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FIG 1 Correlation of HCV RNA titers as quantified by two commercial kits.

Japan. The samples were divided into 1-ml aliquots and stored at —80°C
until use.

Quantification of HCV RNA and core Ag. The HCV RNA titer was
measured with two real-time qRT-PCR kits, CAP/CTM-RNA (detection
range, 1.5 X 10" to 6.9 X 107 TU/ml) and ART-RNA (detection range,
1.2 X 10" to 1.0 X 108 [U/ml). Additionally, samples were assessed using
five HCV core Ag assay kits, including Architect-Ag (detection range, 3 to
20,000 fmol/liter), Lumipulse-Ag (detection range, 50 to 50,000 fmol/
liter), Lumispot-Ag (detection range, 20 to 400,000 fmol/liter), ELISA-Ag
(detection range, 44.4 to 3,600 fmol/liter), and IRMA-Ag (detection
range, 20 to 20,000 fmol/liter). All assays were performed by the respective
manufacturers at their research laboratories.

Sequencing and genotyping of HCV in reference panel samples. Vi-
ral RNA was extracted with the QIAamp viral RNA kit (Qiagen, Valencia,
CA) from 140 pl of each plasma sample. HCV RNA was amplified by
RT-PCR with primers corresponding to the 5’ untranslated region (UTR)
(43S-1H, 5'-CCTGTGAGGAACTACTGTCTTC-3; ¢/s17-ssp, 5'-CCGG
GAGAGCCATAGTGGTCTGCG-3") and the E1 region (1323R-1H, 5'-G
GCGACCAGTTCATCATCAT-3"); the amplified products were se-
quenced directly. HCV genotypes of the isolated strains were assigned by
phylogenetic analysis using an alignment with a representative strain of
each genotype.

Statistical analysis. The correlations of obtained quantitative data
were assessed by Pearson’s correlation coefficient analysis, and values for
r and P were calculated. A P value of <0.05 was considered to indicate
statistical significance. Analysis was performed using Prism 5 software
(GraphPad Software, Inc., La Jolla, CA).

Nucleotide sequence accession numbers. The accession numbers of
C-01 to C-80 are AB705312 to AB705391, respectively.

RESULTS

Quantification of HCV RNA levels. The reference panel estab-
lished in this work was used to measure HCV RNA levels with the
CAP/CTM-RNA and ART-RNA kits. The correlation of the data
obtained with the two kits is shown in Fig. 1. The RNA titers of
these samples were distributed evenly, and all values were within
the dynamic ranges of both assays. The HCV titers ranged from
3.68 to 6.88 and 3.82 to 7.08 log IU/ml in CAP/CTM-RNA and
ART-RNA, respectively, and the correlation was significant (r =
0.978; P < 0.0001).

Quantification of HCV core Ag levels. HCV core Ag levels
were measured using Architect-Ag, Lumipulse-Ag, Lumispot-Ag,
ELISA-Ag, and IRMA-Ag kits. Among the 80 specimens in the
reference panel, core Ag levels could be measured in all samples
using Architect-Ag and ELISA-Ag kits, whereas core Ag levels
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were below the detection limit in 4, 2, and 1 samples using Lumi-
pulse-Ag, Lumispot-Ag, and IRMA-Ag kits, respectively (Fig. 2;
also, see Fig. SI in the supplemental material). Significant corre-
lations were observed between assays of HCV core Ag and HCV
RNA (r = 0.9065 to 0.9666 and P < 0.0001 compared with CAP/
CTM-RNA data [Fig. 2]); r = 0.8877 to 0.9552 and P < 0.0001
compared with ART-RNA data [see Fig. S1 in the supplemental
material]). The theoretical lower limits of detection of these assays
were calculated by use of these correlation formulas and were 3.2
and 3.4 log IU/ml for Architect-Ag, 4.2 and 4.2 log IU/ml for
Lumipulse-Ag, 3.7 and 3.9 log IU/ml for Lumispot-Ag, 3.6 and 3.8
log IU/ml for ELISA-Ag, and 3.6 and 3.8 log IU/ml for IRMA-Ag
(compared to CAP/CTM-RNA and ART-RNA, respectively).
These calculated detection limits were substantially higher than
those for the RNA quantitative assays (1.18 and 1.08 log IU/ml for
CAP/CTM-RNA and ART-RNA, respectively).

In addition, we found that several samples showed consider-
able deviation from the linear regression (Fig. 2; also, see Fig. S1 in
the supplemental material). To identify the deviating samples, we
used Bland-Altman plot analysis (Fig. 3; also, see Fig. S2 in the
supplemental material). This plot shows the difference between
the titer values of HCV RNA and core Ag as a function of the
average of these two values. Several samples demonstrated discor-
dance between the measured HCV RNA and core Ag levels.
Among these samples, we focused on samples with discordant
results in multiple core Ag assays compared to both RNA quanti-
tative assays. For sample C-01, core Ag levels were underestimated
when measured with Architect-Ag, Lumipulse-Ag, and Lu-
mispot-Ag in comparison with CAP/CTM-RNA (Fig. 3) and
when measured with Architect-Ag, Lumipulse-Ag, Lumispot-Ag,
and IRMA-Ag in comparison with ART-RNA (see Fig. S2 in the
supplemental material). Likewise, for sample C-73, core Aglevels
were underestimated when measured with Architect-Ag, Lumi-
pulse-Ag, and IRMA-Ag in comparison with CAP/CTM-RNA
(Fig. 3) and when measured with Architect-Ag and Lumipulse-Ag
in comparison with ART-RNA (see Fig. S2 in the supplemental
material). Thus, sample-specific underestimation was observed in
several HCV core Ag kits.

Nucleotide sequences in core region of reference panel sam-
ples. To clarify the sources of these underestimates of HCV core
Aglevels, HCV RNA was extracted from each of the samples in the
reference panel, and the nucleotide sequences of core regions were
determined. Phylogenetic analysis with these sequences permitted
classification of the individual strains by genotype. Of 80 samples
in the reference panel, 1 (1.3%) was genotype 1a, 35 (43.8%) were
genotype 1b, 26 (32.5%) were genotype 2a, and 18 (22.5%) were
genotype 2b (Table 1; also, see Fig. S3 in the supplemental mate-
rial). These strains were distributed evenly among reference
strains of each genotype and cover the sequence diversity of strains
isolated in Japan (see Fig. S3 in the supplemental material). The
genotypes of samples associated with underestimated core Ag val-
ues (samples C-01 and C-73) were both classified as genotype 2a.

Predicted amino acid sequences of HCV core protein were
aligned with the consensus core protein sequence for the genotype
1b strains obtained in this study (see Fig. S4 in the supplemental
material). Excluding the genotype-specific sequence variations, a
specific amino acid polymorphism was identified at amino acid
(aa) residue 48 (Ala to Thr) in samples C-01 and C-73. Sample
C-01, which yielded underestimated values in most core Ag assays,
also possessed an additional polymorphism in the same region,
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FIG 2 Correlation between CAP/CTM-RNA and core Ag levels as quantified by five commercial kits. Data for core Aglevels were converted to log fmol/liter prior
to analysis. In each plot, the lower limit of detection of the respective core Ag assay is indicated by a dotted line. Data for samples below the lower detection limit
of each assay are indicated by shaded circles labeled with the respective sample designations.

specifically an Arg-to-Gly substitution at aa 47. We suspected that
these polymorphisms altered the antigenicity of the core protein,
thereby reducing detected core Ag levels and leading to underes-
timation of values by the core Ag quantification kits. To assess the
correlation of these polymorphisms with the underestimation of
core Ag values, strains containing polymorphisms in this region
(at aa 47 to 49 [Fig. 4]) were identified in Bland-Altman plots of
HCV RNA and core Ag (Fig. 3; also, see Fig. S2 in the supplemental
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material). A total of 12 strains exhibited polymorphisms at these
positions, including 2 strains of genotype 1b, 8 of genotype 2a, and
2 of genotype 2b (Table 1). In the Bland-Altman plot of CAP/
CTM-RNA and Architect-Ag, 4 of 12 values (for samples C-01,
C-16, C-73, and C-74) were located under the line of the lower
95% limit of agreement (Fig. 3A). Likewise, in the plot of CAP/
CTM-RNA and Lumipulse-Ag, 3 of 12 values (those for samples
C-01, C-67, and C-73) were located under the line of the lower
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FIG 3 Bland-Altman plot analysis of CAP/CTM-RNA and core Ag levels as quantified by five commercial kits. These plots show the difference between the values
of HCV RNA and core Ag as a function of the average of these two values. Data for core Ag levels were converted to log fmol/liter prior to analysis. The bias and
95% limits of agreements are indicated by solid and dashed lines, respectively. Data for samples with polymorphisms at amino acid residues 47 to 49 are indicated
by solid circles. Data points outside the 95% limits are indicated by arrows labeled with the sample designations.

95% limit of agreement (Fig. 3B). In these plots, underestimation
for samples that lacked these polymorphisms (at aa 47 to 49) was
not detected. In the plot of CAP/CTM-RNA and Lumispot-Ag,
only 1 sample (C-01) was located under the line of the lower 95%
limit of agreement, but this sample exhibited the most discordant

TABLE 1 Number of reference panel strains with polymorphisms at
amino acid residues 47 to 49 of the HCV core region

No. (%) of strains

Genotype Total With polymorphisms
la 1 0

1b 35 2(5.7)

2a 26 8(30.8)

2b 18 2 (11.8)

Total 80 12 (15.0)
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value (Fig. 3C). In the plot of CAP/CTM-RNA and ELISA-Ag, no
correlation between polymorphisms at these positions and under-
estimation was observed (Fig. 3D). In the plot of CAP/CTM-RNA
and IRMA-Ag, sample C-73 was located under the line of the
lower 95% limit of agreement, as were other samples that lacked
polymorphisms at aa 47 to 49 (Fig. 3E). Similar trends were ob-
served in comparison with ART-RNA levels (see Fig. S2 in the
supplemental material). Based on these results, the levels of HCV
core Ag measured with Architect-Ag and Lumipulse-Ag seem to
be more strongly affected by single polymorphisms at these posi-
tions. In the case of Lumispot-Ag, underestimation may be lim-
ited to specimens with multiple polymorphisms at these positions.

DISCUSSION

The quantification of HCV viral load is essential for selecting an
appropriate antiviral strategy and for monitoring the efficacy of
treatment. Since HCV is known to be highly variable and rapidly
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evolving (23, 26), the assays for quantifying this virus should be
unaffected by sequence polymorphisms. In this study, we estab-
lished a reference panel with HCV-positive samples and evaluated
the correlation among multiple assays for HCV RNA and core Ag
quantification.

Using this reference panel, we found that the results from two
HCV RNA assay kits, CAP/CTM-RNA and ART-RNA, correlated
with excellent agreement (r = 0.978, P < 0.0001 [Fig. 1]), al-
though discrepancies for values generated by these two assays have
been reported for strains of genotypes 1, 2, and 4 (5, 6, 34). In
Japan, the prevalent genotypes are 1b, 2a, and 2b (11); no geno-
type 4 sample was included in our reference panel (Table 1). In
quantification with CAP/CTM-RNA, underestimation of HCV
RNA titer has been reported for French genotype 2 samples (5). In
our panel, no underestimation was observed for data from geno-
type 2 samples compared to values obtained using ART-RNA.
Therefore, underestimation in quantification with CAP/CTM-
RNA is expected to be rare in Japanese samples, and the two assays
for HCV RNA quantification should be considered accurate and
reliable, at least for Japanese samples. Additionally, the prepared
reference panel appears to be suitable for the evaluation of HCV
quantification assays, because genotypes of samples in this panel
are representative of those found in Japan and viral loads are dis-
tributed evenly across the range of expected titers.

The quantification of HCV core Ag is an alternative test for
HCV infection and viral load. However, in this study, several core
Ag quantitative assays failed to provide accurate results for all of
the samples in the reference panel (Fig. 2). Some quantified values
were below the kits’ detection limits. This shortcoming was
mainly attributable to the lower sensitivity of the core Ag assay
kits; increased sensitivity is urged in the future development of
HCV core Ag kits. Among the kits tested here, Architect-Ag assay
exhibited the highest sensitivity and was sufficient for quantifying
the viral load in all samples. However, even in the case of Archi-
tect-Ag, theoretical lower limits of detection, calculated by corre-
lation formula using CAP/CTM-RNA and ART-RNA, were 3.2
and 3.4 log IU/ml, respectively; these detection limits still ex-
ceeded the lower limits of the HCV RNA quantification assays.
Therefore, the sensitivity of the available HCV core Ag assays is
still insufficient to detect low-titer HCV infections. Core Ag kits
therefore may be unsuitable for the detection of breakthrough
hepatitis during antiviral therapy or for the detection of HCV
infection in a window period.
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Comparison between HCV RNA and core Ag assays revealed
good correlations, with r coefficients ranging from 0.8877 to
0.9666 and P values being less than 0.0001 (Fig. 2; also, see Fig. S1
in the supplemental material). Therefore, the HCV core Ag levels
may serve as an alternative to HCV RNA levels when titers remain
within the detection ranges of the core Ag kits. However, several
discordances were detected when core Ag levels were compared
with those of HCV RNA. For one sample in our panel (sample
C-01), core Ag levels were lower than expected when quantified
using any of the three core Ag kits (Architect-Ag, Lumipulse-Ag,
and Lumispot-Ag) (Fig. 3; also, see Fig. S2 in the supplemental
material). Another sample (C-73) also yielded lower-than-ex-
pected levels when assayed with Architect-Ag and Lumipulse-Ag
kits. Sequence analysis of the core region revealed that polymor-
phisms at aa 47 and 48 correlated with these underestimates by
core Ag kits (see Fig. S4 in the supplemental material). These re-
sults are consistent with our previous study, which suggested that
core Ag levels of HCV strain JFH-1 were underestimated by the
Lumipulse-Ag kit in comparison to the ELISA-Ag assay (28).
Strain JFH-1 harbors an Ala-to-Thr substitution at aa 48; conver-
sion of Thr to Ala at this position in JFH-1 was sufficient to over-
come this underestimation. This region of the core Ag presumably
corresponds to one of the epitopes recognized by the monoclonal
antibodies used in the Lumipulse-Ag kit, such that polymor-
phisms at this position affected the antigenicity of the core pro-
tein. In this study, we found that the presence of other polymor-
phisms in this region (aa 47 to 49) correlated with reduced core Ag
levels as detected by Lumipulse-Ag, as well as by other assays (Ar-
chitect-Ag and Lumispot-Ag). Sample C-01 demonstrated a dras-
tic deviation from expected core Ag levels in these assays (Fig. 3;
also, see Fig. S2 in the supplemental material). The HCV strain in
this sample contains two polymorphisms (Arg to Gly at aa 47 and
Ala to Thr at aa 48); the multiple polymorphisms may impair
antibody binding more severely and therefore result in underesti-
mation of core Ag levels. Interestingly, this sample exhibited rea-
sonable core Ag levels when assayed using ELISA-Ag. Thus, the
underestimation of core protein levels in this sample was kit de-
pendent, suggesting the targeting of distinct epitopes by the anti-
bodies used in each of these kits. This hypothesis could not be
confirmed, because the identity of the epitopes targeted by each kit
is proprietary.

Of 12 samples with amino acid polymorphisms in this region,
2 (5.7%) were of genotype 1b, 8 (30.8%) were of genotype 2a, and
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TABLE 2 Number of strains in the sequence database® with
polymorphisms at amino acid residues 47 to 49 of the HCV core region

No. (%) of strains

With polymorphism

Ataa 47 At aa 48 At aa 49
Genotype Tested (R/IC,G) (A/T, P) (T/A, P, L) Total
1b 543 2 (0.36) 4(0.74)  16(2.96) 22 (4.1)
2a 24 0 6 (25.0) 1(4.2) 7 (29.2)
2b 39 0 0 2 (6.9) 2 (6.9)

@ http://s2as02.genes.nig.ac.jp/.

2 (11.8%) were of genotype 2b (Table 1). Searches of the Hepatitis
Virus Database (http://s2as02.genes.nig.ac.jp/) revealed that cor-
responding amino acid polymorphisms were observed in 22 of
543 strains (4.1%) of genotype 1b, 7 of 24 strains (29.2%) of ge-
notype 2a, and 2 of 39 strains (6.9%) of genotype 2b (Table 2).
These percentages were consistent with our observations in the
proposed reference panel. These data (our results and those from
the database) clearly indicate that genotype 2a strains are the most
frequent source of underestimation of core Aglevels. Notably, our
search of the sequence database did not yield any HCV strain with
multiple polymorphisms in the region from aa 47 to 49, as we saw
in our sample C-01. Therefore, strains with such multiple poly-
morphisms are rare so far, but detection of this isolate among
donated blood specimens suggests that such HCV strains could be
emerging in clinical samples. For patients harboring such strains,
HCV viral load may be underestimated if measurement of HCV
viral load is performed by core Ag assay. Such underestimates may
resultin erroneous selection of therapy, adversely affecting patient
outcome. Thus, this shortcoming in HCV core Ag assay kits needs
to be addressed.

There is a growing need for evaluation of clinical assay kits with
domestic specimen reference panels, since the performance of
these kits may be affected by the genotypes or polymorphisms of
predominant strains in different geographic regions. To our
knowledge, such an investigation of HCV clinical assay kits with
domestic specimens has not previously been conducted in Japan.
The Japanese HCV reference panel described here was generated
with plasma samples collected from Japanese volunteers. Each
sample was divided into small aliquots, and the panel was pre-
pared in multiple sets. The samples in our HCV reference panel
represent the predominant strains and genotypes seen in Japan.
We expect that this reference panel will be of use for the develop-
ment, evaluation, and optimization of HCV assay kits for the Jap-
anese clinical market.

In conclusion, we have established a Japanese reference panel
for evaluation of HCV quantification assays. Using this reference
panel, we found that two assay kits for HCV RNA could quantify
HCV titers concordantly. We also found that the data generated
by HCV core Ag assay kits correlated with the results of HCV RNA
assays. However, the nominal core Ag levels measured by several
kits underestimated actual levels for HCV samples with polymor-
phisms at aa 47 to 49 of the core Ag. The panel established in this
study is expected to be useful for estimating the accuracy of cur-
rently available and upcoming HCV assay kits; such quality con-
trol is essential for clinical usage of these kits.
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