common by three of the 101 (3%) isolates of subgenotype A2. For convenience, the group comprising these three isolates was labelled 'identical group I'. Likewise, an additional six 'identical groups' were found, and numbered from 'II' to 'VII'. They comprised 35 (35%), seven (7%), two (2%), three (3%), 12 (12%) and three (3%) of the 101 isolates of subgenotype A2. In contrast, only one identical group, designated 'VIII', was constructed by three of the 13 (23%) isolates of subgenotype A1. Some isolates of subgenotype A1 and A2 were obtained from patients who had travelled to foreign countries in the recent past (5/13 (38.5%) patients with A1 to Africa, Philippines, Myanmar and China; and 5/101 (5.0%) patients with A2 to Europe, Thailand, Brazil and the USA). $[\]dagger$ One patient with genotype A was simultaneously infected with genotype G. \ddagger Each patient was infected with genotype D, E or H. SHighest values during the clinical course are shown for ALT and T-Bil, and lowest values for PT. Statistical analysis was performed to compare genotypes A, B and C. Significantly different compared with genotype B. $[\]dagger$ +Significantly different compared with genotype C. *p<0.05, **p<0.001, ***p<0.0001. ^{‡‡}Data from the patient with genotype E only. ALT, alanine aminotransferase; CP, core promoter; HBsAg, hepatitis B surface antigen; HBV, hepatitis B virus; PreC, precore; PT, prothrombin time; T-Bil, total bilirubin. **Figure 2** Distribution of hepatitis B virus (HBV) genotypes in three periods. #### Subgenotypes of genotype B Of the 48 isolates of genotype B, subgenotyping was feasible in 43 (90.0%). A phylogenetic tree was constructed on preS1/S2/Sgene sequences from these 43 isolates, along with those from 25 isolates of genotype B retrieved from the database (figure 4). Of the 43 isolates in this study, 10 (23.3%) were subgenotype B1, 28 (65.1%) were B2, two (4.7%) were B3, and three (7.0%) were B4. In a pair-wise comparison, the sequence divergence among 10 subgenotype B1 isolates ranged from 0.4% to 1.4%, and that among 28, two and three isolates of subgenotypes B2, B3 and B4 spanned 0–1.7%, 0.5% and 0.6–0.8%, respectively. The inter-subgenotype divergence among B1–B4 ranged from 0.6% to 4.4%. One 'identical group' made up of five isolates was detected among the 28 of subgenotype B2; it was named 'IX'. In contrast, no 'identical group' was found in 10, two or three isolates of subgenotype B1, B3 or B4. Some isolates of subgenotypes B2, B3 and B4 were obtained from patients who had travelled to foreign countries in the recent past (7/28 (25.0%) patients with B2 to China and other countries; 1/2 (50.0%) patients with B3 to a country unknown; and 1/3 (33.3%) patients with B4 to Vietnam). However, none of the 10 subgenotype B1 isolates was associated with travel to foreign countries. #### **Identical** groups The proportion of isolates that shared a sequence in identical groups was higher for subgenotype A2 (64.4%) than for A1, B1, B2, B3 or B4 (23.1%, 0%, 17.9%, 0% or 0%, respectively (A2 vs A1, p<0.001; A2 vs B1, p<0.0001; A2 vs B2, p<0.0001). Homosexual activity was more common in patients belonging to the seven identical groups than the non-identical group of subgenotype A2 (17/65 (26.2%) vs 3/36 (8.3%), p<0.05). Among the isolates in the seven identical groups of subgenotype A2, those in groups I, III and VII clustered locally during short periods of 2-7 years. In contrast, subgenotype A2 isolates in groups II and VI were scattered widely over longer periods of 11-16 years. #### DISCUSSION In Japan, as in most Asian countries, the persistent HBV carrier state had been established mainly through perinatal transmission from mother to baby and horizontal infection during infancy. In 1986, a national prevention programme was launched in Japan with selective vaccination of babies born to carrier mothers with hepatitis B e antigen (HBeAg). In 1995, this was extended to babies born to HBeAg-negative carrier mothers. As a result, the prevalence of HBsAg among younger people born since 1986 has decreased dramatically.²⁸ ²⁹ However, there are an Table 2 Changes in the distribution of genotype A compared between the capital region and other regions over three periods | Area | n | 1st Period
(1991—1996) | 2nd Period
(1997—2002) | 3rd Period
(2003—2008) | 2009 | |----------------|--------------------|---------------------------|---------------------------|---------------------------|---------------| | Capital region | 65/183 (35.5%)†*** | 2/42 (4.8%)‡* §*** | 12/41 (29.3%)†* §* | 42/84 (50.0%)†* | 9/16 (56.3%) | | Other regions | 72/364 (19.8%) | 7/108 (6.5%)§*** | 7/82 (8.5%)§*** | 47/142 (33.1%) | 11/32 (34.4%) | | Total | 137/547 (25.0%) | 9/150 (6.0%)‡* §*** | 19/123 (15.4%)§*** | 89/226 (39.4%) | 20/48 (41.7%) | Statistical analysis of the differences between the capital and other regions was performed, as well as through the 1st, 2nd and 3rd periods. ⁺Significantly different compared with other regions. [‡]Significantly different compared with the 2nd period. SSignificantly different compared with the 3rd period. ^{*}p<0.05, ***p<0.0001. #### Viral hepatitis Figure 3 Phylogenetic analysis of genotype A strains by the neighbourjoining method. Isolates obtained in this study are shown in bold with asterisks. Hospitals in the capital region are labelled M1-M8 and those in other regions 09-028 (corresponding to those in figure 1). Year of onset is indicated by the last two digits after the first hyphen. Numbers after the second hyphen represent the identification numbers of patients in each year (not always consecutive). Transmission routes are shown in lower-case letters in parentheses: h, homosexual; s, heterosexual; m, medical procedure; o, others; and u, undetermined. Isolates with identical sequences are bracketed in 'Identical groups I through VIII' on the tree. Each bracket is divided by areas and periods. Reference hepatitis B virus (HBV) isolates, including 12 of subgenotype A1 and 22 of subgenotype A2, were obtained from the database and specified by their accession numbers, isolate names and countries of origin. Bootstrap values are indicated on major phylogenetic branches. estimated one million HBV carriers in Japan at present.³⁰ Furthermore, many Japanese remain at increased risk of horizontal infection with HBV, because they have not received selective vaccination and therefore do not have the antibody to HBsAg. Because AHB is extremely under-reported and no national surveillance data are available in Japan, the incidence has not been determined accurately. In the USA, the incidence of AHB has decreased markedly since the adoption of a comprehensive immunisation strategy in 1991.³¹ 32 In the present study over 1991–2009, we conducted a nationwide, sentinel surveillance on AHB in Japan. In the 547 patients recruited over 19 years, genotype C was the most prevalent (65.6%), followed by genotype A (25.0%) and genotype B (8.8%). Demographic and clinical differences were observed among patients with genotypes A, B and C (table 1). The proportion of men reached 94.2% for genotype A infection, higher than that for genotype B (79.2%) or C (56.0%) infection. In the analysis of the route of transmission, homosexual activity was reported by 21.2% of patients with genotype A; all were male. In general, sexual activity tends to be higher in men than women. The predominance of genotype A in men may be attributable to a high frequency of homosexual activity among men Although adult-acquired HBV infection persists at a high frequency of $\sim 10\%$ in European countries and the USA, ³³ it rarely, if ever, becomes chronic in Japan. Recent studies suggest that the chance of a chronic outcome of AHB may differ by HBV genotype^{21 34}; it is more common for genotype A than other genotypes. ^{22 35 36} In the present study, HBV infection persisted in 4.1% of patients with genotype A, in comparison with 0% of